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Abstract: In this paper, we propose two slope-limiter methods for solving hyperbolic conservation laws. The 

methods are developed through flux formulation with piecewise linear construction and applied to solve the Linear 

Advection Equation using two initial conditions. The results which were compared with those of the Lax-Wendroff 

method, and the minmod method demonstrate the accuracy of the proposed methods. 
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INTRODUCTION 

Conservation laws arise in many models in science and engineering. They are applied in fluid 

and gas dynamics, relativity theory, quantum mechanics, aerodynamics, meteorology and 

astrophysics (Eymard et al, 2003). Numerical methods for solving conservation laws include the 

finite difference method, finite element method and finite volume method. The finite volume 

method is now a popular choice for solving conservation laws because of its accuracy and ability 

to handle complex geometries as well as good approximations of boundary conditions (LeVeque, 

2004, Hu & Joseph, 1990, Grigoryan, 2010, Moroney, 2006). 

According to LeVeque (2004), finite volume methods for solving hyperbolic conservation laws 

include Fromm’s method, Beam-Warming method and Lax-Wendrroff method. These methods 

generate good approximations for smooth solutions but fail near discontinuities – they generate 

oscillatory approximations to discontinuous solutions. Slope-limiter methods are high resolution 
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methods that use slope-limiters to avoid the spurious oscillations that occur with high order 

spatial discretization schemes due to shocks, discontinuities or sharp changes in the solution 

domain (Mazzia, 2010). 

In this paper, we propose two slope-limiters for solving hyperbolic conservation laws and have 

applied them to solve the Linear Advection Equation, a type of conservation law. 

METHODS 

Formulation of Finite Volume Methods for Conservation Laws (LeVeque, 2004). 

Consider the flow of gas in a tube where properties of the gas such as density and velocity are 

constant. If 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) are the density and velocity of the gas respectively, the rate of 

change of mass in [𝑥1, 𝑥2] is given as 

𝑑

𝑑𝑡
∫ 𝑢(𝑥, 𝑡)𝑑𝑥
𝑥2

𝑥1

= 𝑢(𝑥1, 𝑡)𝑣(𝑥1, 𝑡) − 𝑢(𝑥2, 𝑡)𝑣(𝑥2, 𝑡)                                   (1) 

Equation (1) is the integral form of conservation laws. If  

𝐶𝑖 = (𝑥𝑖−1 2⁄ , 𝑥𝑖+1 2⁄ ) 

denotes the 𝑖th grid cell, then from equation (1) we have that 

𝑑

𝑑𝑡
∫ 𝑢(𝑥, 𝑡)𝑑𝑥
𝐶𝑖

= 𝑓 (𝑢(𝑥𝑖−1 2⁄ , 𝑡)) − 𝑓 (𝑢(𝑥𝑖+1 2⁄ , 𝑡))                                            (2) 

Integrating equation (2) in time from 𝑡𝑛  to  𝑡𝑛+1, rearranging and dividing by ∆𝑥 gives  

1

∆𝑥
∫ 𝑢(𝑥, 𝑡𝑛+1)𝑑𝑥
𝐶𝑖

=
1

∆𝑥
∫ 𝑢(𝑥, 𝑡𝑛)𝑑𝑥
𝐶𝑖

 

      −
1

∆𝑥
[∫ 𝑓 (𝑢(𝑥𝑖+1 2⁄ , 𝑡)) 𝑑𝑡

𝑡𝑛+1

𝑡𝑛

−∫ 𝑓 (𝑢(𝑥𝑖−1 2⁄ , 𝑡)) 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

]          (3) 

This suggests numerical methods of the form 

�̅�𝑖
𝑛+1 = �̅�𝑖

𝑛 −
∆𝑡

∆𝑥
(𝐹𝑖+1 2⁄

𝑛 − 𝐹𝑖−1 2⁄
𝑛 )                                                        (4) 

where  𝐹𝑖−1 2⁄
𝑛  is some approximation to the average flux along  𝑥 = 𝑥𝑖−1 2⁄  at  𝑡 = 𝑡𝑛 given as  

𝐹𝑖−1 2⁄
𝑛 ≈

1

∆𝑡
∫ 𝑓 (𝑢(𝑥𝑖−1 2⁄ , 𝑡)) 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

. 

