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1. Introduction

G.Prodi [12]investigated the existence of the equationu’' + u' — Au+u + |u'|lu’ = f
and Lions [6] study the system of equations. The author [7], [8] study similar

problems governed by Lamé&operator. In this work we study the fallowing problem.

u’' +u —Au+ WP =f  inQ (1.1)

P J u=0 ong (1.2) (1.1)
u(x,0) =ulx,T) V xeQ (1.3)
k u'(x,0) =u'(x,T) V xeQ (1.4)

Where Q is an open bounded domain of IR™ with regular boundary I'. We denote by Q
the cylinder IR} XIRy: Q = Q x ]0,T[, with boundary X, h and f are functions. We look
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for the existence and uniqueness of a function u = u(x,t), x € Q, t €]0,T[, solution of

the problem.

2. Preliminaries:

We use the standard Lebesgue space LP (€2) and the Sobolev spaces with their usual
products and norms.

Definition 2.1 Let V be a Banach space, V' be the topological dual of V. We
define the operator Bs: V — V' and we say that Bg is:

1) Monotonous, if: ( Bs(u) — Bs(v),u —v)>0 Vu,veV

2) Strictly monotonous, if: ( Bs(u) — Bs(v),u —v)>0 V u,veV

3) Coercive, if: limyy, -0 Bs(), v)/lvlly) = o

4) Hemi continuous, if: t — ( Bs(u + tv), w) is continuous in IR

Remark 2.1 The classical method of energy not efficacy, because when we multiply
the both side of equation (1'.1) by u’ and integrating on (Q x ]0,T[) and use the
periodicity, we haven’t the solution for (1'.1).

3. Main results

The main results of the paper is given by the fallowing theorems

Theorem 3.1 Suppose that Q is bounded open set in IR are given f, with f € LI(Q)

Then there exists a function u = wy+w satisfying (1.1)

Wo € H} (Q) + W29(Q) n W (Q) (1.2)
weL?(0,T; Hi (Q)) (1.3)
w' € LP(Q) (1.4)

Proof We use an approach of G. Prodi [12] we have

u=wy+w

w, independent of t (1.5)
fOT wdt =0

We introduce the Prodi idea (1. 5) in (1'.1) we having

u'+u — A+ [P — f =+ Lug (1.6)

We consider the derivative of (1.6) we obtain
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d df
_ 144 r__ 14 p—2 ! — 7
dt(u +u' —Au+ |u'|P7=u’) It (1.7)
And
J, udt =0
u(T) = u(0) (1.8)
u'(x,0) =u'(x,T)
We deduce to (1.7)
u” +u' — Au+ |[u'|P7%u’ — f = hy with hy independent of t (1.9

For resolve (1.7) and (1.8) we denote. A =-A; B(u') = |u'|P72u’
We consider the functional space V:
{ v:ve L2(0,T, Hi (Q)); v'e L?(0,T, (HE () N LP(Q); (1.10)

v"e 20,7, 12(Q); [ v(©)dt = 0; v(T) = v(0); v'(T) = v'(0)
The Banach structure of V is defined by
Il = 100207z o) *+ 17" Diz(omg ) + 120p@) + 1Mo 7120)

We define the bilinear form:

T

b(u,v) = J [, v) + W', v) + (Au,v) + (B@'), v)]dt (1.11)
0
The weak formulation of (1.7) and (1.8) is to find uel/ such that

T
b(u,v) = f(f, v)dt YV veV (1.12)
0

Following some ideas of Lions for obtain the elliptic regularization, given § >0 and
u,v e we define

T T

ms(u,v) = 5f [(w",v") + (Au',v")]ds + j(u" +u' 4+ Au + B@’),v)ds. (1.13)
0 0

The application v — ms(u, v) is continuous on V so there exists an application

g €V': ms(u,v) = (Bs(w),v) (1.14)
The linear operator Bs : V —V' satisfies the properties:

Bs is bounded in V' for all bounded set in V' and is a hemi continuous and is a

strictly monotonous and is coercive. In view of these properties and as consequence of
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theorem of Lions [5], there exist unique a function uge V:

T
s(us, v) = f(f, vdt YV velV (1.15)
0

A priori estimates |
Explicitly the elliptic regularization (1.15) and setting v =ug, we obtain:

