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Abstract. In this paper, a class of new conjugate gradient method with variable parameters is proposed

to solve unconstrained optimization problems on the base of PRP method. Under the strong Wolfe

line searches, we proved the global convergence of the new method without the given sufficient descent

condition. Many numerical experiments show that the new method is very efficient.
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1. Introduction

Consider the following unconstrained optimization problem

(1) min
x∈Rn

f(x),

∗Corresponding author

E-mail addresses::liujinkui2006@126.com(J.Liu), benxiuli@126.com(B. Li)

This work was supported by The Nature Science Foundation of Chongqing Education Committee

(KJ091104) and The Youth Project Foundation of Chongqing Three Gorges University (11QN-26).

Received December 2, 2011

82



A MODIFIED PRP CONJUGATE GRADIENT METHOD 83

wheref : Rn → R is smooth and its gradient g(x) = 5f(x) is available.

Conjugate gradient methods for solving (1) are iterative formulas of the form

(2) xk+1 = xk + αkdk,

dk =

 −gk, for k = 1,

−gk + βkdk−1, for k ≥ 2.
(3)

where gk = 5f(xk), xk is the current iterate; αk is a positive scalar and called the

steplength which is determined by some line searches;dk is the search direction , and βk is

a scalar. There are many ways to select βk, and some well-known formulas are given by

βFRk =
‖gk‖2

‖gk−1‖2
(FletcherandReeves(FR)[1]),

βPRPk =
gTk (gk − gk−1)
‖gk−1‖2

(Polak −Ribiére− Polyak[2], [3]),

where ||.|| is the Euclidean norm. In the convergence analysis and implementations of

conjugate gradient methods, one often requires the inexact line search such as the Wolfe

line search or the strong Wolfe line search.

The Wolfe line searches require αk satisfying:

(4) f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk,

(5) g(xk + αkdk)
Tdk ≥ σgTk dk.

where 0 < δ < σ < 1. The strong Wolfe line searches require satisfying (4) and

(6) |g(xk + αkdk)
Tdk| ≤ −σgTk dk.

where 0 < δ < σ < 1.

In the exact line search, [4] proved that the FR method was global convergence for general

non-convex function, [5] generalized the results to the case of inexact line search; but

even in the exact line search, the PRP algorithm also has no overall convergence. In the

Wolfe line search, [6] proved the PRP algorithm is global convergence under assuming the

sufficient descent condition. Gilbert and Nocedal [7] proved that the conjugate gradient

method with βk = max{0, βPRPk } converged globally, where the Wolfe line searches and
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sufficient descent condition were satisfied. Thus, the selection of the parameters βk for

research on the conjugate gradient algorithm is important.

In this paper, we will propose a new parameter βk, and through a simple method to prove

the global convergence of the new method with the strong Wolfe line searches.

2. The sufficient descent property

Throughout this paper we make the following assumptions on the objective function.

Assumption (H):(i) The level set N = {x ∈ Rn|f(x) ≤ f(x1)} is bounded, where x1 is

the starting point.

(ii) In some neighborhood W of N , the objective function is continuously differentiable,

and its gradient is Lipschitz continuous, i.e., there exists a constant L > 0 such that

(7) ‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ W.

Algorithom 2.1:

Step 1: Data: x1 ∈ Rn, ε ≥ 0. Set d1 = −g1, if ||g1|| ≤ ε, then stop.

Step 2: Compute αk by the strong Wolfe line searches.

Step 3: Let xk+1 = xk + αkdk, gk+1 = g(xk+1), if ||gk+1|| ≤ ε, then stop.

Step 4: Compute

βk+1 =


‖gk+1‖2−ρ|gTk+1gk|
u(gTk+1dk)

2+‖gk‖2
, if‖gk+1‖2 ≥ |gTk+1gk|

0, else.
(8)

where ρ ∈ [0, 1],u ≥ 0; and dk+1 is computed by (3).

Step 5: Set k = k + 1, go to step 2.

Theorem 2.1 Consider any method (2) and (3), where αk satisfies the strong Wolfe line

search and βk is computed by (8), then for all k ≥ 1, we have

(9)
1− 2σ + σk

1− σ
≤ − g

T
k dk
‖gk‖2

≤ 1− σk

1− σ
.

Proof. The conclusion can be proved by induction. Since − gT1 d1
‖g1‖2 = 1, (9) holds for k = 1.