Equation (4) is the general form of the finite volume methods. 

For the linear advection equation  

𝐹𝑖−1 2⁄
𝑛 ≈

1

∆𝑡
∫ 𝑎�̃�𝑛(𝑥𝑖−1 2⁄ , 𝑡)𝑑𝑡
𝑡𝑛+1

𝑡𝑛

. 
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From the cell average �̅�𝑖
𝑛, we can construct a piecewise linear function of the form 

�̃�𝑛(𝑥, 𝑡𝑛) = �̅�𝑖
𝑛 + 𝜎𝑖

𝑛(𝑥 − 𝑥𝑖)           for        𝑥𝑖−1 2⁄ ≤ 𝑥 ≤ 𝑥𝑖+1 2⁄                    (5 ) 

where  

𝑥𝑖 =
1

2
(𝑥𝑖−1 2⁄ + 𝑥𝑖+1 2⁄ ) = 𝑥𝑖−1 2⁄ +

1

2
∆𝑥. 

The expression for the flux 𝐹𝑖−1 2⁄
𝑛  becomes  

   𝐹𝑖−1 2⁄
𝑛 =

1

∆𝑡
∫ 𝑎�̃�𝑛(𝑥𝑖−1 2⁄ , 𝑡)𝑑𝑡
𝑡𝑛+1

𝑡𝑛

                        

               =
1

∆𝑡
∫ 𝑎�̃�𝑛(𝑥𝑖−1 2⁄ − 𝑎(𝑡 − 𝑡𝑛), 𝑡𝑛)𝑑𝑡
𝑡𝑛+1

𝑡𝑛

 

   = 𝑎�̅�𝑖−1
𝑛 +

1

2
𝑎(∆𝑥 − 𝑎∆𝑡)𝜎𝑖−1

𝑛 .          

Similarly,  

𝐹𝑖+1 2⁄
𝑛 = 𝑎�̅�𝑖

𝑛 −
1

2
𝑎(∆𝑥 − 𝑎∆𝑡)𝜎𝑖

𝑛.          

Using the expressions for 𝐹𝑖−1 2⁄
𝑛  and 𝐹𝑖+1 2⁄

𝑛  in  (4) gives  

  �̅�𝑖
𝑛+1  = �̅�𝑖

𝑛 −
𝑎∆𝑡

∆𝑥
(�̅�𝑖

𝑛 − �̅�𝑖−1
𝑛 ) −

1

2

𝑎∆𝑡

∆𝑥
(∆𝑥 − 𝑎∆𝑡)(𝜎𝑖

𝑛 − 𝜎𝑖−1
𝑛 )                    (6) 

where  𝜎𝑖
𝑛  is the slope in the 𝑖th grid cell 𝐶𝑖. 

The finite volume method (6) depends on the choice of slope. Choosing the downwind slope (7) 

gives the Lax-Wendroff method. 

𝜎𝑖
𝑛 =

�̅�𝑖+1
𝑛 − �̅�𝑖

𝑛

∆𝑥
.                                                                                 (7) 

But this slope is defined based on the assumption that the solution is smooth. Near a 

discontinuity there is no reason to believe that introducing this slope will improve the accuracy. 

Slope Limiters 

Slope limiters are defined with the aim of limiting the solution gradient to avoid oscillations. 

Accuracy is therefore expected even at discontinuities. Example of an existing slope-limiter is 

the minmod slope defined as  

𝜎𝑖
𝑛 = minmod (

�̅�𝑖
𝑛 − �̅�𝑖−1

𝑛

∆𝑥
,
�̅�𝑖+1
𝑛 − �̅�𝑖

𝑛

∆𝑥
) 

where the minmod function of two arguments is defined as 
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minmod(𝑎, 𝑏) = {

 𝑎 if |𝑎| < |𝑏| and 𝑎𝑏 > 0

𝑏 if |𝑏| < |𝑎| and 𝑎𝑏 > 0

0 if 𝑎𝑏 ≤ 0                          

. 

