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1. Introduction: Ecology and epidemiology are two major and distinct fields of study. 

However, there are situations where some diseases, which are responsible for an epidemic, 

have a strong impact heavily on the dynamics of ecological (prey-predator or competition) 

systems. In fact mathematical models became important tools in analyzing the effect of 

spreading and controlling infections diseases on coexistence and the dynamical behavior of 

ecological systems. For instance, Hethcote et al [11] showed that how the presence of 

parasites can change the demographic behavior of population. Indeed, such diseases regulate 

the host population density and some times help the coexistence of species [2,8]. The 
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mathematical models which describe the dynamics of the coupling of an ecological model 

and an epidemiological SI , SIS , or SIR model are known as eco-epidemiological models. 

Such models have received much attention from scientists in recent years. 

Anderson and May [1] who were the first to propose an eco-epidemiological model by 

merging the Lotka–volterra prey–predator model and the epidemiological SIR model was 

introduced by Kermack and Mckendrick. Many works have been devoted to study of the 

effects of a disease on a prey-predator system [3, 4,5,6,7, 9, 11,14,15, 16].Most of these 

studies focused on the dynamical behavior of prey-dependent prey-predator model in 

company with SI or SIR epidemiological model. In this chapter, an eco-epidemiological 

model consisting of Crowley–Martin prey-predator model with SIS epidemiological model 

was proposed and analyzed. 

 

2.The mathematical model  

     Let X(t) be the total population density of the prey species and Y(t) be the population 

density of the predator species. Now, in order to formulate our eco-epidemiologic model, we 

make the following assumptions.  

1H ) In the absence of disease, the prey population density grows according to a logistic 

curve with carrying capacity K (K>0) and an intrinsic growth rate constant R(R>0)  

2H ) In the presence of disease, we assume that the total prey population X is composed of 

two population classes , the first is the class of susceptible prey  denoted by S, and the other 

is the class of the infected  prey, denoted by I. Therefore, at any time t, the total density of 

prey population is X(t)=S(t)+I(t).  

3H ) It is assumed that, only susceptible prey S is capable of reproducing with logistic law, 

while the infected prey I is removed by death with a positive death rate constant 1d  or by 

predation before having the possibility of reproducing. Further, the infective population I still 

contributes with S to the population growth toward the carrying capacity.  

4H ) The disease spreads among the population only and the disease is not genetically 

inherited. The infected population may recover and return to the susceptible class with a 
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positive recover rate constant  . Moreover, the incidence is assumed to be the simple mass 

action incidence SI , where 0  is called infected rate constant or transmission coefficient. 

5H ) The predator has a death rate constant 2d  ( 2 0d  ), and it mainly eats the infected prey 

according to Crowley –Martin type of functional response, this is due to the fact that the 

infected individuals are less active and can be caught more easily. The coefficient in 

conversing prey into predator is e  ( 0e  ). According to the above assumptions, the 

dynamics of the eco-epidemiological model consisting of Crowley –Martin prey-predator 

model with SIS epidemic model can be represented by the following set of differential 

equations: 

 

1

2

(1 )

( )
(1 )(1 )

(1 )(1 )

dS S I
RS SI I

dt K

dI aIY
SI d I

dt bI cY

dY eaIY
d Y

dt bI cY

 

 


   

   
 

 
 

                                         (1)                                                                                 

 

 

3. Main results 

Theorem (3.1): All solutions of the system (1) which initiate in 3R , are uniformly bounded 

provided the following condition holds  

1

1e
d




 


                                                       (2)                                                                               

Proof. Consider the following function  ( )W t S eI Y                                             

Then time derivative of ( )W t  along the trajectory of the system (1) can be written 

as:
2

1 2( )
dW RS RSI

RS SI I eSI d eI d Y
dt K K

             

Since 2d  and 1d
e


   are positive constant, then there exists a positive constant namely 
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 with  2 1min ,d d
e