Now we assume that (9) is true for k− 1 and gk 6= 0. We need to prove that (9) holds for
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k. From (3), we have

(10) − g
T
k dk
‖gk‖2

= 1− βk
gTk dk−1
‖gk‖2

.

From (8), we have

(11) 0 ≤ βk ≤
‖gT‖2

‖gk−1‖2
.

Then from (10) and (11), we have

(12) 1− |g
T
k dk−1|
‖gk−1‖2

≤ − g
T
k dk
‖gk‖2

≤ 1 +
|gTk dk−1|
‖gk−1‖2

.

From (6) and (12), we have

(13) 1 + σ
gTk−1dk−1

‖gk−1‖2
≤ − g

T
k dk
‖gk‖2

≤ 1− σ
gTk−1dk−1

‖gk−1‖2
.

Using the induction hypothesis and the first inequality of (13), we have

− g
T
k dk
‖gk‖2

≥ 1− σ1− σk−1

1− σ
=

1− 2σ + σk

1− σ
.

Using the induction hypothesis and the first inequality of (13), we also have

− g
T
k dk
‖gk‖2

≤ 1 + σ
1− σk−1

1− σ
=

1− σk

1− σ
.

This shows that (8) holds for k as well. Therefore the theorem is completed.

3. Global convergence of the new method

In the following we state a lemma which was shown by Z.F.Li, J.Chen and N.Y.Deng

(see [8]).

Lemma 3.1[8] Suppose Assumption (H) holds. Consider any iteration in the form (2)-(3),

where dk satisfies gTk dk < 0 for k ∈ N+ and αk satisfies the strong Wolfe line searches.

Then

(14)
∑
k≥1

(gTk dk)
2

‖dk‖2
< +∞.
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Theorem 3.1 Suppose that Assumption (H) holds. Consider any method of the form

(2)-(3), where βk is computed by (8), and where αk satisfies the strong Wolfe line searches.

Then,

lim inf
k→+∞

‖gk‖ = 0.

Proof. We assume the conclusion is not true, then there exists a constant γ > 0 such

that for all

(15) ‖gk‖2 ≥ γ.

From (3), we have

‖dk‖2 = ‖gk‖2 + β2
k‖dk−1‖2 − 2βkg

T
k dk−1.

Then from (11), we have

(16)
‖dk‖2

‖gk‖4
≤ 1

‖gk‖2
+
‖dk−1‖2

‖gk−1‖4
+ 2

|gTk dk−1|
‖gk‖2‖gk−1‖2

.

Set tk = ‖dk‖2
‖gk‖4

. From (16), we have

(17) tk ≤ tk−1 +
1

‖gk‖2
(1 + 2

|gTk dk−1|
‖gk−1‖2

).

From (6) and (9), we have

(18)
|gTk dk−1|
‖gk−1‖2

≤ −σ
gTk−1dk−1

‖gk−1‖2
≤ σ

1− σk−1

1− σ
≤ σ

1− σ
.

Then from (17) and (18), we have

(19) tk ≤ tk−1 +
1 + σ

1− σ
· 1

‖gk‖2
.

As t1 = 1
‖g1‖2 , from (19), we have

(20) tk ≤
1 + σ

1− σ

k∑
i=1

1

‖gi‖2
.

From (15) and (20), we have

(21) t−1k ≥
(1− σ)γ

(1 + σ)k
.
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Then

(22)
∑
k≥1

t−1k = +∞.

From (14), (9) and (20), we have

+∞ >
∑
k≥1

(gTk dk)
2

‖dk‖2
≥

∑
k≥1

[(
(1− 2σ + σk

1− σ
)2t−1k ] ≥ (

1− 2σ

1− σ
)2
∑
k≥1

t−1k .

Obviously, we have

(23)
∑
k≥1

t−1k < +∞.

From (21) and (22), the assumption does not hold, so the conclusion holds.

4. Numerical results

In order to investigate the numerical of the proposed new conjugate gradient algorithm,

we use the MATLAB programming to test the Algorithm 2.1on problems in [9]. The

termination condition is ‖gk‖ ≤ 10−6, or It-max >9999. It-max denotes the maximal

number of iterations. We test the following four conjugate gradient methods:

New1: βk is computed by (8), ρ = 1, u = 0, δ = 0.01, σ = 0.1.

New2: βk is computed by (8), ρ = 0.25, u = 0.2, δ = 0.01, σ = 0.1.

