

Available online at http://scik.org

J. Math. Comput. Sci. 6 (2016), No. 4, 507-514

ISSN: 1927-5307

EXISTENCE OF PERIODIC SOLUTIONS OF A GENERALIZED LIENARD EQUATION

TAYEB SALHI¹, AND KHALIL AL-DOSARY^{2,*}

¹Department de Mathematiques, Universite de Bordj Bon Arreridj, Bordj Bon Arreridj 34265, El anasser, Algeria ²Department of Mathematics, College of Science, University of Sharjah, POBox 27272, Sharjah, UAE

Copyright © 2016 Salhi and Al-Dosary. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Conditions under which the existence of periodic solution of a generalized Lienard equation are introduced. The elements of direct Lyapunov method permits us to obtain the existence criteria of cycles.

Keywords: Periodic solution; Lienard equation; Lyapunov method.

2010 AMS Subject Classification: 34C05, 34A34.

1. Introduction

The study of the generalized Lienard equations of the form

(1.1)
$$\ddot{x} + \phi(x, \dot{x})\dot{x} + g(x) = 0$$

where $(\cdot) = \frac{d}{dt}$, holds an important place in the theory of dynamical systems. A special case of this kind of differential equation is of the form

(1.2)
$$\ddot{x} + f(x)\dot{x}^2 + g(x)\dot{x} + h(x) = 0$$

*Corresponding author

Received October 2, 2015

which is sometime called in the literature as Langmiur equation [4],[5]. The Langmiur equation governs the space-change current in an electron tube is a special case, as in the equation for the brachistochrone.

For the Lienard equation, the classical theorems on the existence of periodic orbits is well known [2]. Here we are interested in the conditions under which equation (1.1) has a periodic solution when the system has only one unstable equilibrium point. The main tool of this work is to construct a piecewise-smooth transversal closed curve surrounding an unstable singular point.

In this paper we generalize the approach used in [3] which was only for a special case $\phi(x)$. The technique developed is based on use of an artificial closed piecewise-smooth curve of the families of transversal curves and special Lyapunov type functions and then applying Poincare-Bendixon theorem [1] led the existence criteria of cycles. This work admits different extension and allow us to deal with a more general the term $\phi(x,y)$.

In section 2 we present the main result Theorem1 which gathers the Lemmas introduced before it.

2. Main results

Equation (1.1) is usually studied by means of an equivalent plane differential system

(2.1)
$$\dot{x} = y$$

$$\dot{y} = -\phi(x, y)y - g(x)$$

We assume that, the functions $\phi(x,y)$ and g(x) are continuous on the region $(a,+\infty)\times(\alpha,\beta)$ and $(a,+\infty)$ respectively for some suitable chosen real numbers a,α and β , and for certain numbers r_1,r_2 and x_0 such that $a< r_1 \le x_0 \le r_2$ and the following hypotheses are satisfied

$$H1: \qquad \lim_{x \to a} g(x) = -\lim_{x \to \infty} g(x) = -\infty$$

$$\lim_{x \to a} \int_{x_0}^{x} g(u) du = \lim_{x \to \infty} \int_{x_0}^{x} g(u) du = \infty$$

$$H2: \qquad \phi(x, y) > 0 \quad \text{on} \quad (a, r_1) \times (\alpha, \beta) \cup (r_2, \infty) \times (\alpha, \beta)$$

$$\int_{r_1}^{r_2} \phi(x, y) dx \ge 0 \quad \text{for all} \quad y \in (\alpha, \beta)$$

Consider a pair of numbers $c_1 \in (a, r_1)$ and $c_2 \in (r_2, \infty)$ such that c_1 is sufficiently close to a, c_2 is sufficiently large provided

$$(2.2) \qquad \qquad \int\limits_{c_1}^{c_2} g(x)dx = 0$$

Without loss of generality, we may put

$$g(x) < 0, \quad \text{for all } x \in [c_1, r_1]$$

$$g(x) > 0, \quad \text{for all } x \in [r_2, c_2]$$

Consider of the following seven Lyapunov functions

$$V_{1}(x,y) = y^{2} + 2 \int_{x_{0}}^{x} g(u)du,$$

$$V_{2}(x,y) = \left(y + \int_{r_{1}}^{x} \phi(u,y_{0})du\right)^{2} + 2 \int_{x_{0}}^{x} g(u)du$$

$$V_{3}(x,y) = \left(y + \int_{r_{2}}^{x} \phi(u,y_{0})du\right)^{2} + 2 \int_{x_{0}}^{x} g(u)du$$

$$V_{4}(x,y) = V_{2}(x,y) - \varepsilon(x - r_{1}), \qquad V_{5}(x,y) = V_{3}(x,y) - \varepsilon(x - r_{2})$$

$$V_{6}(x,y) = V_{3}(x,y) + \varepsilon(x - r_{2}), \qquad V_{7}(x,y) = V_{2}(x,y) + \varepsilon(x - r_{1})$$

Here y_0 is any number $0 < y_0 < \beta$ and ε is a certain sufficiently small number.

