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Abstract. In this paper, we prove that the Aleksandrov problem holds without the condition ”2-Lipschitz mapping”

in quasi convex 2-normed linear spaces. Moreover, we show that the Mazur-Ulam theorem holds in quasi convex

2-normed linear spaces.
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1. Introduction

Let E and F be metric spaces. A mapping f : E→ F is called an isometry if f satisfies

dF( f (x), f (y)) = dE(x,y)

for all x,y ∈ E, where dE(,) and dF(,) denote the metric in the space E and F , respectively. For

some fixed number r > 0, suppose that f preserves distance r; ie, for all x,y∈ E with dE(x,y) =

r, we have dF( f (x), f (y)) = r. Then r is called a conservative distance for the mapping f . The

classical Mazur-Ulam theorem states that every surjective isometry between normed spaces is
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a linear mapping up to translation. In 1970, Aleksandrov [1] posed the following question:

”Whether or not a mapping with distance one preserving property is an isometry? ” It is called

the Aleksandrov problem. The Aleksandrov problem has been investigated in several papers[4]-

[13].

Recently, Chu et al. [4] begin to consider the Aleksandrov problem in linear 2-normed space.

They introduced the concept of 2-isometry, which is suitable to represent the notion of area

preserving mappings in appropriate spaces as 2-normed spaces. Chu [2] proved the Mazur-

Ulam theorem holds in 2-normed spaces via this 2-isometry. However, this ideal cannot be used

to prove the Mazur-Ulam theorem in quasi convex 2-normed linear space, since the triangle

inequality fails in quasi convex 2-normed linear space. Chu et al.[4] proved also that the Rassias

and Šemrl theorem holds under some conditions in linear 2-normed spaces as follows:

Theorem 1.1.[4] Let f be a 2-Lipschitz mapping with the 2-Lipschitz constant K ≤ 1. Assume

that if x,y and z are collinear, then f (x), f (y) and f (z) are collinear, and that f satisfies (DOPP).

Then f is a 2-isometry.

In this paper, we consider generalized 2-isometries, which is suitable for representing the

notion of distance preserving mappings in quasi convex 2-normed linear spaces. We show that

every generalized 2-isometries is affine. Also we prove that a mapping preserving the one

distance property and collinear between two quasi convex 2-normed linear spaces is an affine

generalized 2-isometry.

2. Preliminaries

In the remainder of this introduction, we will recall some definitions and give some Lemmas

about them in quasi convex 2-normed linear space.

Definition 2.1.[12] Let E be a real linear space with dimE > 1 and ‖·, ·‖ be a function from

E×E into R. Then (E,‖·, ·‖) is called a quasi convex 2-normed linear space if

(a) ‖x,y‖= 0⇔ x and y are linearly dependent,

(b) ‖x,y‖= ‖y,x‖,

(c) ‖αx,y‖=| α | ‖x,y‖,
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(d) ‖tx+(1− t)y,z‖ ≤ max{‖x,z‖,‖y,z‖},

for any α ∈ R, t ∈ [0,1] and x,y,z ∈ E. The function ‖·, ·‖ is called the quasi convex 2-norm on

E.

From now on, let E and F be quasi convex 2-normed linear space and the mapping f : E→ F .

Definition 2.2.[13] A mapping f : E→ F is said to be a generalized 2-isometry if it satifies

‖ f (x)− f (y), f (p)− f (q)‖= ‖x− y, p−q‖.

for every x,y, p,q ∈ E. In Particular, if y = q, the mapping f is said to be a 2-isometry.

Definition 2.3.[13] A mapping f : E→ F satisfies the distance one preserving property (briefly

DOPP), if ‖x− y, p−q‖= 1 for all x,z, p,q ∈ Y , it follows that

‖ f (x)− f (z), f (p)− f (q)‖= 1.

Definition 2.4.[4] We call f a 2-Lipschitz mapping if there is a K ≥ 0 such that

‖ f (x)− f (y), f (p)− f (q)‖ ≤ K‖x− y, p−q‖

for all x,y, p,q ∈ E. In this case, the constant k is called the 2-Lipschitz constant.

