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A MODIFIED PRP CONJUGATE GRADIENT METHOD
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Abstract. In this paper, a class of new conjugate gradient method with variable parameters is proposed
to solve unconstrained optimization problems on the base of PRP method. Under the strong Wolfe
line searches, we proved the global convergence of the new method without the given sufficient descent
condition. Many numerical experiments show that the new method is very efficient.
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1. Introduction

Consider the following unconstrained optimization problem

(1) min f(z),
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wheref : R" — R is smooth and its gradient g(z) = s/ f(z) is available.

Conjugate gradient methods for solving (1) are iterative formulas of the form

(2) Tpt1 = T + apdy,

— 9k, for k=1,
—Ggk + Brdi—1, for k>2.

(3) dy =

where g, = Vf(xr), xp is the current iterate; oy is a positive scalar and called the
steplength which is determined by some line searches;dy, is the search direction , and §y is

a scalar. There are many ways to select 3, and some well-known formulas are given by

2
FR ||||gk||||2 (FletcherandReeves(F R)[1]),
Jk—1

PRP _ g}f(gk — Jk—1)
" | gr—12

where ||.|| is the Euclidean norm. In the convergence analysis and implementations of

(Polak — Ribiére — Polyak[2], [3]),

conjugate gradient methods, one often requires the inexact line search such as the Wolfe
line search or the strong Wolfe line search.

The Wolfe line searches require oy, satisfying:

(4) flan + apdy) < f(ae) + daggy dy,

(5) (x4 crdy,)" di > ogi di.
where 0 < § < 0 < 1. The strong Wolfe line searches require satisfying (4) and
(6) |g(xk + Oékdk)Tdk| S —O’ngdk.

where 0 < 0 <o < 1.

In the exact line search, [4] proved that the FR method was global convergence for general
non-convex function, [5] generalized the results to the case of inexact line search; but
even in the exact line search, the PRP algorithm also has no overall convergence. In the
Wolfe line search, [6] proved the PRP algorithm is global convergence under assuming the
sufficient descent condition. Gilbert and Nocedal [7] proved that the conjugate gradient

method with 8, = maxz{0, 7%} converged globally, where the Wolfe line searches and
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sufficient descent condition were satisfied. Thus, the selection of the parameters [ for
research on the conjugate gradient algorithm is important.

In this paper, we will propose a new parameter 5, and through a simple method to prove

the global convergence of the new method with the strong Wolfe line searches.
2. The sufficient descent property

Throughout this paper we make the following assumptions on the objective function.
Assumption (H):(i) The level set N = {x € R"|f(z) < f(z1)} is bounded, where z; is
the starting point.

(ii) In some neighborhood W of N, the objective function is continuously differentiable,

and its gradient is Lipschitz continuous, i.e., there exists a constant L > 0 such that

(7) lg(z) — g < Lllz —yll, V2,y € W.

Algorithom 2.1:

Step 1: Data: x1 € R", ¢ > 0. Set dy = —g¢, if ||g1|| < &, then stop.
Step 2: Compute a4 by the strong Wolfe line searches.

Step 3: Let xp41 = ok + owdi, gey1 = 9(Tr41), if ||gri1]] < €, then stop.

Step 4: Compute

lgr+112—plgf 19x]
w4l 19 2 195195

(8) Brs1 =

0, else.

where p € [0,1],u > 0; and di; is computed by (3).
Step 5: Set k =k + 1, go to step 2.
Theorem 2.1 Consider any method (2) and (3), where «y, satisfies the strong Wolfe line

search and fy is computed by (8), then for all £ > 1, we have

1—2a+0k< gidy, _1—ao"
l—o = gl* = 1-0

(9)

Proof. The conclusion can be proved by induction. Since —% =1, (9) holds for k = 1.