New3: βk is computed by (8),ρ = 0.25, u = 1, δ = 0.01, σ = 0.1.

New4: βk is computed by (8), ρ = 1, u = 1, δ = 0.01, σ = 0.1.

The numerical results of our tests are reported in Table 1. The column ” Problem ”

represents the problem’s name in [9]. The detailed numerical results are listed in the form

NI/NF/NG, where NI, NF, NG denote the number of iterations, function evaluations,

and gradient evaluations respectively. ”Dim” denotes the dimension of the test problems.

In order to rank the average performance of all above conjugate methods, one can compute

the total number of function and gradient evaluation by the formula

(24) Ntotal = NF + l ∗NG,
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where l is some integer. According to the results on automatic differentiation [10,11], the

value of l can be set to 5, i.e.

(25) Ntotal = NF + 5 ∗NG.

That is to say, one gradient evaluation is equivalent to five function evaluations if auto-

matic differentiation is used.

By making used of (24), we compare the Algorithm 2.1 with PRP+ method as follows:

for the ith problem , compute the total number of function evaluations and gradient e-

valuations required by the evaluated method j(denoted shortly by New(j)) and PRP+

method by formula (24), and denote them by Ntotal,i(New(j)) and Ntotal,i(PRP
+) , then

calculate the ratio

γi(New(j)) =
Ntotal,i(New(j))

Ntotal,i(PRP+)
.

able 1: The results for Algorithm 2.1 and PRP+ method

Problem Dim PRP+ New1 New2 New3 New4

ROSE 2 24/114/90 29/140/113 33/136/115 29/119/101 23/111/87

FROTH 2 11/72/56 11/69/53 10/71/55 9/61/45 12/87/70

BADSCP 2 45/232/209 26/218/202 22/187/172 26/218/200 22/172/159

BADSCB 2 12/76/69 13/122/110 30/250/225 36/289/266 37/334/310

BEALE 2 13/58/45 17/62/51 17/71/58 16/65/50 14/55/44

JENSAM 2(m=6) 10/37/23 10/39/24 13/48/31 14/49/31 13/49/32

HELJX 3 65/181/156 39/127/106 39/125/103 35/110/93 40/129/114

BARD 3 16/64/51 16/53/42 20/79/65 21/80/67 27/85/69

GAUSS 3 3/7/4 3/8/6 3/8/6 3/8/6 3/8/6

SING 4 113/379/328 58/220/142 70/282/248 98/353/307 59/244/208

WOOD 4 118/357/304 47/208/174 51/187/152 62/225/186 45/177/147

KOWOSB 4 93/269/240 57/217/194 34/130/114 36/140/122 52/193/171

WATSON 3 42/104/87 15/62/48 14/59/44 9/35/22 17/63/47

5 133/374/330 88/298/254 62/212/181 70/243/210 80/263/223
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SINGX 500 105/342/297 61/242/210 60/242/210 67/238/203 66/278/240

1000 198/693/595 61/243/212 75/313/273 47/191/164 76/292/255

TRIG 100 58/120/113 63/146/133 61/136/130 61/136/130 66/148/135

200 64/135/128 59/136/127 57/111/108 57/111/108 59/135/125

BV 500 1645/2889/2888 124/309/279 97/184/180 97/184/180 161/402/364

1000 147/251/250 17/33/29 42/69/68 42/69/68 17/33/29

TRID 500 35/78/74 31/71/57 34/76/71 34/75/70 35/80/61

1000 34/76/72 35/79/75 34/77/73 34/77/73 33/75/70

The geometric mean of these ratio for method New(j) over all the test problems is defined

by

γ(New(j)) = (
∏
i∈S

γi(New(j)))
1
|S| ,

where S denotes the set of the test problems, and |S| denotes the number of elements in

S. One advantage of the above rule is that, the comparison is relative and hence does not

be dominated by a few problems for which the method requires a great deal of function

evaluations and gradient functions.

Table2: Relative efficiency of the Algorithm 2.1 and PRP+ method

PRP+ New1 New2 New3 New4

1 0.7132 0.7421 0.6891 0.7994

According to the above rule, it is clear that γ(PRP+) = 1. From Table 2, we can see

that average performance of Algorithm 2.1 is much better than the PRP+ method.

Through a large number of numerical tests, we found that the numerical results and

convergence property of the new algorithm is better when the parameters ρ ∈ (0, 1] and

u ∈ (0, 1].
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