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Abstract. In this article we study the structure of the generalized k th group of units, Uk(R) of the quotient ring

R = Z[i]/ < β > . In particular, we consider the case where the generalized k th group of units, Uk(R) is the trivial

group for a fixed k.
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1. Introduction

The fundamental theorem of finite abelian groups states that any finite abelian group G is

isomorphic to a direct product of cyclic groups. That is, G ∼= Zn1 ×Zn2 × ...×Znr . Hence,

the group of units of a finite commutative ring with identity is isomorphic to a direct product

of cyclic groups. The decomposition of Un, the group of units of Zn, into a product of cyclic

groups of prime power order is given in the following theorem.

Theorem 1.1. Let n = pa1
1 .pa2

2 ...par
r be the decomposition of n into product of distinct prime

powers. Then, Un ∼=Upa1
1
×Upa2

2
× ...×Upar

r
. Moreover,
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(1) U2 ∼= Z1

(2) U22 ∼= Z2

(3) U2a ∼= Z2×Z2a−2 , where a > 2.

(4) Upa ∼= Zp−1×Zpa−1 , where p is an odd prime.

If R is a finite commutative ring with identity, then U(R) denotes its group of units. It is well

known that if R decomposes as a direct sum of rings, R = R1⊕R2...⊕Rr, then U(R)∼=U(R1)×

U(R2)× ...×U(Rr). In [2], El-Kassar and Chehade generalized the concept of the group of units

as follows: the multiplicative group U(R) support a ring structure by defining the operations ⊕

and⊗ on U(R) that makes (U(R),⊕,⊗) a ring isomorphic to U(R1)⊕U(R2)⊕ ...⊕U(Rr). The

ring U(R1)⊕U(R2)⊕ ...⊕U(Rr) will be denoted by R2 ∼=U(R) and R1 denote the ring R. They

defined U2(R) to be the group of units of the ring R2∼=U(R) so that U2(R) =U(R2)∼=U(U(R))

and in general Um(R) =U(Rm)∼=U(Um−1(R)). The group Um(R) is the mth group of units of

the ring R. That is, if R = R1⊕R2⊕ ...⊕Rr, then Um(R)∼=Um(R1)×Um(R2)× ...×Um(Rr).

Theorem 1.2. Let γ1, γ2, ..., γr be distinct Gaussian prime integers and let β =
r

∏
j=1

γ
n j
j , then

Z[i]/ < β >∼= Z[i]/ < γ
n1
1 > ⊕Z[i]/ < γ

n2
2 > ⊕...⊕Z[i]/ < γnr

r > and Uk (Z[i]/ < β >) ∼=

Uk (Z[i]/ < γ
n1
1 >

)
×Uk (Z[i]/ < γ

n2
2 >

)
×...×Uk (Z[i]/ < γnr

r >). We may also write Uk (β )∼=

Uk (γn1
1
)
×Uk (γn2

2
)
× ...×Uk (γnr

r ) .

Throughout this paper,

• m, n and r always denote positive integers,

• p and p j always denote prime integers that are congruent to 3 modulo 4,

• γ and γ j always denote Gaussian prime integers,

• π and π j always denote Gaussian prime integers of the form a+ bi where a and b are

non zero integers,

• q = ππ and q j = π jπ j always.

• q and q j always denote prime integers that are congruent to 1 modulo 4,

• S1, S2 and S3 always denote the sets {1,2,3,4,5,6,7,8,9}, {1,2} and {5,13} respectively.

The problem of classifying the group of units of an arbitrary finite commutative ring with

identity is an open problem. However, the problem is solved for certain classes. In the case when
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R=Zn, it is well-known that Un is cyclic if and only if n= 2, 4, pα ,qα , 2pα or 2qα . Also, Cross

[1] showed that the group of units of the quotient ring of Gaussian integers, U(Z[i]/ <β>), is

cyclic if and only if β = 1+ i, (1+ i)2 , (1+ i)3 , p, (1+ i)p, πn, (1+ i)πn. Cross did not mention

when the group of units U (Z[i]/ < β >) = U(β ) is trivial. The goal of this paper is to study

trivial case of the group of units of the ring Z[i]/ <β> and its generalization Um(β ) in the

special cases when m = 2 or 3.

