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Abstract. We study the Aleksandrov problem in linear n-normed space and give out a sufficient condition for
n-isometry in linear n-normed space.
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1. Introduction

Let (E,dg) and (F,dr) be metric spaces. A mapping f : E — F is called an isometry if
dr(f(x), f(y)) =de(x,y) for any x,y € E. For fixed number r > 0, f is said to preserve distance
r if dg(x,y) = r implies dr(f(x),f(y)) = r for any x,y € E. Then r is called a preserved
distance for the mapping f. Aleksandrov posed the question: Whether the existence of a single
preserved distance for some mapping f implies f is an isometry (see [1]). Several papers
have investigated the Aleksandrov problem (see [2-10]). In particular, Chu et al [2] begin to
consider the Alksandrov problem in linear n-normed space. They introduce the concept of n-
isometry and prove that Rassias and Semrl’s theorem holds under some conditions. In this paper,
we generalize the concept of n-isometry and give out a sufficient condition for generalized n-
isometry in the linear n-normed space.
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2. Main results

Definition 1. (Chu et al [2]) Let E be a real linear space with dimE >nand ||-,--- ,-|| : E® = R
a function. Then (E,||-,---,-||) is called a linear n-normed space if

(1) ||x1,-+ ,x,|| = 0if and only xy,- - -, x, are linearly dependent;

(2) ||x1,--+ ,xall = ||xj;,- - ,xj,|| for any permutation (ji,- -, j.) of (1,---,n);

(3) H(XX],"' 7an = |(X‘HX1,"‘ 7an;

(4) Hx—i_yvx%'“ 7an < HX,XZ,"' ;xn” + Hyer?“' ;xn”-
for any o € R and any x,y,x;,--- ,x, € E. The function ||-,--- || is called the n-norm on E.

Definition 2. (Chu et al [2]) Let E, F be liner n-normed spaces and f : E — F a mapping. f is

said to be an n-isometry if and only if

||X1 — X0, yXn —X()H = Hf(xl) —f(X()),"' 7f(x'1> _f(-x())H

for all xg,x1,--- ,x, € E.
We now generalize the concept of n-isometry as following.

Definition 3. Let £, F be liner n-normed spaces and f : E — F a mapping. f is said to be an

n-isometry if and only if

er = y1s-- X =yl = I () = F(va)s-- f (o) = f ()

forall xi,--- ,x,,y1, -+ ,yn €E.

Throughout this paper, n-isometry has its meaning in the sense of Definition 3 if not special

specified.

Theorem 1. Let £ F be liner n-normed spaces, o > 0 and f : E — F a surjection satisfying the

following:

(D) [Jx1 =y1,-+ X —yal < L then |[f(x1) = fF(1), -5 f(xn) = FOR)I| < IIx1 = Y15+ % = yalls
() X1 =y1,- %0 —yall = o, then [[f(x1) — f(y1),- -+, f () = fO) || = 0.

Then f is an n-isometry.



ALEKSANDROV PROBLEM IN LINEAR N-NORMED SPACE 167

Proof. Clearly [| £ (x1) = f(y1),--+.f () = fa) | = lber =y1, -+, %0 =yl When [bxy —y1, -+, 20—

yn|| = 0. Without loss of generality, we assume that ||x; —yy,- -+ ,x, — yn|| # O throughout the

proof.
(i) We first prove that for xy,--- ,x,,y1,: -+ ,Vn € E, we have
(1.1) Hf(xl) _f(yl)u"' 7f(xn> _f(yn)H < ||X1 V1, 7xn_yn||'

Notice that there exist n,m € N such that |[x; —y1,--+,x, —yu|| < 7. Clearly (1.1) holds

when m = 1. For m > 2, put

]
i =y1+—(x1—y1)
m

fori=0,1,2,---,m. Then we have z; ;| —z; = %(xl —y1) and
1
Ziv1 =2y 5 Xn — Yl = Hﬁ(xl —=Y1)s 3 %n — Ynl|
1
= —|lxr =y1, %0 — yull
m
1
“n
<1

fori=0,1,2,--- ,m—1. Thus

m—1
1FGe) = f )55 flom) = fOm)l < Z(,) 1f Givr) = f(zi) o 5 f (o) = )
m—1
< Y llzigt =2+ 5% —
i=0

T

= H—(X1—y1),-~',xn—yn\|
i=0 M

= ||X1 — Vi, 7xl’l_yn||'

(ii) Next we prove that if ||x; —y1, -+ ,x, —ya|| < @, then

1 Cer) = Fa)s-- 5 o) = Fn) | = ller =15+ 20 =yl

It follows (1.1) that

£ Cer) = f 1)y 5 i) = FOu)ll < Xt =150+ 5 X0 — |-
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o

Suppose || f(x1) = f(y1),- -+ f () =) | < [lx1=y1, -+ 0=yl Putzy = y1 4+ -t = (1 —
y1). We have

|21 =Y1,%2 = Y2, X — | = €.