    .Therefore, the following inequality 

1 2( ) (1 ) (( ) ) ( )
dW RS

W S R e SI e d I d Y
dt K e


                             (3a)       

Now since the maximum value of the expression ( )
RS

S R
K

   is 
2( )

4

K R

R


and the 

condition (2) holds, then the inequality (3a) gives:   

2( )

4

dW K R
W

dt R





                                                      (3b)                                                                                                     

It is clear that the right –hand side of the Eq. (3b) is constant. Then we can find a constant 

0M  such that  
dW

W M
dt

  with 
2( )

4

K R
M

R


  

 Applying the theory of differential inequalities [10], we obtain  

0 ( , , ) (1 ) ( (0), (0), (0))t tM
W S I Y e W S I Y e 



     .Thus for t , we have  

0
M

W


  .Hence all the solutions of the system (1) that initiate in 3R are eventually 

confined in the region 3{( , , ) : 0}
M

B S I Y R S eI Y  


        .        

 

3.1 SIS epidemic model  

The eco-epidemiological population model given by the system (1) is a simple Lotka-Volterra 

prey-predator system with logistic growth for the prey and Crowley-Martin type of functional 

response. Obviously, in the absence of predator species the system (1) will be reduced to the 

following SIS epidemic model    

  

1

( 1 )

( )

dS S I
RS SI I

dt K

dI
SI d I

dt

 

 


   

  

                                       (4)                                                                

Clearly (4) is a subsystem of the system (1), which represents a mathematical model that 

describes the dynamics of SIS epidemic model. It possesses three biologically relevant 
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equilibria (0,0) , ( ,0)K  and ( , )S I . The equilibrium points (0,0) and ( ,0)K  are always 

exist. However, the positive equilibrium ( , )S I  exists in the Int. 2
R  of the SI plane if 

there is a positive solution to the following set of algebraic equations            

(1 ) 0
S I

RS SI I
K

 


                                                  (5a) 

1( ) 0S d                                                             (5b) 

Straight forward computations give that  1( )d
S






  ,  1 1

2

1 1

( )[ ( )]

( )

R d K d
I

R d d K

  

  

  


 
  (6)                                                                                         

Clearly 0I   under the following condition  

1d

K





                                                                (7)                                                                                                                                                                                                                      

Now, in order to discuss the stability of the system (4), the Variational matrix for the system 

(4) at the point ( , )S I  is determined. 

1

2
[1 ] ( )

( , )

( )

S R RS
R I S

V S I K K K

I S d

  

  

 
     

    

                              (8)                                     

Accordingly, the Variational matrix about (0,0)  is  
10 ( )

R

d





 
 

  
 

 Hence (0,0)  is a hyperbolic saddle point with locally unstable manifold in the S-direction 

and locally stable manifold in the I-direction. Further, the Variational matrix about ( ,0)K  

can be written as: 
10 ( )

R R K

K d

 

 

   
 

  
 

Obviously, ( ,0)K  is locally asymptotically stable if and only if the condition (7) has been  

violated or ( , )S I  does not exist, otherwise, it’s a hyperbolic saddle point with locally stable 

manifold in the S-direction and with locally unstable manifold in the I-direction. Finally, the 

Variational matrix about ( , )S I is: 
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2
[1 ] ( )

( , )

0

S R RS
R I S

V S I K K K

I

  



 
     

  
 

     

Consequently, tr(V( ( , )S I ))=
2

[1 ] ( )
S R

R I
K K

   =
21 ( )

[ (1 ) ]
S I R S

RS I S
S K K




    

                                                              

=
21 ( )

[ ] 0
R S

I
S K




   and   det V( ( , )S I ))= [ ]
RS

I S
K

     1[ ] 0
RS

I d
K

    

Hence ( , )S I  is always locally asymptotically stable in the 2. RInt  of the SI  plane 

whenever it is feasible. 