Definition 2.5.[7] A mapping f : E → F on two real norme space E and F is called an affine

mapping if for all x,y ∈ E and λ ∈ [0,1] satifies

f (λx+(1−λ )y) = λ f (x)+(1−λ ) f (y).

Definition 2.6.[4] The point x,y,z of E are said to be collinear if y− z = t(x− z) for some real

number t. We say that a mapping f : E → F preserves collinearity, if x,y,z ∈ E are collinear,

then f (x), f (y), f (z) are collinear.

Remark 2.7. Each 2-Lipschitz mapping preserves collinear.

Lemma 2.1. Let E be a quasi convex 2-normed linear space with dimE > 1. For x,y,z ∈ E, if x

and y are linearly dependent, then ‖x+ y,z‖ ≤ ‖x,z‖+‖y,z‖.
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Lemma 2.2. Let E be a quasi convex 2-normed linear space with dimE > 1, for xi,z ∈ E, ti >

0,∑n
i=1 ti = 1(i = 1,2, · · · ,n), we have

‖
n

∑
i=1

tixi,z‖ ≤ max{‖xi,z‖ : i = 1,2, · · · ,n}.

Proof. If n = 2, then ‖t1x1 + t2x2,z‖ ≤max{‖x1,z‖,‖x2,z‖}.

Assume that

‖
k−1

∑
i=1

tixi,z‖ ≤ max{‖ x1,z ‖,‖ x2,z ‖, · · · ,‖ xk−1,z ‖}.

Let n = k, we can obtain

‖
k

∑
i=1

tixi,z ‖ = ‖
k−1

∑
i=1

tixi + tkxk,z ‖

= ‖
k−1

∑
i=1

ti(
∑

k−1
i=1 tixi

∑
k−1
i=1 ti

)+ tkxk,z ‖

≤ max{‖ ∑
k−1
i=1 tixi

∑
k−1
i=1 ti

,z ‖,‖ xk,z ‖}

≤ max{‖ x1,z ‖,‖ x2,z ‖, · · · ,‖ xk−1,z ‖,‖ xk,z ‖}.

Therefore

‖
n

∑
i=1

tixi,z ‖ ≤ max{‖ x1,z ‖,‖ x2,z ‖, · · · ,‖ xn−1,z ‖,‖ xn,z ‖}

i.e.

‖
n

∑
i=1

tixi,z‖ ≤ max{‖xi,z‖ : i = 1,2, · · · ,n}.

The next result follows easily from [6, Lemma 8].

Lemma 2.3. Let E be a quasi convex 2-normed linear space with dimE > 2. Suppose 0 < ‖x−

y, p−q‖ ≤ 2r, for any r > 0, and x,y, p,q ∈ E, then there exists z ∈ E such that ‖x− z, p−q‖=

‖z− y, p−q‖= r.

3. Main results
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In this section, let E and F be quasi convex 2-normed linear spaces with dimension greater

than 1.

Lemma 3.1. Let E and F be two quasi convex 2-normed linear spaces. If f : E → F satisfies

(DOPP) and preserves collinearity, then f is injective and for any x,y ∈ E, we have

f (
x+ y

2
) =

f (x)+ f (y)
2

.

Proof. Let z = x+y
2 for distinct x,y ∈ E. Then z− x = y− z = y−x

2 6= 0. We can choose p,q ∈ E

such that ‖x− y, p−q‖= 1. Since the mapping f satisfies (DOPP), we have

‖ f (x)− f (y), f (p)− f (q)‖= 1.

This implies f (x) 6= f (y), and thus f is injective. On the other hand,

‖z− y,2p−2q‖= ‖z− x,2p−2q‖= 1.

Then

‖ f (z)− f (y), f (2p)− f (2q)‖= ‖ f (z)− f (x), f (2p)− f (2q)‖= 1. (1)

Since f preserves collinearity, there exists a real number t such that

f (z)− f (y) = t( f (z)− f (x)).