Now we assume that (9) is true for £ — 1 and g # 0. We need to prove that (9) holds for
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k. From (3), we have

rd Tdy
(10) 9k k2:1_5k;gk k:21'
g g
From (8), we have
lg™ 112
11 0<pBr < .
. == g
Then from (10) and (11), we have
Id,._ I'd Id,_
(12) _|gkk12|§_gkl€2§1+|gkk12|'
[gr—1 19l g1
From (6) and (12), we have
T d T T di_
13 1+ng—1 kflg_gkdk Sl—ng_lkl.
2 2 2
[rsy 9]l g1

Using the induction hypothesis and the first inequality of (13), we have

gl dy 1 l—oFt 1-20+0"
— — 00 —
lgwll* — l-0o l-o

Using the induction hypothesis and the first inequality of (13), we also have

T 1— k—1 1— k
__gkdk;2§1+0 a = U.
lgx | l—o  1-0

This shows that (8) holds for & as well. Therefore the theorem is completed.
3. Global convergence of the new method

In the following we state a lemma which was shown by Z.F.Li, J.Chen and N.Y.Deng
(see [8]).
Lemma 3.1 Suppose Assumption (H) holds. Consider any iteration in the form (2)-(3),
where dj, satisfies g]'d, < 0 for k € NT and «y, satisfies the strong Wolfe line searches.

Then

(14) S led”

2
2y



86 JINKUI LIU*, BENXIU LI

Theorem 3.1 Suppose that Assumption (H) holds. Consider any method of the form
(2)-(3), where () is computed by (8), and where oy, satisfies the strong Wolfe line searches.
Then,

lim inf ||gy|| = 0.
im inf ||gy[| = 0

Proof. We assume the conclusion is not true, then there exists a constant v > 0 such

that for all

(15) lgell* = -
From (3), we have
ldkll* = llgell* + Billdr-11I* — 2Bkgk di—1.

Then from (11), we have

ldil® _ 1 lldeal® |9i i1
(16) i = s T i t2 2 2
19l Al [ gr—1ll 195 1?1 g1
Set ty = Hj:”j From (16), we have
|91 i1
(17) te < tpor + (1+2 ).
lgx[* g [I?
From (6) and (9), we have
(18) ’ggdkfl‘ _ gg—ldk_l 0_1 - Uk_l o
lge—1l> — lge-1ll> = 1=0 ~1—0
Then from (17) and (18), we have
1+o 1
(19) te <thit——

1= Jgll*

As t; = 1, from (19), we have

llgrl>”

k
1+0 1
(20) t, < .
=0 2 Tal?

=1

From (15) and (20), we have

4 (=0
(21) > (—k
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Then

(22) Zt;l = 400

k>1

From (14), (9) and (20), we have

o= (9 di) > Z[(m)%;l] > (1 - 20)2225;1.

2 — —
>1 Ik k>1 -0 l1-0 k>1

Obviously, we have

(23) > ! < +oo.

k>1

From (21) and (22), the assumption does not hold, so the conclusion holds.
4. Numerical results

In order to investigate the numerical of the proposed new conjugate gradient algorithm,
we use the MATLAB programming to test the Algorithm 2.1on problems in [9]. The
termination condition is ||gr]| < 107%, or It-max >9999. It-max denotes the maximal
number of iterations. We test the following four conjugate gradient methods:

Newl: S is computed by (8), p = 1,u=0,5 = 0.01,0 = 0.1.

New2: [ is computed by (8), p = 0.25,u = 0.2,5 = 0.01,0 = 0.1.

New3: . is computed by (8),p = 0.25,u = 1,0 = 0.01,0 = 0.1.
)

New4: [ is computed by (8), p = 1,u =1, = 0.01,0 = 0.1.

The numerical results of our tests are reported in Table 1. The column ” Problem ”
represents the problem’s name in [9]. The detailed numerical results are listed in the form
NI/NF /NG, where NI, NF, NG denote the number of iterations, function evaluations,
and gradient evaluations respectively. ”Dim” denotes the dimension of the test problems.

In order to rank the average performance of all above conjugate methods, one can compute

the total number of function and gradient evaluation by the formula

(24) Nigtat = NF + 1 NG,
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where [ is some integer. According to the results on automatic differentiation [10,11], the
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value of [ can be set to 5, i.e.