Now, in the following theorem, the global dynamics of the system (4) is discussed 

 

Theorem (3.2): Assume that the positive equilibrium point ( , )S I is feasible, then it is  

globally asymptotically stable in the 2. RInt  of the SI   plane.  

Proof. Let 
1

( , )J S I
SI

 , clearly ( , )J S I  is a continuously differentiable scalar function  

in the 2. RInt  of the SI   plane and since  

2
( , ) ( ) ( ) 0

dS dI R
S I J J

S dt I dt KI S

   
     

                      

then ( , )S I  does not change the sign and is not identically zero in the 2. RInt  of the 

SI   plane. Therefore by Bendixson Dulac criterion the system (4) has no non-trivial 

positive periodic solutions. Hence ( , )S I  is globally asymptotically stable and the proof is 

complete. ■    

 

3.2 The stability analysis of 3D system  

   In this section, we try to find all the biologically feasible equilibria admitted by the 

system (1) and study the dynamics of them around each equilibrium points. Now there are at 

most four non-negative equilibrium points. 
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1) The trivial equilibrium point )0,0,0(0 E  always exists 

2)  The axial equilibrium point 1 ( ,0,0)E K  always exists. 

3) The planar equilibrium point 2 ( , ,0)E S I , where S and I are  given by the Eq.(1.6a) 

and (1.6b) respectively, exists under the condition (7).          

4) The positive equilibrium point 4 ( , , )E S I Y    exists in the 3. RInt  if and only if 

S 
, I 

 and Y 
represent a positive solution of the following set of nonlinear algebraic 

equations: 

(1 ) 0
S I

RS SI I
K

 


                                                 (9a)                                                           

1( ) 0
(1 )(1 )

aY
S d

bI cY
    

 
                                        (9b) 

2 0
(1 )(1 )

eaI
d

bI cY
 

 
                                                    (9c)                                        

From Eq. (9c), we get that   

*
* 2

*

2

(1 )

(1 )

d cY
I

ea bd cY




 
                           (10a)                                                                                                                                                                                                                    

Clearly for the positivity of  
*I , we should have:  

 * 2

2

0
ea bd

Y
cbd


                                                    (10b)                                                                

By substituting Eq. (10a) in Eq. (9a) and then solving for S , we obtain that:  

 *2 * * *[( 1) ] 0
K K

S I K S I
R R

 
                                             (11a)                                                                                                     

Obviously the Eq.(11a) has a positive root given by: 

* 2 *1
4

2 2

B K
S B I

R


          (11b)                                                                         

Where  *( 1)
K

B I K
R


       

Consequently, by substituting the Eq.s ( 10a) and (11b) in Eq.(1.9 b) and solving for Y , 4E  

exists uniquely in the 3.Int R  if and only if *Y is a positive root for Eq. (9b) which satisfies 

Eq. (10b).                                                                             
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     The local stability conditions of these equilibrium points are established below. The 

general Variational matrix of the system (1) at ( , , )S I Y is computed by: 

 

1 1 1
1

1 1 1
1

1 1 1
1

( , , )

( , , ) ( , , )

( , , )

f f f
S f S I Y S S

S I Y

g g g
V S I Y I I g S I Y I

S I Y

h h h
Y Y Y h S I Y

S I Y


   

    
 

    
   
 

    
   

           (12)                             

Here 1 0
f R

S K

 
 


, 1 0

f R

I K


 
  


, 1 0

f

Y





, 1 0

g

S



 


, 

  1

2
0

(1 ) (1 )

g abY

I bI cY


 

  
, 1

2
0

(1 )(1 )

g a

Y bI cY

 
 

  
, 1 0

h

S





 

          , 1

2
0

(1 ) (1 )

h ea

I bI cY


 

  
, 1

2
0

(1 )(1 )

h eacI

Y bI cY

 
 

  
  

Now the Variational matrix about the equilibrium points 0E  is given below: 