Consider the following eight regions

$$R_{1} = \{x \in [c_{1}, r_{1}], y \geq 0, V_{1}(x, y) \leq V_{1}(c_{1}, 0)\}$$

$$R_{2} = \{x \in [r_{1}, x_{0}], y \geq 0, V_{4}(x, y) \leq V_{2}(r_{1}, y_{1})\}$$

$$R_{3} = \{x \in [x_{0}, r_{2}], y \geq 0, V_{5}(x, y) \leq V_{3}(r_{2}, y_{2})\}$$

$$R_{4} = \{x \in [r_{2}, c_{2}], y \geq 0, V_{3}(x, y) \leq V_{3}(c_{2}, 0)\}$$

$$R_{5} = \{x \in [r_{2}, c_{2}], y \leq 0, V_{1}(x, y) \leq V_{1}(c_{2}, 0)\}$$

$$R_{6} = \{x \in [x_{0}, r_{2}], y \leq 0, V_{6}(x, y) \leq V_{3}(r_{2}, y_{3})\}$$

$$R_7 = \{x \in [r_1, x_0], y \le 0, V_7(x, y) \le V_2(r_1, y_4)\}$$

$$R_8 = \{x \in [c_1, r_1], y \le 0, V_2(x, y) \le V_2(c_1, 0)\}$$

where $y_1 > 0$, $y_2 > 0$, $y_3 < 0$, $y_4 < 0$ are solutions of the following square equations

$$y_1: V_1(r_1, y_1) = V_1(c_1, 0),$$
 $y_2: V_3(r_2, y_2) = V_3(c_2, 0)$

$$y_3: V_1(r_2, y_3) = V_1(c_2, 0),$$
 $y_4: V_2(r_1, y_4) = V_2(c_1, 0)$

Lemma 1. The derivatives $\dot{V}_j(x,y)$ along the solutions of system (2.1) for $y \neq 0$, $x \neq r_j$, satisfy the following inequalities

$$\dot{V}_1 < 0$$
 on $R_1 \cup R_5$, $\dot{V}_2 < 0$ on R_8 , $\dot{V}_3 < 0$ on R_4 , $\dot{V}_4 < 0$ on R_2 , $\dot{V}_5 < 0$ on R_3 , $\dot{V}_6 < 0$ on R_6 , $\dot{V}_7 < 0$ on R_7

Proof. For the derivatives of the functions $V_j(x,y)$, j=1,2,3 along the solutions of system (2.1) we have the following relations

$$\dot{V}_1 = -2\phi(x,y)y^2,$$
 $\dot{V}_2 = -2g(x)\int_{r_1}^x \phi(u,y)du,$ $\dot{V}_3 = -2g(x)\int_{r_2}^x \phi(u,y)du,$

It is clear that these three functions all satisfy the required inequality on the regions $R_1 \cup R_2$, R_8 , R_4 respectively.

To clarify that $\dot{V}_4 < 0$, $\dot{V}_5 < 0$, $\dot{V}_6 < 0$, $\dot{V}_7 < 0$ on the sets R_2 , R_3 , R_6 , R_7 , respectively, see the following

We have

$$\dot{V}_{4} = -2g(x) \int_{r_{1}}^{x} \phi(u, y) du - \varepsilon y , \qquad \dot{V}_{5} = -2g(x) \int_{r_{2}}^{x} \phi(u, y) du - \varepsilon y$$

$$\dot{V}_{6} = -2g(x) \int_{r_{2}}^{x} \phi(u, y) du + \varepsilon y , \qquad \dot{V}_{7} = -2g(x) \int_{r_{1}}^{x} \phi(u, y) du + \varepsilon y$$

Hold fixed the arbitrary $\varepsilon > 0$, we choose c_1 so much closer to a and c_2 sufficiently large, that the minimal values of |y| on the intersection of the constructed closed curve and the band $\{x \in [r_1, r_2]\}$ are more than

$$\frac{1}{\varepsilon} \max_{x \in [r_1, r_2]} 2 \left| g(x) \int_{r_1}^{x} \phi(u, y) du \right|, \quad \text{and} \quad \frac{1}{\varepsilon} \max_{x \in [r_1, r_2]} 2 \left| g(x) \int_{r_2}^{x} \phi(u, y) du \right|$$

This implies the required inequalities $\dot{V}_j < 0, \ j = 4, 5, 6, 7$.

Define the numbers y_5 , y_6 , y_7 , and y_8 as follows

 y_5 is a positive solution of the equation $V_4(x_0, y_5) = V_2(r_1, y_1)$

 y_6 is a positive solution of the equation $V_5(x_0, y_6) = V_3(r_2, y_2)$

 y_7 is a negative solution of the equation $V_6(x_0, y_7) = V_3(r_2, y_3)$

 y_8 is a negative solution of the equation $V_7(x_0, y_8) = V_2(r_1, y_4)$

Lemma 2. $y_5 < y_6$ and $y_7 > y_8$

Proof. First we prove that $y_5 < y_6$.