It is well known that the Boolean rings are the only rings with trivial group of units. El-

Kassar and Chehade considered the problem of determining all rings R for which Um(R) is

the trivial group for a fixed m. They completely solved the problem of determining all rings

Zn with a trivial second group of units and they showed that if U2(Zn) is trivial, then n must

be a product of at most two prime power factors when n > 1. El-Kassar and Chehade proved

that U2(Zn)∼= {0} if and only if n = 2,3,4,6,8,12 or 24. They also considered the problem of

determining the values of m for which the mth group of units of Zn is trivial for some special

values of m and n.

2. Trivial group of Units

The structure of the group of units of Z[i]/ < β > is given by Cross as stated in the below

theorem.

Theorem 2.1.

(1) U (πn)∼= Zqn−qn−1.

(2) U(pn)∼= Zpn−1×Zpn−1×Zp2−1.

(3) U((1+ i)n)∼= Z2m−1×Z2m−2×Z4 if n = 2m.

(4) U((1+ i)n)∼= Z2m−1×Z2m−1×Z4 if n = 2m+1.

Note that U(Z[i]/ <1+ i>)∼=U(Z2)∼= {0}.

Lemma 2.2. U((1+ i)n) is not trivial for every n≥ 2.

Proof. For n = 2, we have U
(

Z[i]/
〈
(1+ i)2

〉)
∼=U (Z2[i])∼= Z2 � {0}. If n > 2, then
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U ((1+ i)n)∼=

 Z2m−1×Z2m−1×Z4 if n = 2m+1

Z2m−1×Z2m−2×Z4 if n = 2m
and since Z4 is non trivial, then U ((1+ i)n) is non trivial for every n≥ 2.

Lemma 2.3. U(pn) is non trivial for every n.

Proof. U(pn) ∼= Zpn−1 ×Zpn−1 ×Zp2−1, so U(pn) is trivial if and only if Zpn−1 and Zp2−1 are

trivial. But Zpn−1 is trivial for every prime p if n = 1 while that Zp2−1 is trivial only if p2 = 2.

This contradicts that p is a prime integer.

Lemma 2.4. U(πn) is non trivial for every n.

Proof. U(πn) ∼= Zqn−qn−1 and Zqn−qn−1 is trivial if and only if qn−qn−1 = 4k(4k+1)n−1 = 1.

The last equation has no integer solution for any integer k.

Using the previous lemmas, we obtain the following theorem.

Theorem 2.5. If β is a Gaussian prime power integer other than 1+ i, then U(β ) is non trivial.

3. Trivial Second group of Units

In this section, we find all values of β such that U2(β ) is trivial. Note that

U2
(

Z[i]/
〈
(1+ i)2

〉)
∼=U2 (Z2[i])∼=U (Z2)∼= {0}.

Lemma 3.1. U2((1+ i)n) is non trivial for every n≥ 3.

Proof. U ((1+ i)n)∼=

 Z2m−1×Z2m−1×Z4 if n = 2m+1

Z2m−1×Z2m−2×Z4 if n = 2m
.

Then, U2 ((1+ i)n)∼=

 U(Z2m−1)×U(Z2m−1)×U(Z4) if n = 2m+1

U(Z2m−1)×U(Z2m−2)×U(Z4) if n = 2m
but U(Z4)∼= Z2 � {0}.

Lemma 3.2. U2(pn) is non trivial for every n.

Proof. U2(pn) ∼= U(Zpn−1)×U(Zpn−1)×U(Zp2−1). Since p2− 1 > 1, then U(Zp2−1) � {0}

and U(Zp2−1)
∼= {0} if and only if p2−1 = 2. Hence p =

√
3 and the proof is complete.

Lemma 3.3. U2(πn) is non trivial for every n.
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Proof. Let t = qn− qn−1, then U(πn) ∼= Zt and U2(πn) ∼= U(Zt). In [2], the authors showed

that U(Zt) ∼= {0} if and only if t = 2. For t = 2, we have 2k(4k+1)n−1 = 1 and this equation

has no integer solution.