0 1

2

0

( ) 0 ( ) 0

0 0

R

V E d

d





 
 

   
  

,  

Now the eigenvalues of 0( )V E  are: 01 02 20, ( ) 0R d        and 03 2 0d     

Hence the equilibrium point 0E  is a hyperbolic saddle point with locally stable manifold in 

the IY-plane and with locally unstable manifold in the S-direction. Also the Variational matrix 

about equilibrium point 1E  is    

   1 1

2

( ) 0

( ) 0 ( ) 0

0 0

R
R K

K

V E K d

d

 

 

 
    
 

   
 
 
 

 

Again, the eigenvalues of 1( ) V E are given by 11 12 10, ( )R K d          and 

13 2 0d    . Hence the equilibrium point 1E  is locally asymptotically stable in the 3. RInt  
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provided that 1d

K





  or 

2E  does not exist. While it is a hyperbolic saddle point with 

locally stable manifold in the SY -plane and with locally unstable manifold in the I-direction 

under the condition (7). 

Further, in the following theorem, the local stability near the plane SI is discussed.  

 

Theorem (3.3): Assume that the planar equilibrium point 2 ( , ,0)E S I  of the system (1) 

exists, then it is locally asymptotically stable in the 3. RInt  providing that the following 

condition holds: 

2(1 )eaI d bI  .                                                         (13)                                                                                       

Proof. By substituting 2E  in the general Variational matrix (12), we get that:  

 

2

2

2

1 ( )
[ ] 0

( ) 0
(1 )

0 0
(1 )

R S RS
I S

S K K

aI
V E I

bI

eaI
d

bI

  



 
   

 
 

  
 

 
   

 

 Accordingly, the characteristic polynomial of 2( )V E  can be written as: 

2
2

2

1 ( )
( ) [ ] ( ) 0
(1 )

eaI R S RS
d I S I

bI S K K
      

     
                  

  

Therefore, it is easy to verify that the roots of this characteristic polynomial satisfy the 

following relations: 

 
2

21 22

1 ( )
[ ] 0

R S
I

S K
  

 
     

 
                                     (14a)                                                          

 1
21 22 1

( )
( ) 0

R d
d I

K


  




                                             (14b)                                                               

 23 2
(1 )

eaI
d

bI
  


                                                     (14c)                                                                              

Hence, according to Routh-Hurwitz criterion, 2E  is locally asymptotically stable in the 

3. RInt  if and only if the condition (13) holds, otherwise 2E  is a hyperbolic saddle point 
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with unstable manifold in the positive direction orthogonal to the SI  plane (i.e. 

Y -direction) and with locally stable manifold in SY -plane  ■ 

Further, the global stability analysis of 1E  in the 3. RInt  is investigated in the following 

theorem. 

Theorem (3.4): Assume that 2E  does not exist, then 1E  is globally asymptotically stable 

in the 3. RInt  if the following condition holds. 

K
S

R


                                                           (15)                                                                                                                                                                                                      

Proof. Consider the following function  

1 2 3( , , ) ( )
S

V S I Y C S K K Ln C I C Y
K

       

It is easy to see that  1 3( , , ) ,V S I Y C R R  and ( ,0,0) 0V K  , while ( , , ) 0V S I Y   for 

all 3( , , ) /{( ,0,0)}S I Y R K and iC for )3,2,1( i  are positive constants to be determined. 

The derivative of V  along the trajectory of the system (1) is  

 

1 2 1

3 2

( ) (1 ) ( )
(1 )(1 )

(1 )(1 )

dV S I I aY
C S K R I C I S d

dt K S bI cY

eaI
C Y d

bI cY


  

  
               

 
  

  

       

Hence   

 
 

2

1 1 2 3 2

2 1 3 2

( )
( )

(1 )(1 )

( )

dV S K aIY
C R C S K IM C SI eC C

dt K bI cY

C d I C d Y






      

 

  

 