T T

5 j [l 12+ s 2]t + j [l's1% + (B’ ), ' )]dt = f (Frude  (L16)
0 0

0

Or

T T
f(B(ul)'ul)dt - ”u’”zL)p(Q) And fudt =0= ”u”Lz(o.r,H& ) = ¢ ”uI”LZ(o,T,Ho1 @)
0 0

Then u'sis bounded in LP(Q) when § - 0 (1.17)
T
6 [ sl + sl + s P1de < € (1.18)
0
T
Orf udt =0
0
We have by (1.17)and (1.18)that ug is bounded in L? (Q) (1.19)
T
And Sjllu(gllzdtﬁ C (1.20)
0

A priori estimates 11

Exchange in (1.15) v with:

v(t) = j us(s)d — - J (T — s)us(s)ds (1.21)
0 0
We verify that:
T
vadtzo VveV (1.22)
0
k v = ug

Taking into account (1.21) in (1.15) we get
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T T
5f [(W's,u's) + (W's,us) + (Au's,us)]dt + j-[(u”a.us) + (u's, us) + llusll®]dt
0 0

T T

+ OJ ('B(ulg),u’(g)dt= Oj(f'u8)dt

By using periodicity of ug,u'se V' we obtain:

T T
j (w5 u's)dt = j(Au'a,ua)dt =0
0 0

And

T

0

T
= —f|u'5|2dt
0
By (1.24) and (1.17) we have
T
J(u,,(g,U5)dt <C when 6§—-0
0
Also, from (1.17) and (1.19) we obtain:
T
| | <156 Dl luslpe <
0

Combining (1.24), (1.26), (1.27) with (1.23) we deduce

T
j lugli2de < C
0

Passage to the limit

From (1.17) and (1.28) that there exists a subsequence from (us), such that

us > 0 weak in LZ(O, T,H} (Q))
u's > u' weakin LP(Q)

B's) = x weakin L1(Q)

T
f (w5 us)dt = (u's(T), us (1)) — (u'5(0), us(0)) — f(u'ayu'a)dt
0

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)
(1.31)
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Passage to the limit in (1.15) we obtain

T T

f[(—u’,v") + (Au,v") + (x,v')]dt = f (f,v)dt vveV (1.32)
0 0

Use the convolution technical in (1.32) we have

T T

[t sns e = [ (rwsnsenpae wwev (133)
0 0
When

T T

f()(, u'dt = f (f,u)dt VvevV (1.34)
0 0

Theorem 3.2 We consider two solutions u; and u, under the hypotheses of the
theorem of existence to the problem (P). Then u;= u,.

Proof We subtract the equations (1.9) corresponding to u; and u_ and sitting

¢ = u;-up we have:

0" + ¢+ A0+ B ws) — B (uz) (2.1)
Denoting by (1) the regularizing sequence a similar argument by Bre&is [2] we

obtain:

O x5 ks =¢*n's x5 (2.2)
Hence, by using (1.2) and (1.3), we have

db=¢+¢,: 0, €Vand pel?(0,T,H (Q)) (2.3)
From (2.2) we get

O *xnsxns=0xn 5505 =@ *n5*1s (2.4)
Show that

T
f(‘b”' ¢ *ns*xns)dt =0
0

When

T T T

d n ! ! 12}
[ @ nsmp)d = [0 s ns o mde + @ ns xnpdde
0 0 0

T
=2 j "0 %15 * n5)dt = 0 2.5)
0
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Therefore

T T

n ! 1 d ! !
[ @6 ns wmsdde =3 [ 20,0 < ns 4 ns)de =0
0 0

¢'and ns periodic then we have
T

T
j @8 =5 *ns)dt = [(Ab¢' s = ms)de = 0
0 0

From (2.1); (2.6) and (2.7) we obtain:

T
[ @@ =B, o sns vns) = 0
0

Passage to the limit in (2.8) we have

T
[ =y —wae = o
0
Where
u;—u,=0=u'; =u,
This implies that
&= uy-u; =0, 0 independent of t

From (2.7) and (2.11) we obtain
T
f(AO,G)dt =0 VOEeEV
0

We deduce from (1.2)
0 € HE () + W21(Q) n W, ()

Using theorem of Green we have (A0,0) = ||0]|?.
By (2.12) and (2.13) and (2.14) we obtain the uniqueness.

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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