Because f is injective, and it follows from the equation (1) we conclude that t = −1. Thus

f (z)− f (y) = f (x)− f (z) and

f (
x+ y

2
) =

f (x)+ f (y)
2

.

Theorem 3.1. Let E and F be two quasi convex 2-normed linear spaces. if f : E → F is a

generalized 2-isometry, then f is affine.

Proof. Assume that x,y and z are colinear, then f preserves collinearity by the condition that

‖x− z,y− z‖= 0 implies ‖ f (x)− f (z), f (y)− f (z)‖= 0. Let g(x) = f (x)− f (0). It suffices to

prove that the mapping g is linear. Since g satisfies (DOPP) and g(0) = 0. From Lemma 3.1,
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the mapping g is Q-linear. Let ξ ∈ R+ with ξ 6= 1 and x ∈ E. Since 0,x,ξ x are collinear, g

preserves collinearity and also g(0) = 0, so there exists a real number η such that

g(ξ x) = ηg(x).

For any x ∈ E with x 6= 0, there exists y ∈ E such that ‖x,y‖= 1. Hence we obtain

ξ = ‖ξ x,y‖= ‖g(ξ x),g(y)‖= ‖ηg(x),g(y)‖= |η |‖g(x),g(y)‖= |η |.

Thus η =±ξ . While η =−ξ , that is to say g(ξ x) =−ξ g(x), it deduces that

| 1−ξ | = ‖x−ξ x,y‖

= ‖g(x)−g(ξ x),g(y)‖

= ‖g(x)+ξ g(x),g(y)‖

= (1+ξ )‖g(x),g(y)‖

= 1+ξ .

So ξ = 0, while it conflict with ξ ∈ R+. Hence we get ξ = η , that is to say g(ξ x) = ξ g(x). This

completes the proof.

Lemma 3.2. Let E and F be two quasi convex 2-normed linear spaces, if f : E → F satisfies

(DOPP) and preserves collinearity, then f preserves distance m
k , for each m,k ∈ N.

Proof. We first prove f preserves distance 1
k . Let ‖x−y, p−q‖= 1

k with x,y, p,q∈ E, we define

ωi = x+ i(y− x) ∀i = 0,1, · · · ,k.

Then

ωi =
ωi−1 +ωi+1

2
, ∀i = 1, · · · ,k−1.

According to Lemma 3.1, we have

f (ωi) =
f (ωi−1)+ f (ωi+1)

2
, ∀i = 1, · · · ,k−1.

That is

f (ωi+1)− f (ωi) = f (ωi)− f (ωi−1), ∀i = 1, · · · ,k−1.



THE ALEKSANDROV PROBLEM IN QUASI CONVEX 2-NORMED LINEAR SPACES 343

Hence

f (ωk)− f (x) = f (ωk)− f (ωk−1)+ f (ωk−1)− f (ωk−2)+ · · ·+ f (ω1)− f (ω0)

= k( f (ω1)− f (ω0)) = k( f (y)− f (x)).

Since ‖ωk− x, p−q‖= 1,

k‖ f (y)− f (x), f (p)− f (q)‖= ‖ f (ωk)− f (x), f (p)− f (q)‖= 1.

Therefore ‖ f (y)− f (x), f (p)− f (q)‖= 1
k .

Next, we shall show that f preserves distance m
k for integers m,k. Let ‖x−y, p−q‖= m

k with

x,y, p,q ∈ E. We define

zi := x+
i
m
(y− x), ∀i = 0,1, · · · ,k.

Then

zi =
zi−1 + zi+1

2
, ∀i = 1, · · · ,k−1.

By the same method as above,

f (y)− f (x) = f (zm)− f (z0) = m( f (z1)− f (z0)).

Note that ‖z1− z0, p−q‖= 1
k and f preserves distance 1

k ,

‖ f (y)− f (x), f (p)− f (q)‖= ‖m( f (z1)− f (z0)), f (p)− f (q)‖= m
k
.

