

Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 4, 1078-1085

ISSN: 1927-5307

PERIODIC SOLUTION OF A NONLINEAR PROBLEM BY ELLIPTIC REGULARIZATION TECHNIQUES

MEFLAH MABROUK*

University of Kasdi Merbah Ouargla, Algeria

Faculty of Sciences, Department of Mathematics,

Abstract: In this paper we investigate for the existence and uniqueness of a function u = u(x,t), $x \in \Omega$, $t \in]0,T[$ weak periodic solution of the nonlinear boundary value problem by the elliptic regularization techniques based on theory of monotone operators.

Keywords: Elliptic regularization, monotone operators, periodic solution, priori estimates.

2000 AMS Subject Classification: 35Q60

1. Introduction

G.Prodi [12]investigated the existence of the equation $u'' + u' - \Delta u + u + |u'|u' = f$ and Lions [6] study the system of equations. The author [7], [8] study similar problems governed by Lam éoperator. In this work we study the fallowing problem.

(P)
$$\begin{cases} u'' + u' - \Delta u + |u'|^{p-2}u' = f & in \ Q & (1'.1) \\ u = 0 & on \ \Sigma & (1'.2) & (1.1) \\ u(x,0) = u(x,T) & \forall \ x \in \Omega & (1'.3) \\ u'(x,0) = u'(x,T) & \forall \ x \in \Omega & (1'.4) \end{cases}$$

Where Ω is an open bounded domain of IR^n , with regular boundary Γ . We denote by Q the cylinder $IR^n_x \times IR_t$: $Q = \Omega \times]0,T[$, with boundary Σ , h and f are functions. We look

E-mail address: meflah@ymail.com. (M. Mabrouk)

This research was supported by the Laboratory of applied mathematics, Kasdi Merbah university, Ouargla, Algeria.

Received March 5, 2012

^{*}Corresponding author

for the existence and uniqueness of a function $u = u(x,t), x \in \Omega, t \in]0,T[$, solution of the problem.

2. Preliminaries:

We use the standard Lebesgue space $L^p(\Omega)$ and the Sobolev spaces with their usual products and norms.

Definition 2.1 Let V be a Banach space, V' be the topological dual of V. We define the operator B_{δ} : $V \to V'$ and we say that B_{δ} is:

- 1) Monotonous, if: $\langle B_{\delta}(u) B_{\delta}(v), u v \rangle \ge 0 \quad \forall u, v \in V$
- 2) Strictly monotonous, if: $\langle B_{\delta}(u) B_{\delta}(v), u v \rangle > 0 \ \forall u, v \in V$
- 3) Coercive, if: $\lim_{\|v\|_V \to \infty} (\langle B_\delta(v), v \rangle / \|v\|_V) = \infty$
- 4) Hemi continuous, if: $t \to \langle B_{\delta}(u+tv), w \rangle$ is continuous in IR

Remark 2.1 The classical method of energy not efficacy, because when we multiply the both side of equation (1'.1) by u' and integrating on $(\Omega \times]0,T[)$ and use the periodicity, we haven't the solution for (1'.1).

3. Main results

The main results of the paper is given by the fallowing theorems

Theorem 3.1 Suppose that Ω is bounded open set in IRⁿ are given f, with $f \in L^q(Q)$ Then there exists a function $u = w_0 + w$ satisfying (1.1)

$$W_0 \in H_0^1(\Omega) + W^{2,q}(\Omega) \cap W_0^{1,q}(\Omega)$$
 (1.2)

$$\mathbf{w} \in L^2\left(0, T; H_0^1\left(\Omega\right)\right) \tag{1.3}$$

$$w' \in L^p(Q) \tag{1.4}$$

Proof We use an approach of G. Prodi [12] we have

$$\begin{cases} u = w_0 + w \\ w_0 \text{ independent of } t \\ \int_0^T w dt = 0 \end{cases}$$
 (1.5)

We introduce the Prodi idea (1.5) in (1'.1) we having

$$u'' + u' - \Delta u + |u'|^{p-2}u' - f = f + Lu_0 \tag{1.6}$$

We consider the derivative of (1.6) we obtain

$$\frac{d}{dt}(u'' + u' - \Delta u + |u'|^{p-2}u') = \frac{df}{dt}$$
(1.7)

And

$$\begin{cases} \int_0^T u dt = 0 \\ u(T) = u(0) \\ u'(x, 0) = u'(x, T) \end{cases}$$
 (1.8)