Here 
K SK RS

M
SK

  
 . So by choosing 11 C , 2 1C  ,and 3

1
C

e
 , and then 

substituting these values in 
dV

dt
, we get that:  

  
2

1 2[( )( ) ( )( ) S K K RS SK K d ddV S K
R I Y

dt K SK e

      
     

Now from boundness logistic term, we have 0S K   and since 2E  does not exist, 

1K d   <0. Therefore, 
dV

dt
 is a negative definite function under the condition (15), and 

hence V  is a Lyapunov function with respect to the positive equilibrium point 1E  of the 
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system (1). Thus 1E  is globally asymptotically stable in the 3. RInt  and the proof is 

complete. ■ 

 

Theorem (3.5): 

     The positive equilibrium point 3 ( , , )E S I Y     is locally asymptotically stable in 

the 3. RInt  provided that the following condition holds: 

* * 2 * * 2 * *

*

(1 ) (1 ) (1 ) (1 ) (1 )
min , ,

RS bI cY L bI cY ec bI b
Y

abKL abI bc

       
  

 
            (16)       

Where 
* 2 *

*

( )R S KI
L

KS


  

Proof. Substituting the positive equilibrium point 3 ( , , )E S I Y    of then the system (1) in 

the general Variational matrix (12) gives that: 

11 12 13

3 21 22 23

31 32 33

( )

v v v

V E v v v

v v v

 
 

  
 
 

                                             (17)                                                                       

Where 
* *

11 *
[ ] 0
RS I

v
K S


    , *

12 [ ]
R

v S
K

     , 13 0v  , *

21 0v I  , 

* *

22 * 2 *
0

(1 ) (1 )

abI Y
v

bI cY
 

 
, 

*

23 * * 2
0

(1 )(1 )

aI
v

bI cY


 

 
, 31 0v  , 

*

32 * 2 *
0

(1 ) (1 )

eaY
v

bI cY
 

 
, 

* *

33 * * 2
0

(1 )(1 )

eacI Y
v

bI cY


 

 
  

Since the characteristic polynomial of  V at 3E  can be written as  

 3 2

1 2 3 0A A A       

Where 1 11 22 33( )A v v v     , 2 11 33 22 33 11 22 12 21 23 32A v v v v v v v v v v      

3 33 12 21 11 22 11 23 32( )A v v v v v v v v   . 

Hence, from the condition (16), we get that 11 22 0  v v  and hence 1 0A   

Now straightforward computations give that: 
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* *

* * *

12 21 11 22 * 2 *
[ ]

(1 ) (1 )

R LabI Y
v v v v S S I

K bI cY
      

 
 

          =
* * *

* *

1* * * 2 *
[ ] [ ]
(1 )(1 ) (1 ) (1 )

aY LabY RS
I d I

bI cY bI cY K


   

   
 

Now from the condition (16), we get that: 12 21 11 22 0v v v v   

Hence 3 0A  . Note that, according to Routh-Hurwitz criterion, 3E   is locally 

asymptotically stable in the 3. RInt  if and only in addition to 1 0A   and 3 0A   we 

should have that 1 2 3 0A A A    .  

Straightforward computations show that: 

11 22 12 21 11 22 1 33 23 32 22 33( )[( ) ] ( )v v v v v v Av v v v v        

Now it is easy to show that 11 22 12 21 11 22 1 33( )[( ) ] 0v v v v v v Av     and  

* * * *

22 33 * 2 * 2

[ (1 ) (1 )]

(1 ) (1 )

aI Y b cY ec bI
v v

bI cY

  
 

 
Again, according to the condition (16), we have  

22 33 0v v  . Hence 0 . Therefore, all the requirements of Routh-Hurwitz criterion are 

satisfied. Hence 3E   is locally asymptotically stable in the 3. RInt  and the proof is 

complete. ■ 

 

3.3 Numerical simulation 

    In this section, the global dynamics of the eco-epidemiological the system (1) is 

investigated numerically. In order to understand the impact of the disease on the dynamical 

behavior of the the system (1), we will choose the infected   and the recover rate   as the 

control parameters in two different cases: 

 

Case1. The system (1) has an asymptotically stable point.  