Proposed Slope Limiters 

We propose two slope-limiters which we call ‘amod’ and ‘bmod’, defined as  

amod:           𝜎𝑖
𝑛 =

1

2
(
�̅�𝑖+1
𝑛 − �̅�𝑖−1

𝑛

2∆𝑥
) + 2(minmod(

1

2
(
�̅�𝑖+1
𝑛 − �̅�𝑖−1

𝑛

2∆𝑥
) , (

�̅�𝑖+1
𝑛 − �̅�𝑖

𝑛

∆𝑥
)) ).  

bmod:           𝜎𝑖
𝑛 = mean(V, K)                                                                                                          

where 

                                         V = minmod(2(
�̅�𝑖+1
𝑛 − �̅�𝑖

𝑛

∆𝑥
) , (

�̅�𝑖
𝑛 − �̅�𝑖−1

𝑛

∆𝑥
)), 

      

K = minmod((
�̅�𝑖+1
𝑛 − �̅�𝑖

𝑛

∆𝑥
) , 2 (

�̅�𝑖
𝑛 − �̅�𝑖−1

𝑛

∆𝑥
)),              

  and  

mean (𝑎, 𝑏) =
𝑎 + 𝑏

2
. 

NUMERICAL EXPERIMENTS 

In this section, we will solve the linear advection equation (8) with unit velocity subject to two 

initial conditions.  

 𝑢𝑡 + 𝑢𝑥 = 0,              𝑥 ∈ [−1, 1]     (8) 

Solutions are obtained using the Lax-Wendroff method, the minmod method and the proposed 

methods. We will solve for  𝑇 = 2. On the graphs, the red thick line represents the exact solution 

while the blue dotted line represents the approximate solution. The minimum and maximum 

values of the solutions – a test of accuracy of the methods, are obtained and tabulated. 

Example One 

Solve Equation (8) subject to the initial condition  

𝑢(𝑥, 0) = sin(2𝜋𝑥).                                                                            (9) 

This is a smooth solution and the results are thus, presented in terms of errors, and the errors are 

obtained using the 2-norm. 
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Table 1:  Errors in 2-norm obtained from Solution of Equation (8) subject to initial condition 

(9) by the downwind slope, minmod, ‘amod’ and ‘bmod’ limiters.    

 

𝑵 

Downwind limiter 

(Lax-Wendroff method) 

Minmod limiter 

(minmod method) 

‘amod’ limiter  

(‘amod’ method) 

bmod’ limiter  

(‘bmod’ method) 

50 4.9754 × 10−2 5.0369 × 10−2 5.0337 × 10−2 5.0400 × 10−2 

100 2.5069 × 10−2 2.5147 × 10−2 2.5148 × 10−2 2.5148 × 10−2 

200 1.2558 × 10−2 1.2568 × 10−2 1.2568 × 10−2 1.2569 × 10−2 

400 6.2822 × 10−3 6.2834 × 10−3 6.2834 × 10−3 6.2834 × 10−3 

800 3.1415 × 10−3 3.1416 × 10−3 3.1416 × 10−3 3.1416 × 10−3 

 

Example Two 

Consider Equation (8) subject to the initial condition  

𝑢(𝑥, 0) = {
1,     if    |𝑥| < 0.1,

 0,       otherwise.   
                           (10)  

 

Fig. 1: Solution of Equation (8) subject to initial condition (10) using the Lax-Wendroff 

method with  𝑁 = 400. 
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Fig. 2: Solution of Equation (8) subject to initial condition (10) using the minmod 

method with  𝑁 = 400. 

 

Fig. 3: Solution of Equation (8) subject to initial condition (10) using the ‘amod’ method 

with  𝑁 = 400. 
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Fig. 4: Solution of Equation (8) subject to initial condition (10) using the ‘bmod’ method 

with  𝑁 = 400. 

 

Table 2: Minimum and Maximum values of the Exact Solution, and approximate solution 

of Equation (8) subject to initial condition (10) by Lax-Wendroff, Minmod, 

‘amod’ and ‘bmod’ methods with  𝑁 = 400. 