Using the preceding lemmas and note, we have the following theorem that is a direct conse-

quence of theorem 2.5

Theorem 3.4. If β =
r

∏
j=1

γ
n j
j with nr ≥ 1 and γ1,γ2, ...,γr are distinct, then U2(β ) is trivial if

and only if β = (1+ i) or (1+ i)2.

4. Trivial Third group of Units

Since the second group of units, U2(β ), is not trivial except for β = (1+ i) or (1+ i)2, then it

is natural to study the trivial case for the higher order generalized group of units. In this section,

we study in particular the trivial case for the third group of units, U3(β ), of the quotient ring

Z[i]/ < β > . We prove that U3(β ) is trivial if and only if β is a product of at most six distinct

Gaussian prime integers. In our work we study the cases(each alone) where β is divisible by

(1) One Gaussian prime.

(2) Two distinct Gaussian primes.

(3) Three distinct Gaussian primes.

(4) Four distinct Gaussian primes.

(5) Five distinct Gaussian primes.

(6) Six distinct Gaussian primes.

A complete characterization for the trivial case of U3(β ) is given.

4.1 Prime Power Factor

In this subsection, the trivial case for the third group of units will be studied when β is

divisible by one prime factor.

Lemma 4.1.1. If β = (1+ i)n, then U3(β ) is trivial if and only if n ∈ S1.
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Proof. If n ≤ 2, then U2 ((1+ i)n) ∼= {0} and hence U3 ((1+ i)n) ∼= {0} . For n = 3, we have

U((1+ i)3) ∼= Z4 and hence U3((1+ i)3) is trivial. Also, U((1+ i)4) ∼= Z2⊕Z4 and U3((1+

i)4)∼= {0}. Now, if n > 4, then

U3 ((1+ i)n) ∼=

 U2(Z2m−1)×U2(Z2m−1)×U2(Z4) if n = 2m+1

U2(Z2m−1)×U2(Z2m−2)×U2(Z4) if n = 2m

∼=

 U2(Z2m−1)×U2(Z2m−1) if n = 2m+1

U2(Z2m−1)×U2(Z2m−2) if n = 2m

Case n is odd (n = 2m+1):

U2(Z2m−1)∼= {0} if and only if m−1 = 1, 2 or 3. Hence, n = 5,7 or 9.

Case n is even ( n = 2m):

U3((1+ i)n) ∼= {0} if and only if U2(Z2m−1) ∼= {0} ∼=U2(Z2m−2) if and only if m = 3 or 4 and

hence n = 6 or 8.

Lemma 4.1.2. If β = pn, then U3(β ) is trivial if and only if p = 3 and n ∈ S2.

Proof. U3(pn) ∼= U2(Zpn−1)×U2(Zpn−1)×U2(Zp2−1). Note that U3(p) ∼= U2(Zp2−1). But

p2−1 = 8(2k2 +3k+1).

If k = 0, then p = 3 and U2(Zp2−1) =U2(Z8) ∼= {0}.

If k ≥ 1, then p2−1≥ 48 and hence U2(Zp2−1)� {0}.

For n≥ 2, then U2(Zpn−1) ∼= {0} if and only if p = 3 and n = 2.

Lemma 4.1.3. If β = πn, then U3(β ) is trivial if and only if n = 1 and q ∈ S3.

Proof. U3(πn) ∼= U2(Zt), where t = 4k(4k + 1)n−1. But U2(Zt) ∼= {0} if and only if t =

2,3,4,6,8,12 or 24. But t is even, so t = 3 is dismissed. No integer solution for the cases

where t = 2 or 6. The cases where t = 8 and 24 give q = 9 and 25 respectively and hence re-

jected. If t = 4, then k(4k+ 1)n−1 = 1. Hence k = n = 1 and q = 5. For t = 12, we get k = 3

and n = 1 and hence q = 13.

The below theorem illustrates the trivial case for the third group of units of the ring Z[i]/ < β >

when β is divisible by one Gaussian prime integer.

