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Abstract. In this paper, the Adomian decomposition method (ADM) is a powerful method which considers the

approximate solution of a non-linear equation as an infinite series which usually converges to the exact solution.

In this paper, this method is proposed to solve some first-order differential equations. It is shown that the series

solutions converge to the exact solution for each problem. It is observed that the method is particularly suited for

initial value problems with oscillatory and exponential solutions.
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1. Introduction

The Adomian decomposition method (ADM) was firstly introduced by George Adomian in

1981 and developed in [1]. This method has been applied to solve differential and integral

equations of linear and non-linear problems in mathematics, physics, biology and chemistry

and up to now a large number of research papers have been published to show the feasibility of

the decomposition method.
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The main advantage of this method is that it can be applied directly to all types of differential

and integral equations, linear or non-linear, homogeneous or inhomogeneous, with constant or

variable coefficients. Another important advantage is that, the method is capable of greatly

reducing the size of computational work while still maintaining high accuracy of the numerical

solution [2]. The ADM decomposes a solution into an infinite series which converges rapidly to

the exact solution. The convergence of the ADM has been investigated by a number of authors

[3, 4].

The non-linear problems are solved easily and elegantly without linearising the problem by

using ADM. It also avoids linearisation, perturbation and discretization unlike other classical

techniques [5].

2. The Adomian decomposition method

Consider the differential equation

(1) Ly+Ry+Ny = g(x),

where N is a non-linear operator, L is the highest order derivative which is assumed to be

invertible and R is a linear differential operator of order less than L. Making Ly subject of the

formula, we get

(2) Ly = g(x)−Ry−Ny.

By solving (2) for Ly, since L is invertible, we can write

(3) L−1Ly = L−1g(x)−L−1Ry−L−1Ny.

For initial value problems we conveniently define L−1 for L =
dn

dxn as the n−fold definite inte-

gration from 0 to x. If L is a second-order operator, L−1 is a two fold integral and so by solving

(3) for y, we get

(4) y = A+Bx+L−1g(x)−L−1Ry−L−1Ny,

where A and B are constants of integration and can be found from the initial or boundary con-

ditions.
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The Adomian method consists of approximating the solution of (1) as an infinite series

(5) y(x) =
∞

∑
n=0

yn(x)

and decomposing the non-linear operator N as

(6) N(y) =
∞

∑
n=0

An,

where An are Adomian polynomials [6, 7] of y0,y1,y2, . . . ,yn given by

An =
1
n!

dn

dλ n

[
N

(
∞

∑
i=0

λ
iyi

)]
λ=0

, n = 0,1,2, . . . .

Substituting (5) and (6) into (4) yields

∞

∑
n=0

yn = A+Bx+L−1g(x)−L−1R

(
∞

∑
n=0

yn

)
−L−1

(
∞

∑
n=0

An

)
.

The recursive relationship is found to be

y0 = g(x),

yn+1 = −L−1Ryn−L−1An.

Using the above recursive relationship, we can construct the solution y as

(7) y = lim
n→∞

Φn(y),

where

(8) Φn(y) =
n

∑
i=0

yi.

3. Application to first-order differential equations

1. PROBLEM I

Consider the system
dy
dx

= y, y(0) = 1,

with the theoretical solution given as

y(x) = ex.
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The equation can be written as

Ly = y,

y(0) = 1,

where L =
d
dx

is the differential operator. Operating on both sides with the inverse operator of

L (namely L−1[·] =
∫ x

0
[·]dx) to get

y(x) = y(0)+L−1(y).

Applying the ADM technique yields

∞

∑
n=0

yn = y(0)+L−1

(
∞

∑
n=0

yn

)
.

Thus we obtain

y0 = 1,

yn+1 = L−1(yn), n = 0,1,2, . . . .

Therefore we have

y1 = L−1(y0) =
∫ x

0
dx = x.

y2 = L−1(y1) =
∫ x

0
xdx =

x2

2
.

y3 = L−1(y2) =
∫ x

0

x2

2
dx =

x3

6
.

y4 = L−1(y3) =
∫ x

0

x3

6
dx =

x4

24
,

and so on. Considering these components, the solution can be approximated as

y(x) = Φn(x) =
∞

∑
i=0

yi(x),
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with the following expansions

Φ1 = 1+ x.

Φ2 = 1+ x+
x2

2
.

Φ3 = 1+ x+
x2

2
+

x3

6
.

Φ4 = 1+ x+
x2

2
+

x3

6
+

x4

24
.

For application purposes, only few terms of the series will be computed. Table 1 compares the

ADM result with the theoretical solution.

x Analytic Adomian

0 1 1

0.1 1.1052 1.1052

0.2 1.2214 1.2214

0.3 1.3499 1.3498

0.4 1.4918 1.4917

0.5 1.6487 1.6484

0.6 1.8221 1.8214

0.7 2.0138 2.0122

0.8 2.2255 2.2224

0.9 2.4596 2.4538

TABLE 1. Analtyic versus Adomian

2. PROBLEM II

Let us consider the differential equation

dP
dt

= kP, P(0) = 4454,
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which gives the world population at mid-year. In general, the modelled population growth has

the law of exponential change, that is,

dP
dt

= kP, P(0) = P0

where P is the population at time t, k > 0 is a constant growth rate, and P0 is the size of the

population at time t = 0. The solution for this is

P = P0ekt .

Given that P(0) = 4454 and k = 0.017, by the ADM, we have

LP = kP.

By finding the inverse operator and imposing the initial condition, we have

P(t) = 4454+ kL−1(P),

P0(t) = 4454,

Pn+1 = kL−1(Pn).

Hence

P1(t) = k4454t.

P2(t) = k2 4454t2

2!
.

P3(t) = k3 4454t3

3!
.

Pn(t) = kn 4454tn

n!
.

Considering these components, the solution can be approximated as P(t) = Φn(t) =
n

∑
i=0

Pi(t),

with the following expansions

Φ1 = 4454+4454tk.

Φ2 = 4454+4454tk+ k2 4454t2

2!
.

Φ3 = 4454+4454tk+ k2 4454t2

2!
+ k3 4454t3

3!
.
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For application purposes, only a few terms will be computed. Table 2 compares the results

obtained using ADM with that of the analytic solution.

t Analytic Adomian

0 4454 4454

0.5 4492 4492

1 4530 4530

1.5 4569 4569

2 4608 4608

2.5 4647 4647

3 4687 4687

3.5 4727 4727

4 4767 4767

4.5 4808 4808

TABLE 2. Analtyic versus Adomian for Population Model

4. Conclusion

The results obtained from the two given examples, have shown that ADM is a powerful and

efficient technique in finding an approximate solution of both linear and non-linear first order

ordinary initial value problems which occur most often in biology. Table 1 shows small errors

whilst Table 2 shows it equals the exact solution. Therefore increasing the number of terms in

ADM, makes the approximate solution tend to the exact solution.
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