We deduce to (1.7)

$$u'' + u' - \Delta u + |u'|^{p-2}u' - f = h_0 \text{ with } h_0 \text{ independent of } t$$

$$\tag{1.9}$$

For resolve (1.7) and (1.8) we denote. $\Delta = -A$; $\beta(u') = |u'|^{p-2}u'$

We consider the functional space V:

$$V = \begin{cases} v: v \in L^{2}(0, T, H_{0}^{1}(\Omega)); & v' \in L^{2}(0, T, (H_{0}^{1}(\Omega)) \cap L^{p}(Q); \\ v'' \in L^{2}(0, T, L^{2}(\Omega)); & \int_{0}^{T} v(t)dt = 0; & v(T) = v(0); & v'(T) = v'(0) \end{cases}$$
(1.10)

The Banach structure of V is defined by

$$\|v\|_{V} = \|v\|_{L^{2}\left(0,T,H_{0}^{1}\left(\Omega\right)\right)} + \|v'\|_{L^{2}\left(0,T,H_{0}^{1}\left(\Omega\right)\right)} + \|v\|_{L^{p}(Q)} + \|v\|_{L^{2}\left(0,T,L^{2}\left(\Omega\right)\right)}$$

We define the bilinear form:

$$b(u,v) = \int_{0}^{T} [(u'',v) + (u',v) + (Au,v) + (\beta(u'),v)]dt$$
 (1.11)

The weak formulation of (1.7) and (1.8) is to find $u \in V$ such that

$$b(u,v) = \int_{0}^{T} (f,v')dt \quad \forall \ v \in V$$
 (1.12)

Following some ideas of Lions for obtain the elliptic regularization, given $\delta > 0$ and $u, v \in \text{we define}$

$$\pi_{\delta}(u,v) = \delta \int_{0}^{T} [(u'',v'') + (Au',v')]ds + \int_{0}^{T} (u'' + u' + Au + \beta(u'),v')ds.$$
 (1.13)

The application $v \to \pi_{\delta}(u, v)$ is continuous on V so there exists an application

$$\pi_{\delta} \in V' \colon \pi_{\delta}(u, v) = (B_{\delta}(u), v) \tag{1.14}$$

The linear operator $B_{\delta}: V \longrightarrow V'$ satisfies the properties:

 B_{δ} is bounded in V' for all bounded set in V and is a hemi continuous and is a strictly monotonous and is coercive. In view of these properties and as consequence of

theorem of Lions [5], there exist unique a function $u_{\delta} \epsilon V$:

$$\pi_{\delta}(u_{\delta}, v) = \int_{0}^{T} (f, v')dt \quad \forall \ v \in V$$
 (1.15)

A priori estimates I

Explicitly the elliptic regularization (1.15) and setting $v = u_{\delta}$, we obtain:

$$\delta \int_{0}^{T} [\|u'_{\delta}\|^{2} + |u''_{\delta}|^{2}]dt + \int_{0}^{T} [|u'_{\delta}|^{2} + (\beta(u'_{\delta}), u'_{\delta})]dt = \int_{0}^{T} (f, u_{\delta})dt$$
 (1.16)

Or

$$\int_{0}^{T} (\beta(u'), u') dt = \|u'\|_{L^{p}(Q)}^{p} And \int_{0}^{T} u dt = 0 \Rightarrow \|u\|_{L^{2}(0,T,H_{0}^{1}(\Omega))} \leq C \|u'\|_{L^{2}(0,T,H_{0}^{1}(\Omega))}$$

Then
$$u'_{\delta}$$
 is bounded in $L^p(Q)$ when $\delta \to 0$ (1.17)

$$\delta \int_{0}^{T} [|u''_{\delta}|^{2} + |u'_{\delta}|^{2} + ||u'_{\delta}||^{2}]dt \le C$$
(1.18)

$$\operatorname{Or} \int_{0}^{T} u dt = 0$$

We have by (1.17) and (1.18) that
$$u_{\delta}$$
 is bounded in $L^{p}(Q)$ (1.19)

And
$$\delta \int_0^1 ||u_\delta||^2 dt \le C$$
 (1.20)

A priori estimates II

Exchange in (1.15) v with:

$$v(t) = \int_{0}^{T} u_{\delta}(s)d - \frac{1}{T} \int_{0}^{T} (T - s)u_{\delta}(s)ds$$
 (1.21)

We verify that:

$$\begin{cases} \int_{0}^{T} v dt = 0 \quad \forall v \in V \\ v' = u_{\delta} \end{cases}$$
 (1.22)