Theorem 4.1.4. If β = γn, then U3(β ) is trivial if and only if
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(1) β = (1+ i)n with n ∈ S1;

(2) β = 3 or 32;

(3) β = (1±2i) or (2±3i).

4.2 Two Prime Power Factors

The trivial case for the third group of units when β is divisible by two prime factors is studied.

Lemma 4.2.1. If β = (1+ i)n pm, then U3(β ) is trivial if and only if p = 3, n ∈ S1 and m ∈ S2.

Proof. Since U3(β ) ∼=U3((1+ i)n)×U3(pm), then the proof follows by using theorem 4.1.4.

The proof of the next three lemmas follows directly from theorem 4.1.4.

Lemma 4.2.2. If β = (1+ i)nπr, then U3(β ) is trivial if and only if r = 1, n ∈ S1 and q ∈ S3.

Lemma 4.2.3. If β = pmπr, then U3(β ) is trivial if and only if β = 3π or 32π with q ∈ S3.

Lemma 4.2.4. If β = π
r1
1 π

r2
2 , then U3(β ) is trivial if and only if β = (1+ 2i)(1− 2i),(2+

3i)(2−3i),(1±2i)(2±3i).

Lemma 4.2.5. If β = pm1
1 pm2

2 , then U3(β ) is non trivial.

Proof. U3(β ) is trivial if both U3(pm1
1 ) and U3(pm2

2 ) are trivial and by theorem 4.1.4, we have

p1 = p2 = 3 which contradicts that p1 and p2 are distinct.

The above results are summarized in the following theorem.

Theorem 4.2.6. Let n ∈ S1, m ∈ S2 and q, q1, q2 ∈ S3. If β = γ
n1
1 γ

n2
2 , then U3(β ) is trivial if

and only if one of the following is true:

(1) β = 3m(1+ i)n.

(2) β = (1+ i)nπ.

(3) β = 3mπ .

(4) β = π1π2.

4.3 Three Prime Power Factors

We study the trivial case for the third group of units when β is divisible by three distinct

prime factors.
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Lemma 4.3.1. If β = (1+ i)n
2

∏
j=1

pm j
j , then U3(β ) is non trivial.

Proof. U3(β )∼=U3((1+ i)n)×U3(pm1
1 pm2

2 ) and by lemma 4.2.5, U3(pm1
1 pm2

2 ) is non trivial.

The proof of the next lemma arises directly from theorem 4.1.4.

Lemma 4.3.2. If β = (1+ i)nπ
r1
1 π

r2
2 , then U3(β ) is trivial if and only if β = (1+ i)n(1+2i)(1−

2i), (1+ i)n(2+3i)(2−3i), (1+ i)n(1±2i)(2±3i) with n ∈ S1.

In lemma 4.2.5, we see that U3(pmr
r pms

s ) is non trivial when r 6= s. Then U3(β ) is non trivial

when β =
3

∏
j=1

pm j
j or β =

(
2

∏
j=1

pm j
j

)
πr.

Using lemmas 2.4 and 4.2.4, the following lemma arise.

Lemma 4.3.3. If β = pm
2

∏
j=1

π
r j
j , then U3(β ) is trivial if and only if β = 3m(1+ 2i)(1− 2i),

3m(2+3i)(2−3i), 3m(1±2i)(2±3i) with m ∈ S2.

Lemma 4.3.4. If β =
3

∏
j=1

π
r j
j , then U3(β ) is trivial if and only if one of the following is true:

(1) β = (1−2i)(1+2i)(2±3i).

(2) β = (1±2i)(2−3i)(2+3i).

Proof. U3(β ) ∼=U3(πr1
1 )×U3(πr2

2 )×U3(πr3
3 ) and by lemma 4.1.3, we have U3(πrs

s ) is trivial

if rs = 1 with πs = 1±2i or πs = 2±3i. Since π1, π2 and π3 are distinct, then β = (1−2i)(1+

2i)(2±3i) or β = (1±2i)(2−3i)(2+3i).

Lemma 4.3.5. If β = (1+ i)n pmπr, then U3(β ) is trivial if and only if β = 3m(1+ i)nπ with

n ∈ S1, m ∈ S2 and q ∈ S3.

