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Abstract. Ridges are one of the key feature of interest in areas such as computer vision and image processing.

Even though a significant amount of research has been directed to defining and extracting ridges some fundamental

challenges remain. The authors have recently shown [16] the attraction of ridge and height ridge as a generalized

local maximum in 2-D Riemannian space by directly calculations. Here, we are concerned with provide an algo-

rithm to finding the height ridges on 2-D function which given by either explicit equation or discretely as a table of

values. Some examples are given and plotted. Found that the results of algorithm matching to results of our paper

[16] by directly calculations.
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1. Introduction

Ridges, often described intuitively as the crests connecting mountain peaks, are one of the

most sought after features in areas ranging from computer vision [7, 10] and image processing
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[4] to tensor analysis [15, 18] and combustion simulations [6]. Consequently, defining and ex-

tracting ridges from digital data has received significant attention across different communities

resulting in various competing concepts and a plethora of algorithms.

Eberly et al. [4] compare several definitions of ridges, extend Haralick’s ’height’ defini-

tion [8] into multiple dimensions, and establish a set of desired invariants for ridge definitions.

Their conclusion is that the so-called height ridges produce qualitatively superior results. This

sentiment appears to be wide spread since height ridges are a commonly used ridge structure

[4, 5, 12, 13, 14].

The authors in [1, 2] presented a new approach to extract ridges (local maximum) on images

of 2-D functions, and in [16] presented a new approach to extract height ridges (generalized

local maximum) on images of 2-D functions by directly calculations.

Here, we will presented algorithm to construct height ridges on a subpixel level by selecting

an initial guess to a ridge point, searching for a nearby ridge point, then traversing the ridge

curve by following its tangents (the ridge direction).

The basic concepts in linear algebra which utilized in this paper can be found in a text on

matrix analysis such as [9], also basic concepts in differential geometry (local extrema and

tensors) can be found in a standard calculus text such as [11, 12, 17].

The paper is organized as follows. In the second section we review an algorithm to height

ridge finding on the function which given by either explicit equation or discretely as a table of

values. Supsection (2.1) review the algorithm in Euclidean space and supsection (2.2) review

the algorithm in Riemannian space. The third section gives experimental results.

2. Height ridge algorithm

Constructing closed form representations for ridges of high-dimensional functions and im-

ages are generally intractable. So, ridge algorithms which lend themselves to numerical com-

putation must be used instead.

Here, we provides ridge algorithm which support the application of ridge finding where the

function is given by either explicit equation or discretely as a table of values. In case a table
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of values it is helpful to have a closed form formula for DP which involves only explicit oc-

currences of the derivatives of function f and the eigenvalues and eigenvectors of D2 f . In this

case, splines may be used as a smooth representation of f , more detailed about splines can be

found in [3].

According to the height ridge definition, a point x ∈ R2 is a 1-dimensional ridge point if

P(x) = utD f = 0 and α(x) < 0, where α(x) is eigenvalue of D2 f and u is the corresponding

eigenvector. The ridge direction is DP which is tangent to the level curve P = 0.

The idea to ridges constructed is start with provide an initial guess (x0,y0) to a ridge point,

then a search is made for a nearby ridge point (x1,y1) (we call this step ridge flow), finally from

this point a ridge curve can be traversed if we know what the ridge direction is (we call this step

ridge traversal). Both steps involve computing the gradient of P, so, to facilitate detection of

zeros of P, we require P(x) to be at least a C1 function or be f (x) a C3 function. We use the

tensor notation.

2.1. The algorithm in 2-D Euclidean geometry

Assume that f ∈C3(R2,R), a smoothness condition which we will see guarantees continuity

of ridge directions, except possibly at umbilics where α = β (Umbilics are places where the

eigenvectors may become discontinuous even though the eigenvalues remain continuous). In

this paper we will suppose that ridges lie on umbilic-free regions, that is, in regions for which

α < β .

The eigensystems for D2 f are given by f,i ju j = αui and f,i jv j = βvi, the vectors u and v form

an orthonormal system (uiui = 1, vivi = 1, uivi = 0, and ei juiv j = 1, where ei j is the permutation

tensor on two symbols). Define P = ui f,i and Q = vi f,i.

According to the height ridge definition, a point x ∈ R2 is a 1-D ridge point if P(x) = 0 and

α(x)< 0.

Since u and v form an orthonormal system we can write

f,i = Pui +Qvi.
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Moreover, assuming we are in a region where u is differentiable, uiui = 1 implies uiui, j = 0.