Taking into account (1.21) in (1.15) we get

$$\delta \int_{0}^{T} [(u''_{\delta}, u'_{\delta}) + (u'_{\delta}, u_{\delta}) + (Au'_{\delta}, u_{\delta})]dt + \int_{0}^{T} [(u''_{\delta}, u_{\delta}) + (u'_{\delta}, u_{\delta}) + ||u_{\delta}||^{2}]dt$$

$$+\int_{0}^{T} (\beta(u'_{\delta}), u'_{\delta})dt = \int_{0}^{T} (f, u_{\delta})dt$$
(1.23)

By using periodicity of u_{δ} , $u'_{\delta} \in V$ we obtain:

$$\int_{0}^{T} (u''_{\delta}, u'_{\delta}) dt = \int_{0}^{T} (Au'_{\delta}, u_{\delta}) dt = 0$$
(1.24)

And

$$\int_{0}^{T} \left(u''_{\delta}, u_{\delta}\right) dt = \left(u'_{\delta}(T), u_{\delta}(T)\right) - \left(u'_{\delta}(0), u_{\delta}(0)\right) - \int_{0}^{T} \left(u'_{\delta}, u'_{\delta}\right) dt$$

$$=-\int_{0}^{T}|u'_{\delta}|^{2}dt\tag{1.25}$$

By (1.24) and (1.17) we have

$$\left| \int_{0}^{T} \left(u''_{\delta}, u_{\delta} \right) dt \right| \le C \quad when \quad \delta \to 0$$
 (1.26)

Also, from (1.17) and (1.19) we obtain:

$$\left| \int_{0}^{T} (\beta(u'_{\delta}), u_{\delta}) dt \right| \leq \|\beta(u'_{\delta})\|_{L^{p}(Q)} \|u_{\delta}\|_{L^{p}(Q)} \leq C'$$
(1.27)

Combining (1.24), (1.26), (1.27) with (1.23) we deduce

$$\int_{0}^{T} \|u_{\delta}\|^{2} dt \le C \tag{1.28}$$

Passage to the limit

From (1.17) and (1.28) that there exists a subsequence from (u_{δ}) , such that

$$u_{\delta} \to 0 \quad weak \ in \quad L^2(0,T,H_0^1(\Omega))$$
 (1.29)

$$u'_{\delta} \to u' \quad weak \ in \quad L^p(Q)$$
 (1.30)

$$\beta(u'_{\delta}) \to \chi \text{ weak in } L^q(Q)$$
 (1.31)

Passage to the limit in (1.15) we obtain

$$\int_{0}^{T} [(-u', v'') + (Au, v') + (\chi, v')]dt = \int_{0}^{T} (f, v')dt \quad \forall v \in V$$
 (1.32)

Use the convolution technical in (1.32) we have

$$\int_{0}^{T} (\chi, u' * \eta_{\delta} * \eta_{\delta}) dt = \int_{0}^{T} (f, u' * \eta_{\delta} * \eta_{\delta}) dt \quad \forall v \in V$$
(1.33)

When

$$\int_{0}^{T} (\chi, u'')dt = \int_{0}^{T} (f, u')dt \qquad \forall v \in V$$
(1.34)

Theorem 3.2 We consider two solutions u_1 and u_2 under the hypotheses of the theorem of existence to the problem (P). Then $u_1 = u_2$.

Proof We subtract the equations (1.9) corresponding to u_1 and u_2 and sitting

 $\phi = u_1 - u_2$ we have:

$$\phi'' + \phi' + A\phi + \beta(u_1') - \beta(u_2') \tag{2.1}$$

Denoting by (η_{δ}) the regularizing sequence a similar argument by Br \acute{e} zis [2] we obtain:

$$\phi' * \eta_{\delta} * \eta_{\delta} = \phi * \eta'_{\delta} * \eta_{\delta} \tag{2.2}$$

Hence, by using (1.2) and (1.3), we have

$$\phi = \varphi + \phi_0 : \phi_0 \in V \text{ and } \varphi \in L^2(0, T, H_0^1(\Omega))$$
(2.3)

From (2.2) we get

$$\phi' * \eta_{\delta} * \eta_{\delta} = \phi * \eta'_{\delta} * \eta_{\delta} = \varphi' * \eta_{\delta} * \eta_{\delta}$$
(2.4)