Proof. Follows directly from lemmas 4.1.1, 4.1.2 and 4.1.3.

Summarizing lemmas 4.3.1 to 4.3.5, we get the following general result.

Theorem 4.3.6. Let n ∈ S1, m ∈ S2, j ∈ {1,2,3} and q, q j ∈ S3. If β =
3

∏
j=1

γ
n j
j , then U3(β ) is

trivial if and only if β equals one of the following:

(1) 3m(1+ i)nπ .

(2) (1+ i)nπ1π2.
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(3) 3mπ1π2.

(4) β = π1π2π3.

4.4 Four Prime Power Factors

The case where β is product of four distinct Gaussian prime powers is given next. The proof

can be obtained in a similar manner used in the proof of the previous lemmas.

Lemma 4.4.1. If β = (1+ i)n
3

∏
j=1

pm j
j , then U3(β ) is non trivial.

Lemma 4.4.2. If β = (1+ i)

(
2

∏
j=1

pm j
j

)
πr, then U3(β ) is non trivial.

Lemma 4.4.3. If n ∈ S1 and β = (1+ i)n pm
2

∏
j=1

π
r j
j , then U3(β ) is trivial if and only if

(1) β = 3(1+ i)n(1±2i)(2±3i).

(2) β = 32(1+ i)n(1±2i)(2±3i).

Lemma 4.4.4. Let n ∈ S1and let β = (1+ i)n
3

∏
j=1

π
r j
j , then U3(β ) is trivial if and only if

(1) β = (1+ i)n(1−2i)(1+2i)(2±3i).

(2) β = (1+ i)n(1±2i)(2−3i)(2+3i).

Lemma 4.4.5. If β =
4

∏
j=1

pm j
j , then U3(β ) is non trivial.

Lemma 4.4.6. If β =

(
3

∏
j=1

pm j
j

)
πr, then U3(β ) is non trivial.

Lemma 4.4.7. If β =

(
2

∏
j=1

pm j
j

)(
2

∏
j=1

π
r j
j

)
, then U3(β ) is non trivial.

Lemma 4.4.8. If β = pm
3

∏
j=1

π
r j
j , then U3(β ) is trivial if and only if β = 3m(1−2i)(1+2i)(2±

3i) or 3m(1±2i)(2−3i)(2+3i) with m ∈ S2.

Lemma 4.4.9. If β =
4

∏
j=1

π
r j
j , then U3(β ) is trivial if and only if β = (1−2i)(1+2i)(2−3i)(2+

3i).

The following general result illustrates lemmas 4.4.1 to 4.4.9.
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Theorem 4.4.10. Let n ∈ S1, m ∈ S2, j ∈ {1,2,3,4} and q, q j ∈ S3. If β =
4

∏
j=1

γ
n j
j , then U3(β )

is trivial if and only if one of the following is true:

(1) β = 3m(1+ i)n
2

∏
j=1

π j.

(2) β = (1+ i)n
3

∏
j=1

π j.

(3) β = 3m
3

∏
j=1

π j.

(4) β =
4

∏
j=1

π j.

4.5 Five Prime Power Factors

In this subsection, β is divisible by five distinct prime factors. The proof of the below lemmas

will be omitted.

Lemma 4.5.1. If β = (1+ i)n
4

∏
j=1

pm j
j , then U3(β ) is non trivial.

Lemma 4.5.2. If β = (1+ i)nπr
3

∏
j=1

pm j
j , then U3(β ) is non trivial.

Lemma 4.5.3. If β = (1+ i)n

(
2

∏
j=1

π
r j
j

)(
2

∏
j=1

pm j
j

)
, then U3(β ) is non trivial.

Lemma 4.5.4. Let n ∈ S1, m ∈ S2 and let β = (1+ i)n pm
3

∏
j=1

π
r j
j . Then U3(β ) is trivial if and

only if β = 3m(1+ i)n(1−2i)(1+2i)(2±3i) or β = 3m(1+ i)n(1±2i)(2−3i)(2+3i).