Differentiating P yields

P,k = ui f,ik +ui,k f,i = αui +Qviui,k.

Differentiating f,i ju j = αui yields

f,i ju j,k + f,i jku j = αui,k +α,kui,

where we have used f,i ju j = αui. Contracting with vi and using

vi f,i j = βv j and uivi = 0 we obtain

βv ju j,k + f,i jkviu j = αviui,k.

Therefore, viui,k = f,i jkviu j/(α−β ). Substituting this in the previous equation for P,k yields

P,k = αuk +
Q

α−β
f,i jkviu j. (2.1)

The eigenvectors and eigenvalues are computed using second derivatives of f , the quantity

Q = vi f,i?requires first derivatives of f , and P,k additionally requires third derivatives of f . All

calculations do not require explicit formulas for the derivatives of eigenvectors ui, j or vi, j.

2.1.1. Ridge flow

Given an initial approximation A to a ridge point, a flow path to the ridge is determined

by gradient descent. Ridge points occur as absolute minimum points for the function P2(x)/2

where α(x)< 0. The gradient descent is modeled by

dxi(t)
dt

= (−P2(x(t))/2),i =−P(x(t))P,i(x(t)), xi(0) = Ai, i = 1,2. (2.2)

The solution curve terminates at time T > 0 if P(x(T )) = 0 or if a positive local minimum is

reached, in which case a different starting point should be used. The point R = x(T ) will be

used as the starting ridge point for ridge traversal.
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2.1.2. Ridge traversal

Let R be the initial ridge point obtained by the construction in the ridge flow. If T (x) is

a tangent vector to the ridge, then the ridge can be traversed by solving a system of ordinary

differential equations, dx/dt = T (x). To determine T (x), note that the ridge curve is a solution

to P(x) = 0, so it is (part of) a level curve for P. The gradient of P is therefore normal to the

ridge; a tangent to the ridge is orthogonal to the normal, so Ti(x) = ei jP, j(x).

The system of differential equations determining the traversal is therefore

dxi(t)
dt

=±ei jP, j(x(t)), (2.3)

such that the two traversals xi(0) = Ri, i = 1,2 are required.

2.2. The algorithm in 2-D Riemannian geometry

In Riemannian Geometry, Equation (2.1) generalizes to

P,k = αuk +
Q

α−β
f,i jkviu j, (2.4)

which specifies the covariant derivative of P. The model for ridge flow given by equation (2.2)

generalizes as follows. As a parameterized curve xi(t), the tangent to the ridge flow path is

the contravariant vector dxi/dt. The gradient P,i(x) is covariant, so we need its contravariant

counterpart. Thus, the ridge flow is modeled by

dxi

dt
=−Pgi jP, j =−PPi

,., xi(0) = A , i = 1,2, (2.5)

where A is an initial approximation to the ridge. If the flow terminates at time T > 0 where

P(x(T ))= 0, then R = x(T ) is used as the starting ridge point for ridge traversal. Ridge traversal

given by equation (2.3) generalizes to

dxi

dt
=±gi je jkgklP,l =±ei jP, j, xi(0) = Ri(0), i = 1,2. (2.6)

Note that raising of indices on both covariant tensors ei j and P,i is required to produce a con-

travariant vector dxi/dt.
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3. Applications for hight ridge

(1) Consider the parabolic hyperboloid surface (saddle surface) represented by the function

f (x1,x2) = x2
1− x2

2.

f,i =


2x1

−2x2

 , f,ij =


2 0

0 −2

 .

The eigenvalues of f,i j are α =−2 and β = 2, observe that

α(x1,x2) < 0 < β (x1,x2) for all (x1,x2). The corresponding eigenvectors are u =

(u1,u2) = (0,1) and v = (v1,v2) = (1,0) respectively.

There are no 1-D ridge points with respect to β because β = 2 > 0 (see definition of

hight ridges in [16]). But there are 1-D ridge points with respect to α =−2 < 0, we use

the above algorithm to find it

P = ui f,i = u1 f,1 +u2 f,2 =−2x2.

Q = vi f,i = v1 f,1 + v2 f,2 = 2x1.

P,k = αuk +
Q

α−β
f,i jkviu j

⇒ P,k = α

 u1

u2

+
Q

α−β

 f,111v1u1 + f,121v1u2 + f,211v2u1 + f,221v2u2

f,112v1u1 + f,122v1u2 + f,212v2u1 + f,222v2u2


⇒ P,k = (−2)

 0

1

+
2x1

−2−2

 0

0

=

 0

−2

 .