Show that

$$\int_{0}^{T} (\phi'', \phi' * \eta_{\delta} * \eta_{\delta}) dt = 0$$

When

$$\int_{0}^{T} \frac{d}{dt} (\phi', \phi' * \eta_{\delta} * \eta_{\delta}) dt = \int_{0}^{T} (\phi'', \phi' * \eta_{\delta} * \eta_{\delta}) dt + \int_{0}^{T} (\phi', \phi'' * \eta_{\delta} * \eta_{\delta}) dt$$

$$= 2 \int_{0}^{T} (\phi'', \phi' * \eta_{\delta} * \eta_{\delta}) dt = 0$$
(2.5)

Therefore

$$\int_{0}^{T} (\phi'', \phi' * \eta_{\delta} * \eta_{\delta}) dt = \frac{1}{2} \int_{0}^{T} \frac{d}{dt} (\phi', \phi' * \eta_{\delta} * \eta_{\delta}) dt = 0$$
(2.6)

 ϕ' and η_{δ} periodic then we have

$$\int_{0}^{T} (\phi', \phi' * \eta_{\delta} * \eta_{\delta}) dt = \int_{0}^{T} (A\phi, \phi' * \eta_{\delta} * \eta_{\delta}) dt = 0$$
(2.7)

From (2.1); (2.6) and (2.7) we obtain:

$$\int_{0}^{T} (\beta(u'_{1}) - \beta(u'_{2}), \phi' * \eta_{\delta} * \eta_{\delta}) = 0$$
(2.8)

Passage to the limit in (2.8) we have

$$\int_{0}^{T} (\beta(u'_{1}) - \beta(u'_{2}), u'_{1} - u'_{2}) dt = 0$$
(2.9)

Where

$$u'_1 - u'_2 = 0 \Rightarrow u'_1 = u'_2 \tag{2.10}$$

This implies that

$$\phi = u_1 - u_1 = \theta$$
, θ independent of t (2.11)

From (2.7) and (2.11) we obtain

$$\int_{0}^{T} (A\theta, \theta) dt = 0 \quad \forall \theta \in V$$
(2.12)

We deduce from (1.2)

$$\theta \in H_0^1(\Omega) + W^{2,q}(\Omega) \cap W_0^{1,q}(\Omega) \tag{2.13}$$

Using theorem of Green we have
$$(A\theta,\theta) = \|\theta\|^2$$
. (2.14)

By (2.12) and (2.13) and (2.14) we obtain the uniqueness.

Acknowledgement: The author would like his thanks to the Prof. B. Merouani and LAMA Ferhat Abbas and LMA Kasdi Merbah University.

REFERENCES

- [1] Adams, Sobolev Spaces, Academic Press, (1976).
- [2] H. Brezis, Analyse fonctionnelle, th éorie et applications. Masson (1983).

- [3] H. Brezis, Equations et in équations non lin éaires dans les espaces vectoriels en dualit é, Ann, Ins.Fourier; 18, (1968), 115-175.
- [4] G.Duvaut, J.L. Lions, Les in équations en méanique et en physique. Dunod. Paris. (1972).
- [5] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod. (1969).
- [6] Luc Tartar, Topics in non lineair analysis. Université de Paris-Sud, Publications Mathematiques d'Orsay, novembre (1978).
- [7] M. Meflah, Study of Nonlinear Elasticity Problem by Elliptic Regularization with Lamésystem, Int. J. of Mathematical Archive-2(5), May 2011, Page 693-697, ISSN 2229-5046.
- [8] M. Meflah, A Nonlinear Elasticity Problem by Elliptic Regularization Technics, Int. J. Contemp. Math. Sciences, Vol 6, 2011, no. 25, 1221-1229, ISSN 1312-7586
- [9] M. Meflah, B Merouani, A Nonlinear Elasticity Problem Governed by Lam éSystem, Applied Mathematical Sciences, Vol.4, 2010, no. 36,1785-1796.
- [10] B. Merouani, M. Meflah, A. Boulaouad, The Generalized and perturbed Lamésystem, Applied Mathematical Sciences Vol.2, 2008, no. 49,2425-2430
- [11] F. Messelmi, B. Merouani, M. Meflah, Nonlinear thermoelasticity problem, Analele Universitatii Oradea, Fasc. Matematica, Tom XV (2008), 207-217.
- [12] G. Prodi, Soluzioni periodiche dell'equazione delle onde com termine dissipativo nonlineare.
 Rend. Sem.Mat. Pandova, 35 (1965).
- [13] V. Patron, P. Perline, Méthode de la théorie mathématique de l'élasticité, Editions Mir, Moscou, 1981.
- [14] Taylor M.E, Partial differential non linear equations III Springer. (1996).
- [15] K. Yosida, Functional Analysis, Springer-Verlag Berlin Heidelberg New York 1968.