For the following set of parameters values     

1 23 , 100 , 2, 1, 2, 0.1, 0.2, 2, 0.4, 1R K a b c d e d                       (18) 

The system (1) has a globally asymptotically stable point as shown in Fig.1(a-b) 
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Fig. 1: (a) A globally stable point in the 3.Int R  of the system (1) at the parameters values 

given in Eq. (18). (b) Time series of the trajectory of the system (1) as given in (a) 

 

Case 2. The system (1) has a stable limit cycle in the 3.Int R .  

For the following set of parameters values: 

1 23 , 100 , 2, 1, 3, 0.1, 0.2, 2, 0.4, 1R K a b c d e d                        (19) 

The system (1) has a stable limit cycle in the 3.Int R  as shown in Fig. 2 (a-b).  

 

 

Fig. 2: (a) A stable limit cycle in the 3.Int R  of the system (1) at the parameters values given 

in Eq. (19). (b) Time series of the trajectory of the system (1) as given in (a) 
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Depending on what has been mentioned before, it has been observed that for different ranges 

of the control parameters, the system (1) has different types of attractors. The following two 

tables summarize our numerical results in the above two cases respectively, moreover, for 

more explanation, typical attracting sets along with their time series are also given. 

 

 

Table (1): The effect of varying infected rates on the dynamical behavior of the system (1) in 

the first case.  

Parameters kept  fixed Parameter varied Dynamical behavior of  the system (1) 

 

 

 

 

As given in 

Eq. (18) 

0 0.03   

 

  0.03 0.11   

 

 

0.11 1.26   

 

1.26 3   

 

3   

The system (1) approaches  asymptotically 

to (K,0,0)=(100,0,0)  

The system (1) approaches  asymptotically 

to a stable point in the 3.Int R  

The system (1) approaches  asymptotically  

to a stable limit cycle  

The system (1) approaches  asymptotically 

to a stable point in the 3.Int R  (see Fig.1) 

The system (1) approaches  asymptotically 

to a stable point in the 2.Int R  of the 

SI-plane 

 

Moreover, as   varies in the range 0 2.66   with the rest of parameters fixed 

as given in Eq. (18), it has been observed that the system (1) still has   a globally stable 

point in 3.Int R . Finally, typical attracting sets, which show the dynamical behavior of the 

system (1) as given in table 1, are shown in the following figures. 
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Fig. 3: (a) The system (1) approaches asymptotically to (100,0,0) at the parameters values 

given in  Eq. (18) with 0.02   (b) Time series of the trajectory of  the system (1.1 ) as 

given in (a) 

 

 

 

 

Fig.4: (a) The system (1) approaches asymptotically to a stable point at the parameters 

values given in  Eq. (18) with 0.1   (b) Time series of the trajectory of the system (1) as 

given in (a). 
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Fig.5: (a) The system (1) approaches asymptotically to a limit cycle at the parameters values  

given in Eq. (18) with 0.5  (b) Time series of the trajectory of the system (1) as given in 

(a). 

 

 

 

             

Fig. 6: (a) The system (1) approaches asymptotically to a stable point in the 2.Int R of the 

SI-plane at the parameters values  given in Eq. (18) with 3.5   (b) Time series of the 

trajectory of the system (1) as given in (a). 
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Table (2): The effect of varying infected rate on the dynamical behavior of the system (1) in 

the second case. 