We start with the initial approximation Ai = xi(0) = (1,−1), as shows in

FIGURE 1.
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FIGURE 1. The initial ridge f (Ai)= f (xi(0))= f (1,−1) and nearby ridge point

f (Ri) = f (xi(t)) = f (1,0).

Now, we search for a nearby ridge point xi(t) from the initial approximation Ai =

xi(0) = (1,−1), using the subsection 2.1.1 (Ridge Flow), we have the two ordinary

equations differential (3.1) and (3.2)

dx1(t)
dt

=−P(x(t))P,1(x(t)) =−(−2x2)(0) = 0, x1(0) = A1 = 1 (3.1)

dx2(t)
dt

=−P(x(t))P,2(x(t)) =−(−2x2)(−2) =−4x2, x2(0) = A2 =−1. (3.2)

The general solution for (3.1) is given from

dx1(t)
dt

= 0⇒ x1(t) =C1

at the initial condition x1(0) = 1⇒C1 = 1.

The special solution for (3.1) is

x1(t) = 1 (3.3)

Similarity, the general solution for (3.2) is given from

dx2(t)
dt

=−4x2,⇒ x2(t) =C2e−4t
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at the initial condition x2(0) =−1⇒−1 =C2e0⇒C2 =−1.

The special solution (3.2) is

x2(t) =−e−4t . (3.4)

Now, from (3.3) and (3.4) we have

P(x1(t),x2(t)) = P(1,−e−4t) =−2(−e−4t) = 2e−4t , therefor

P(x1(t),x2(t))∼= 0 as along as 2e−4t ∼= 0 or t→∞, which equivalent to P(x1(t),x2(t)) =

0 as along as (x1(t),x2(t)) = (1,0). We will use this point R = (x1(t),x2(t)) = (1,0) as

the starting ridge point for ridge traversal.

The tangent vector to the ridge is

Ti(x) = ei jP, j =

 e1 jP, j

e2 jP, j

=

 e11P,1 + e12P,2

e21P,1 + e22P,2

=

 P,2(x)

−P,1(x)

=

 −2

0


using the subsection 2.1.2 (Ridge Traversal), we have the two ordinary equations differ-

ential (3.5) and (3.6)

dx1(t)
dt

=±T1(x) =±e1 jP, j(x(t)) =±(−2) =∓2, x1(0) = R1 = 1 (3.5)

dx2(t)
dt

=±T2(x) =±e2 jP, j(x(t)) = 0, x2(0) = R2 = 0 (3.6)

the general solution for (3.5) is given from

dx1(t)
dt

=∓2⇒ x1(t) =∓2t +C1

at the initial condition x1(0) = 1⇒C1 = 1.

The special solution for (3.5) is

x1(t) =∓2t +1 (3.7)

Similarity, the general solution for (3.6) is given from

dx2(t)
dt

= 0⇒ x2(t) =C2

at the initial condition x2(0) = 0⇒C2 = 0.

The special solution for (3.6) is

x2(t) = 0. (3.8)
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The 1-D ridge points with respect to α =−2 are

(x1(t),x2(t)) = (∓2t +1,0) for all t (note that P(∓2t +1,0) = 0 for all t), as shows in

FIGURE 2.

FIGURE 2. The 1-D ridge points with respect to α = −2 on the image of

f (x1,x2) = x2
1− x2

2.

We note that results of algorithm in above example it matching to results in our paper

[16] by directly calculations with the same example.

(2) Consider the surface represented by the function

f (x1,x2) =−x2
2 + e−x2

1 . We have

f,i =


−2x1e−x2

1

−2x2

 , f,ij =


(4x2

1−2)e−x2
1 0

0 −2

 .

The eigenvalues of f,i j are α =−2 and β = (4x2
1−2)e−x2

1 , observe that

α(x1,x2)< 0 for all (x1,x2), while β (x1,x2)< 0 at x1 ∈ (− 1√
2
, 1√

2
) and for all x2. The

corresponding eigenvectors are u = (u1,u2) = (0,1) and v = (v1,v2) = (1,0) respective-

ly.
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• There are 1-D ridge points with respect to α = −2 < 0, we use the previous algo-

rithm to find it

P = ui f,i = u1 f,1 +u2 f,2 =−2x2.