This completes the proof.

Theorem 3.2. Let E and F be two quasi convex 2-normed linear spaces with dimE > 2. If f :

E→ F satisfies (DOPP) and preserves collinearity, then f is an affine generalized 2-isometry.

Proof. We first prove that f is a 2-Lipschitz mapping with the constant K = 1. That is, for any

x,y, p,q ∈ E,

‖ f (x)− f (y), f (p)− f (q)‖ ≤ ‖x− y, p−q‖.
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If ‖x− y, p− q‖ = 0 for some x,y, p,q ∈ E. Then we have x− y = t(p− q) for some real

number t. Let g(x) = f (x)− f (0). It follows from Lemma 3.1 that g is additive and preserves

collinearity. Thus

‖ f (x)− f (y), f (p)− f (q)‖= ‖g(x)−g(y),g(p)−g(q)‖= 0.

On the other hand, let x,y, p,q ∈ E and k,m ∈ N, such that

m−1
k

< ‖x− y, p−q‖ ≤ m
k

Set

ωi = x+
i
k

y− x
‖x− y, p−q‖

, i = 0,1, · · · ,m−2

and also define ωm = y. Then

‖ωi−ωi−1, p−q‖= 1
k
, i = 1, · · · ,m−2.

Moreover,

0 < ‖ωm−ωm−2, p−q‖ = ‖m−2
k

y− x
‖x− y, p−q‖

+(x− y), p−q‖

= ‖x− y, p−q‖− m−2
k

≤ m
k
− m−2

k
=

2
k
.

From Lemma 2.3, we can choose ωm−1 ∈ E, such that

‖ωm−1−ωm−2, p−q‖= ‖ωm−1−ωm, p−q‖= 1
k

By Lemma 3.2, f preserves 1
k distance. Therefore, for i = 0,1, · · · ,m, we have

‖ f (ωi)− f (ωi−1), f (p)− f (q)‖= 1
k
.
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From Lemma 2.2,

‖ f (x)− f (y), f (p)− f (q)‖ = ‖ f (ω0)− f (ωm), f (p)− f (q)‖

= ‖
m−1

∑
i=0

( f (ωi)− f (ωi+1)), f (p)− f (q)‖

= m‖
m−1

∑
i=0

1
m
( f (ωi)− f (ωi+1)), f (p)− f (q)‖

≤ mmax{‖ f (ωi)− f (ωi+1), f (p)− f (q))‖ : i = 0,1, · · · ,m−1}

≤ m
k
.

Hence ‖ f (x)− f (y), f (p)− f (q)‖ ≤ ‖x− y, p−q‖.

Next, we will show that f is a generalized 2-isometry. Otherwise, there exists x,y, p,q ∈ E

and m ∈ N such that 0 < ‖x− y, p−q‖< m and

‖ f (x)− f (y), f (p)− f (q)‖< ‖x− y, p−q‖.

Set z := x+ m(y−x)
‖x−y,p−q‖ . Then we obtain that

‖z− x, p−q‖ = m

‖z− y, p−q‖ = m−‖x− y, p−q‖.

Since f preserves collinearity, there exists a real number t such that

f (z)− f (x) = t( f (y)− f (x)).

Then f (z)− f (y) = (t−1)( f (y)− f (x)). By Lemma 3.2, f preserves distance m. So we have

m = ‖ f (z)− f (x), f (p)− f (q)‖

= |t|‖ f (x)− f (y), f (p)− f (q)‖

≤ |t−1|‖ f (x)− f (y), f (p)− f (q)‖+‖ f (x)− f (y), f (p)− f (q)‖

= ‖ f (z)− f (y), f (p)− f (q)‖+‖ f (x)− f (y), f (p)− f (q)‖

< m−‖x− y, p−q‖+‖x− y, p−q‖= m,

which is a contraction. By Theorem 3.1, the proof of the theorem is finished.
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