Parameters 

kept fixed 

Parameter varied Dynamical behavior of   system (1) 

 

 

 

 

AS given at 

Eq. (19) 

0 0.03   

 

0.03 0.08   

 

 

 0.08 2.37   

 

 9.437.2    

 

  9.4  

The system (1) approaches  asymptotically to 

(K,0,0)=(100,0,0)  

The system (1) approaches  asymptotically to a 

stable point in the 3.Int R  

The system (1) approaches  asymptotically 

 to a stable limit cycle (see Fig. 2) 

The system (1) approaches  asymptotically to a 

stable point in the 3.Int R  

The system (1) approaches  asymptotically to a 

stable point in the 2.Int R  of  SI-plane  

 

   Moreover, as   varies in the range 0 2.15   with the rest of parameters fixed as 

given in Eq. (19), the system (1) still has periodic dynamics. However, for 2.15 2.66  , 

the system (1) approaches asymptotically to a stable point in the 3.Int R . Again for more 

illustration, typical attracting sets, which show the dynamical behavior of the system (1) as 

given in table 2 are shown in the following figures.   
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Fig. 7: (a) The system (1) approaches asymptotically to a stable point at the parameters 

values given in Eq. (19) with 0.07  , and (b) Time series of the trajectory of the system (1) 

as given in (a) 

          

Fig. 8: (a) The system (1) approaches asymptotically to a limit cycle at the parameters values 

given in Eq. (19) with 1  (b) Time series of the trajectory of the system (1) as given in (a) 

     

Fig. 9: (a) The system (1) approaches asymptotically to a stable point in the 3.Int R  at the 

parameters values given in Eq. (19) with 2.5   (b) Time series of the trajectory of the 

system (1) as given in (a). 
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Fig. 10: (a) The system (1) approaches asymptotically to a stable point in the 2.Int R  of the 

SI-plane at the parameters values given in Eq. (19) with 5.5 .  (b) Time series of the 

trajectory of the system (1) as given in (a) 

      

 

Fig. 11: (a) The system (1) approaches asymptotically to a stable point  at the parameters 

values given in Eq. (19) with 2.25   (b) Time series of the trajectory of the system (1) as 

given in (a) 

 

 

3.4 Discussion and Conclusions 

 In this chapter, an eco-epidemiological model, consisting of a Crowley-Martin 

prey-predator with disease in prey, has been proposed and analyzed analytically as well as 

numerically. Analytically, it has been observed that, the system (1) is uniformly bounded 

under certain condition and has at most four non-negative equilibrium points. )0,0,0(0 E  
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always exists and it is unstable saddle point. )0,0,(1 KE   always exists and locally 

asymptotically stable provided that )0,,(2 ISE   does not exist, otherwise, it is unstable 

saddle point. Further, 1E  is globally asymptotically stable provided that the number of 

susceptible prey S  is less than a specific value  
R
K . The equilibrium point 2E  exists 

provided that the infection rate coefficient   is greater than a specific value  
K

d 1  and it 

is always globally asymptotically stable in the 2. RInt  of the SI plane. Moreover, 2E  is 

locally asymptotically stable for any initial value in the 3. RInt  near the SI plane provided 

that the natural death rate of predator 2d  is greater than a specific value  
Ib

Iea
1

,otherwise, it 

is unstable saddle point. Finally, the positive equilibrium point ),,(4
 YISE  exists 

uniquely in the 3. RInt  under certain conditions and it is locally asymptotically stable if and 

only if Y  is less than a specific value given in Eq. (17). Moreover, we cannot find 

Lyapunov function at 4E  so it may or may not be globally stable. 

Numerically, the global dynamics of the system (1) is studied by solving it numerically for 

different sets of initial values and for different sets of parameters values. It is observed that, 

in the 3. RInt , the system (1) has only two basic patterns which approach to a stable point or 

a stable limit cycle. Further, the tables 1-2 show that the infection rate coefficient   

represents a bifurcation parameter for the system (1), indeed the dynamical behavior of the 

the system (1) exhibits a major change as the parameter   passes through specific values, 

see tables 1-2. Moreover, the increases in the value of   lead to extinction in the predator 

species. However, the recover rate coefficient   has stabilizing effect on the system (1) 
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