Q = vi f,i = v1 f,1 + v2 f,2 =−2x1e−x2
1 .

P,k = αuk +
Q

α−β
f,i jkviu j

⇒ P,k = α

 u1

u2

+
Q

α−β

 f,111v1u1 + f,121v1u2 + f,211v2u1 + f,221v2u2

f,112v1u1 + f,122v1u2 + f,212v2u1 + f,222v2u2



⇒ P,k = (−2)

 0

1

+
−2x1e−x2

1

−2− (4x2
1−2)e−x2

1

 0

0

=

 0

−2


We start with the initial approximation Ai = xi(0) = (−1, 1

2), as shows in

FIGURE 3.

FIGURE 3. The initial ridge f (Ai)= f (xi(0))= f (−1, 1
2) and nearby ridge point

f (Ri) = f (xi(t)) = f (−1,0).

Now we search for a nearby ridge point xi(t) from the initial approximation
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Ai = xi(0) = (−1, 1
2), using the subsection 2.1.1 (Ridge Flow), we have the two ordinary

equations differential (3.9) and (3.10)

dx1(t)
dt

=−P(x(t))P,1(x(t)) =−(−2x2)(0) = 0, x1(0) = A1 =−1 (3.9)

dx2(t)
dt

=−P(x(t))P,2(x(t)) =−(−2x2)(−2) =−4x2, x2(0) = A2 =
1
2
. (3.10)

The general solution for (3.9) is given from

dx1(t)
dt

= 0⇒ x1(t) =C1

at the initial condition x1(0) =−1⇒C1 =−1.

The special solution for (3.9) is

x1(t) =−1 (3.11)

Similarity, the general solution for (3.10) is given from

dx2(t)
dt

=−4x2,⇒ x2(t) =C2e−4t

at the initial condition x2(0) = 1
2 ⇒

1
2 =C2e0⇒C2 =

1
2 .

The special solution for (3.10) is

x2(t) =
1
2

e−4t . (3.12)

Now, from (3.11) and (3.12) we have

P(x1(t),x2(t)) = P(1, 1
2e−4t) =−2(1

2e−4t) =−e−4t , therefore

P(x1(t),x2(t))∼= 0 as along as−e−4t ∼= 0 or t→∞, which equivalent to P(x1(t),x2(t)) =

0 as along as (x1(t),x2(t)) = (−1,0). We will use this point R = (x1(t),x2(t)) = (−1,0)

as the starting ridge point for ridge traversal.

The tangent vector to the ridge is

Ti(x) = ei jP, j =

 e1 jP, j

e2 jP, j

=

 e11P,1 + e12P,2

e21P,1 + e22P,2

=

 P,2(x)

−P,1(x)

=

 −2

0


using the subsection 2.1.2 (Ridge Traversal), we have the two ordinary equations differ-

ential (3.13) and (3.14)

dx1(t)
dt

=±T1(x) =±e1 jP, j(x(t)) =±(−2) =∓2, x1(0) = R1 =−1 (3.13)
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dx2(t)
dt

=±T2(x) =±e2 jP, j(x(t)) = 0, x2(0) = R2 = 0 (3.14)

The general solution for (3.13) is given from

dx1(t)
dt

=∓2⇒ x1(t) =∓2t +C1

at the initial condition x1(0) =−1⇒C1 =−1.

The special solution for (3.13) is

x1(t) =∓2t−1 (3.15)

Similarity, the general solution for (3.14) give from

dx2(t)
dt

= 0⇒ x2(t) =C2

at the initial condition x2(0) = 0⇒C2 = 0.

The special solution for (3.14) is

x2(t) = 0. (3.16)

The 1-D ridge points with respect to α =−2 < 0 are (x1(t),x2(t)) = (∓2t−1,0) for all

t (note that P(∓2t−1,0) = 0 for all t), as shows in FIGURE 4.

FIGURE 4. The 1-D ridge points with respect to α = −2 on the image of

f (x1,x2) =−x2
2 + e−x2

1



98 N.H. ABDEL-ALL, M.A. SOLIMAN, R.A. HUSSIEN, W.M. EL-NINI

• There are 1-D ridge points with respect to β , note that β = (4x2
1− 2)e−x2

1 < 0 as

along as x1 ∈ (− 1√
2
, 1√

2
), therefore

Q = vi f,i = v1 f,1 + v2 f,2 =−2x1e−x2
1 .