(25)

That is to say, one gradient evaluation is equivalent to five function evaluations if auto-

NtOtal:NF+5*NG'

matic differentiation is used.

By making used of (24), we compare the Algorithm 2.1 with PRPT method as follows:
for the ¢th problem , compute the total number of function evaluations and gradient e-
valuations required by the evaluated method j(denoted shortly by New(j)) and PRP™
method by formula (24), and denote them by Nitari(New(j)) and Niptari(PRPT) | then

calculate the ratio

n(New(j)) =

o Ntotal,i<N6w<j))

Ntotal,i(PRP+> .

able 1: The results for Algorithm 2.1 and PRP" method

Problem Dim PRP™ Newl New2 New3 New4
ROSE 2 24/114/90 | 29/140/113 | 33/136/115 | 29/119/101 | 23/111/87

FROTH | 2 11/72/56 | 11/69/53 | 10/71/55 | 9/61/45 | 12/87/70
BADSCP | 2 | 45/232/209 | 26/218/202 | 22/187/172 | 26/218/200 | 22/172/159
BADSCB | 2 12/76/69 | 13/122/110 | 30/250/225 | 36/289/266 | 37/334/310
BEALE 2 13/58/45 | 17/62/51 | 17/71/58 | 16/65/50 | 14/55/44
JENSAM | 2(m=6) | 10/37/23 | 10/39/24 | 13/48/31 | 14/49/31 | 13/49/32
HELJX 3| 65/181/156 | 39/127/106 | 30/125/103 | 35/110/93 | 40/129/114
BARD 3 16/64/51 | 16/53/42 | 20/79/65 | 21/80/67 | 27/85/69

GAUSS 3 3/7/4 3/8/6 3/8/6 3/8/6 3/8/6
SING 4 | 113/379/328 | 58/220/142 | 70/282/248 | 98/353/307 | 59/244/208
WOOD 4| 118/357/304 | 47/208/174 | 51/187/152 | 62/225/186 | 45/177/147
KOWOSB | 4 | 93/269/240 | 57/217/194 | 34/130/114 | 36/140/122 | 52/193/171
WATSON | 3 | 42/104/87 | 15/62/48 | 14/59/44 | 9/35/22 | 17/63/47
5 | 133/374/330 | 88/298/254 | 62/212/181 | 70/243/210 | 80/263/223
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SINGX | 500 | 105/342/297 | 61/242/210 | 60/242/210 | 67/238/203 | 66/278/240
1000 | 198/693/595 | 61/243/212 | 75/313/273 | 47/191/164 | 76/292/255
TRIG | 100 | 58/120/113 | 63/146/133 | 61/136/130 | 61/136/130 | 66/148/135
200 | 64/135/128 | 59/136/127 | 57/111/108 | 57/111/108 | 59/135/125
BV | 500 | 1645/2889/2888 | 124/309/279 | 97/184/180 | 97/184/180 | 161/402/364
1000 | 147/251/250 | 17/33/29 | 42/69/68 | 42/69/68 | 17/33/29
TRID | 500 35/78/74 31/71/57 | 34/76/71 | 34/75/70 | 35/80/61
1000 | 34/76/72 35/79/75 | 34/77/73 | 34/77/73 | 33/75/70

89

The geometric mean of these ratio for method New(j) over all the test problems is defined
by
P(New(§) = ([ n(New(i))
i€s

where S denotes the set of the test problems, and |S| denotes the number of elements in
S. One advantage of the above rule is that, the comparison is relative and hence does not
be dominated by a few problems for which the method requires a great deal of function
evaluations and gradient functions.

Table2: Relative efficiency of the Algorithm 2.1 and PRP" method

PRPT | Newl | New2 | New3 | New4

1 0.7132 | 0.7421 | 0.6891 | 0.7994

According to the above rule, it is clear that v(PRP™) = 1. From Table 2, we can see
that average performance of Algorithm 2.1 is much better than the PRP™ method.

Through a large number of numerical tests, we found that the numerical results and
convergence property of the new algorithm is better when the parameters p € (0, 1] and

u € (0,1].
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