Method Min(𝒖) Max(𝒖) 

Exact 0.0000 1.0000 

Lax-Wendroff −0.3053 1.2618 

Minmod 0.0000 0.9927 

‘amod’ −0.0095 1.0095 

‘bmod’ 0.0000 1.0000 

 

Example Three 

Consider Equation (8) subject to the initial condition 
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𝑢(𝑥, 0) =

{
  
 

  
    

1

6
𝐺(𝑥, 𝑧 − 𝛿) + 𝐺(𝑥, 𝑧 + 𝛿) + 4𝐺(𝑥, 𝑧) ,       − 0.8 ≤ 𝑥 ≤ −0.6

 1,                                                                            − 0.4 ≤ 𝑥 ≤ −0.2

1 − |10(𝑥 − 0.1)|,                                                        0 ≤ 𝑥 ≤ 0.2

 
1

6
𝐹(𝑥, 𝑎 − 𝛿) + 𝐹(𝑥, 𝑎 + 𝛿) + 4𝐹(𝑥, 𝑎),              0.4 ≤ 𝑥 ≤ 0.6

0,                                                                                         otherwise 

   (11) 

where 𝐺(𝑥, 𝑧) = exp(−𝛽(𝑥 − 𝑧)2) , 𝐹(𝑥, 𝑎) = {max (1 − 𝛼2((𝑥 − 𝑧)2, 0}
1

2. The constants are 

taken as 𝑎 = 0.5, 𝑧 = −0.7, 𝛿 = 0.005, 𝛼 = 10, and  𝛽 = (log 2) 36𝛿2⁄ . 

 

 

Fig. 5: Solution of Equation (8) subject to initial condition (11) using the Lax-Wendroff 

method with  𝑁 = 400. 
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Fig. 6: Solution of Equation (8) subject to initial condition (11) using the minmod 

method with  𝑁 = 400. 

 

Fig. 7: Solution of Equation (8) subject to initial condition (11) using the ‘amod’ method 

with  𝑁 = 400. 
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Fig. 8: Solution of Equation (8) subject to initial condition (11) using the ‘bmod’ method 

with  𝑁 = 400. 

 

Table 3: Minimum and Maximum values of the Exact Solution, and approximate solution 

of Equation (8) subject to initial condition (11) by Lax-Wendroff, Minmod, 

‘amod’ and ‘bmod’ methods with  𝑁 = 400. 

 

Method Min(𝒖) Max(𝒖) 

Exact 0.0000 1.0000 

Lax-Wendroff −0.3053 1.2618 

Minmod 0.0000 0.9927 

‘amod’ −0.0095 1.0095 

‘bmod’ 0.0000 1.0000 
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DISCUSSION 

Table 1 shows result of Equation (8) subject to initial condition (9). The obtained result shows 

that the Lax-Wendroff method produced errors slightly less than the other methods hence, more 

accurate. This shows the efficiency of the Lax-Wendroff method for smooth solutions. Figures 1 

and 5 are solutions obtained using the Lax-Wendroff method. The results clearly demonstrate the 

deficiency of finite volume methods that are not slope-limiter methods – near discontinuities 

they generate oscillations. Figures 2 and 6 are solutions by the existing slope-limiter method, the 

minmod method. Here, no oscillations are generated rather; the discontinuities that arose in the 

solution are resolved. However, the solution suffers from numerical diffusion. Figures 3 and 7 

are solutions by the proposed ‘amod’ method. This method produced good results and resolves 

the discontinuities that arose in the solution. Nevertheless, slight oscillations are observed near 

discontinuities. Figures 4 and 8 are solutions by the proposed ‘bmod’ method. Results produced 

here are accurate and discontinuities that arose in the solution are properly resolved, even better 

than the minmod method. No case of oscillation is recorded even at discontinuities. 

The results discussed above are evident in Tables 2 and 3. The tables record the minimum and 

maximum values of the solutions to demonstrate the accuracy of the methods. They show which 

methods produce oscillations and which do not. 

 

CONCLUSION 

The proposed methods produced good results compared to the existing ones. The methods should 

therefore be used as alternatives to the existing ones. In general, slope-limiter methods produced 

better results than finite volume methods that are not slope-limiter methods, therefore, slope-

limiter methods should be applied to solve the linear advection equation in particular, and 

conservation laws in general. 
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