P = ui f,i = u1 f,1 +u2 f,2 =−2x2.

Q,k = βvk +
P

β −α
f,i jkuiv j

⇒ Q,k = β

 v1

v2

+
P

β −α

 f,111u1v1 + f,121u1v2 + f,211u2v1 + f,221u2v2

f,112u1v1 + f,122u1v2 + f,212u2v1 + f,222u2v2


⇒ Q,k = (4x2

1−2)e−x2
1

 1

0

+
−2x2

(4x2
1−2)e−x2

1−2

 0

0

=

 (4x2
1−2)e−x2

1

0

 .

We start with the initial approximation Ai = xi(0) = (−1, 1
2), as shows in

FIGURE 5.

FIGURE 5. The initial ridge f (Ai)= f (xi(0))= f (−1, 1
2) and nearby ridge point

f (Ri) = f (xi(t)) = f (0, 1
2).

Now, we search for a nearby ridge point xi(t) from the initial approximation
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Ai = xi(0) = (−1, 1
2), using the subsection 2.1.1 (Ridge Flow), we have the two ordinary

equations differential (3.17) and (3.18)

dx1(t)
dt

=−Q(x(t))Q,1(x(t)) =−(−2x1e−x2
1)(4x2

1−2)e−x2
1 = 4x1(2x2

1−1)e−2x2
1 ,x1(0) =−1

(3.17)

dx2(t)
dt

=−Q(x(t))Q,2(x(t)) =−(−2x1e−x2
1)(0) = 0, x2(0) =

1
2
. (3.18)

The general solution for (3.17) is given from

dx1(t)
dt

= 4x1(2x2
1−1)e−2x2

1 or
dx1(t)

4x1(2x2
1−1)e−2x2

1
= dt

⇒ φ(x1) = t +C1, φ(x1) =
∫ dx1(t)

4x1(2x2
1−1)e−2x2

1

at the initial condition x1(0) =−1⇒C1 = φ(−1).

The special solution for (3.17) is

φ(x1) = t +φ(−1) (3.19)

Similarity, the general solution for (3.18) is given from

dx2(t)
dt

= 0,⇒ x2(t) =C2

at the initial condition x2(0) = 1
2 ⇒C2 =

1
2 .

∴ The special solution for (3.18) is

x2(t) =
1
2
. (3.20)

Now, from (3.19) , (3.20) we have Q(x1(t),x2(t)) = 0 as along as (x1(t),x2(t)) = (0, 1
2).

We will use this point R = (x1(t),x2(t)) = (0, 1
2) as the starting ridge point for ridge

traversal.

The tangent vector to the ridge is

Ti(x)= ei jQ, j =

 e1 jQ, j

e2 jQ, j

=

 e11Q,1 + e12Q,2

e21Q,1 + e22Q,2

 =

 Q,2(x)

−Q,1(x)

=

 0

−2(2x2
1−1)e−x2

1


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using the subsection 2.1.2 (Ridge Traversal), we have the two ordinary equations differ-

ential (3.21) and (3.22)

dx1(t)
dt

=±T1(x) = 0, x1(0) = R1 = 0 (3.21)

dx2(t)
dt

=±T2(x) =±(2−4x2
1)e
−x2

1 , x2(0) = R2 =
1
2

(3.22)

The general solution for (3.21) is given from

dx1(t)
dt

= 0⇒ x1(t) =C1

at the initial condition x1(0) = 0⇒C1 = 0.

The special solution for (3.21) is

x1(t) = 0 (3.23)

Similarity, the general solution for (3.22) is given from

dx2(t)
dt

=±(2−4x2
1)e
−x2

1

⇒ x2(t) =±(2−4x2
1)e
−x2

1t +C2

but from (3.23) x1(t) = 0, for all t, then

dx2(t)
dt

=±(2−0)e0t +C2 =±2t +C2

at the initial condition x2(0) = 1
2 ⇒

1
2 = 0+C2⇒C2 =

1
2 .

The special solution for (3.22) is

x2(t) =±2t +
1
2
. (3.24)

The 1-D ridge points with respect to β = (4x2
1−2)e−x2

1 are (x1(t),x2(t)) = (0,±2t + 1
2)

for all t (note that P(0,±2t + 1
2) = 0 for all t), as shows in FIGURE 6.
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FIGURE 6. The 1-D ridge points with respect to β = (4x2
1−2)e−x2

1 on the image

of f (x1,x2) =−x2
2 + e−x2

1 .
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