Then

o < | f(z1) = f 1), fx2) = F2)s -, f (n) = f ()
SN G) = fa), f2) = f(v2) -+ f (n) = £ ()l
) = f 1) f(2) = f(v2) -+ f (o) — £ ()
<llz1 =x1,%2 = Y2, ;X0 — Y|

+ Hxl —YV1,X2—Y2, " 7xn_yﬂ”

o
= II( -
Hxl — Y1, 7xn_yn”

1)()61 _yl)a"' 7xn_)7n||
+ ||X1 — Y1, 7xn_yn||

:a,

which is a contradiction. Hence ||f(x1) — f(y1), -+, f(xn) — fFOu)|| = ||x1 = y1,- -+ yx0 —

Yal|-
(iii) We now prove that if [|x; —y1,--+ X, — ya|| = 5@ (n € N,n > 2), then

1 Cer) = Fa)s-- 5 Oem) = Fm) | = ller =15+ 20 =yl

Suppose |[x; —y1,---, %, —ya|| = 50 (n € N,n > 2). Put

fO) = fOn)
x1) = f (i), f Gan) = FOm) I

o

Then [lu— f(y1), -, f(xa) = f(yn)|| = 5. Since f is surjective, there exists v € E such

that f(v) = u. More we have

||V—)71a"' >xn_yn|| <.
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Otherwise condition (2) implies ||u— f(y1), -+, f(xx) — f(yn)|| = @, which is a contradic-

tion. Now it follows (ii) that

Hu_f(YI), 7f(xn)_f(yn)H = Hv_ylv"' 7xn—)’nH - %

We assert that
= fx1),+ o fGxn) = o) > 5 (= 1),

In fact if ||u— f(x1),-, f(x2) = f(yn) || < §(n—1), that is
(04
IF ) = F @), f ) = fm) | < 5 (= 1).
Since f is surjective, we can find v; € E (i =0,1,2,--- ;n— 1) such that vo = x{, v, =V
and
i
n—1

fvi) = fx)+ (f(v)=f(x1))

fori=0,1,2,---,n—1. Then
1
1f ier) = F i)y fOm) = FOn)ll = = [0 = ), f ) = flom)
< o
2
fori=0,1,2,--- ,n—2. Hence
IVie1 = Vi s xn—wa|| < o, fori=0,1,2,--- ,n—2.

Now it follows (ii) that

Vi =vio = all = £ 0is) = F0), ) = FOm) < 5

fori=0,1,2,--- ,n—2. Thus
HX1 — Y1, ;xn_ynH < HV—)CI,"' 7xn—)’nH + HV—yh“' ,Xn—)’nH
n—2
< Z ||Vi+1 — Vi, axn_ynH + ||V—)’1,"' 7xn_)’n||
i=0

(04 o
< (n_l)+§

2
na
e
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which is a contradiction. Hence |[u— f(x1),---, f(x) — f(ya)|| = §(n—1). On the other

hand, we have

Hu_f(xl)7"' , J (xn) _f(yn)H

o
= H(l — 2||f(xl) —f(}’l)a"' ,f(xn) _f(yn)H

= £ Gx1) = £+ f ) = ) = 5.

)1 = FGa)) o5 f (o) = £ ()l

So

1FCe) = F )= f o) = F Ol = Ml = f CGer)s - f () = f () +%

n

>
2

Now [[f(x1) = f (1), f () = FOn)ll = lber =15+ -+, %0 = yul| follows from (1.1).

(iv) We finally prove f is n-isometry. For xy,--- ,x,,y1, - ,yn € E, there exists n € N such that

X1 =y1,- -+, % —yal| < 5. It follows (1.1) that

1FGe) = 1) 5 f ) = ST < vt =15+ 520 = -

(04

Suppose || f(x1) = f(y1),- -+ f () =) | <[Px1=y1,- - 20 =yl Putzy = y1 4+ == (o —
y1). We have

TR

n
lzt =y, = Y2, X0 — Yl = S0
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Thus

n

5= (@) = fOn) fx2) = f(32), oo ) = f )l

<|f(z1) = f(xn), f(x2) = F(02)s =5 f (o) — f ()
+ £ Cer) = fF1), f(x2) = F(02), -5 f () = F )|l
< ||zt =x1,%2 = y2,- - ;X0 — Yul|

+ X1 = y1, %2 —y2,- X0 — Y|
a

HX1 — Y1, ,xn_ynH N

NSRS

= I(

1)()61 _yl)v"' ;xn_ynH

+ ”)C] — Y1, 7-xn_ynH

=-a
2 )

which is a contradiction. Hence ||f(x1) — f(y1), -+, f(xn) — FOu) || = ||x1 = Y1, s X0 —

Yn || .
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