Lemma 4.5.5. Let n ∈ S1 and let β = (1 + i)n
4

∏
j=1

π
r j
j . Then U3(β ) is trivial if and only if

β = (1+ i)n(1−2i)(1+2i)(2−3i)(2+3i).

Lemma 4.5.6. If β =
5

∏
j=1

π
r j
j , then U3(β ) is non trivial.

Lemma 4.5.7. Let m ∈ S2 and let β = pm
4

∏
j=1

π
r j
j . Then U3(β ) is trivial if and only if

β = 3m(1−2i)(1+2i)(2−3i)(2+3i).

Lemma 4.5.8. If β =

(
2

∏
j=1

pm j
j

)(
3

∏
j=1

π
r j
j

)
, then U3(β ) is non trivial.
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Lemma 4.5.9. If β =

(
3

∏
j=1

pm j
j

)(
2

∏
j=1

π
r j
j

)
, then U3(β ) is non trivial.

Lemma 4.5.10. If β =

(
4

∏
j=1

pm j
j

)
πr, then U3(β ) is non trivial.

Lemma 4.5.11. If β =
5

∏
j=1

pm j
j , then U3(β ) is non trivial.

Combining lemmas 4.5.1 to 4.5.11, the following general result is obtained.

Theorem 4.5.12. Let n ∈ S1, m ∈ S2, j ∈ {1,2,3,4} and q, q j ∈ S3 and let β =
5

∏
j=1

γ
n j
j . Then

U3(β ) is trivial if and only if one of the following is true:

(1) β = 3m(1+ i)n
3

∏
j=1

π j.

(2) β = (1+ i)n
4

∏
j=1

π j.

(3) β = 3m
4

∏
j=1

π j.

4.6 Six Prime Power Factors

Following the same argument in the above subsections, we consider the case where β is

divisible by six distinct prime factors. The following theorem shows up.

Theorem 4.6.1. Let n ∈ S1, m ∈ S2, j ∈ {1,2,3,4} and q, q j ∈ S3 and let β =
6

∏
j=1

γ
n j
j . Then

U3(β ) is trivial if and only if β = 3m(1+ i)n
4

∏
j=1

π j.

5. Main Result

Now, it is clear that U3(β ) is non trivial if β is a product of more than six prime power

factors. Combining all the theorems stated in this article, the following main result is obtained.

Theorem 5.1. Let n ∈ S1, m ∈ S2 and let β =
r

∏
j=1

γ
n j
j . Then U3(β ) is trivial if and only if

r ≤ 6 and one of the following is true:

(1) β = (1+ i)n;

(2) β = 3m;
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(3) β = (1±2i) or (2±3i);

(4) β = 3m(1+ i)n;

(5) β = (1+ i)n(1±2i) or (1+ i)n(2±3i);

(6) β = 3m(1±2i) or 3m(2±3i);

(7) β = (1±2i)(2±3i);

(8) β = 3m(1+ i)n(1±2i) or 3m(1+ i)n(2±3i);

(9) β = (1+ i)n(1±2i)(2±3i);

(10) β = 3m(1±2i)(2±3i);

(11) β = (1−2i)(1+2i)(2±3i);

(12) β = (1±2i)(2−3i)(2+3i);

(13) β = 3m(1+ i)n(1±2i)(2±3i);

(14) β = (1+ i)n(1−2i)(1+2i)(2±3i);

(15) β = (1+ i)n(1±2i)(2−3i)(2+3i);

(16) β = 3m(1−2i)(1+2i)(2±3i);

(17) β = 3m(1±2i)(2−3i)(2+3i);

(18) β = (1−2i)(1+2i)(2−3i)(2+3i);

(19) β = 3m(1+ i)n(1−2i)(1+2i)(2±3i);

(20) β = 3m(1+ i)n(1±2i)(2−3i)(2+3i);

(21) β = (1+ i)n(1−2i)(1+2i)(2−3i)(2+3i);

(22) β = 3m(1−2i)(1+2i)(2−3i)(2+3i);

(23) β = 3m(1+ i)n(1−2i)(1+2i)(2−3i)(2+3i).
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