We have

$$V_4(x_0, y_5) = V_2(r_1, y_1)$$

Therefore

$$\left(y_5 + \int_{r_1}^{x_0} \phi(x, y) dx\right)^2 - \varepsilon(x_0, r_1) = y_1^2 + 2 \int_{x_0}^{r_1} g(x) dx$$

From this we can write the positive value of y_5 as follows

(2.4)
$$y_5 = \left(\varepsilon(x_0 - r_1) + y_1^2 + 2\int_{x_0}^{r_1} g(x)dx\right)^{\frac{1}{2}} + \int_{x_0}^{r_1} \phi(x, y)dx$$

But from the condition

$$\int_{r_1}^{r_2} \phi(x, y) dx \ge 0, \quad \text{for all } y \in (\alpha, \beta)$$

we get

$$\int\limits_{x_0}^{r_1}\phi(x,y)dx\leq \int\limits_{x_0}^{r_2}\phi(x,y)dx$$

The equation 2.4 implies the following inequality

$$y_5 \le \left(\varepsilon(x_0 - r_1) + y_1^2 + 2 \int_{x_0}^{r_1} g(x) dx \right)^{\frac{1}{2}} + \int_{x_0}^{r_2} \phi(x, y) dx$$

On the other hand from

$$V_5(x_0, y_6) = V_3(r_2, y_2)$$

we get

(2.5)
$$y_6 = \left(\varepsilon(x_0 - r_2) + y_2^2 + 2\int_{x_0}^{r_2} g(x)dx\right)^{\frac{1}{2}} + \int_{x_0}^{r_2} \phi(x, y)dx$$

Now if we choose ε such that

$$0 < \varepsilon < \frac{1}{r_2 - r_1} \left(\int_{r_2}^{c_2} \phi(x, y) dx \right)^2$$

Hence

$$0 < \varepsilon(r_1 - r_2) + \left(\int\limits_{r_2}^{c_2} \phi(x, y) dx\right)^{\frac{r_2}{2}}$$

Therefore

(2.6)
$$2\int_{x_0}^{c_2} g(x)dx < \varepsilon(r_1 - r_2) + \left(\int_{r_2}^{c_2} \phi(x, y)dx\right)^2 + 2\int_{x_0}^{c_2} g(x)dx$$

From the condition

$$\int_{c_1}^{c_2} g(x) dx = 0$$

we get

$$\int_{x_0}^{c_1} g(x) dx = \int_{x_0}^{c_2} g(x) dx$$

Hence the inequality 2.6 will be

(2.7)
$$2\int_{x_0}^{c_1} g(x)dx < \varepsilon(r_1 - r_2) + \left(\int_{r_2}^{c_2} \phi(x, y)dx\right)^2 + 2\int_{x_0}^{c_2} g(x)dx$$

From $V_3(r_2, y_2) = V_3(c_2, 0)$, we get

$$y_2^2 + 2\int_{x_0}^{r_2} g(x)dx = \left(\int_{r_2}^{c_2} \phi(x, y)dx\right)^2 + 2\int_{x_0}^{c_2} g(x)dx$$

Then the inequality 2.7 will be

(2.8)
$$2\int_{x_0}^{c_1} g(x)dx < \varepsilon(r_1 - r_2) + y_2^2 + 2\int_{x_0}^{r_2} g(x)dx$$

From $V_1(r_1, y_1) = V_1(c_1, 0)$, we get

$$y_1^2 + 2 \int_{x_0}^{r_1} g(x) dx = 2 \int_{x_0}^{c_1} g(x) dx$$

Inequality will be

$$y_1^2 + 2 \int_{x_0}^{r_1} g(x) dx < \varepsilon(r_1 - r_2) + y_2^2 + 2 \int_{x_0}^{r_2} g(x) dx$$

Then

$$\varepsilon(x_0 - r_1) + y_1^2 + 2 \int_{x_0}^{r_1} g(x) dx < \varepsilon(x_0 - r_2) + y_2^2 + 2 \int_{x_0}^{r_2} g(x) dx$$

Both sides are positive, therefore

$$\left(\varepsilon(x_0-r_1)+y_1^2+2\int_{x_0}^{r_1}g(x)dx\right)^{\frac{1}{2}}-\int_{r_1}^{x_0}\phi(x,y)dx<$$

$$\left(\varepsilon(x_0 - r_2) + y_2^2 + 2\int_{x_0}^{r_2} g(x)dx\right)^{\frac{1}{2}} + \int_{x_0}^{r_2} \phi(x, y)dx$$

This means $y_5 < y_6$.

To prove $y_7 > y_8$, we follow similar steps but here we choose ε to be

$$\varepsilon > \frac{1}{r_2 - r_1} \left(\int_{r_1}^{c_1} \phi(x, y) dx \right)^2$$

which proves the second assertion of Lemma (the details can be sent on request).

Note, so far we have obtained a disconnected transversal piecewise-smooth curve. This curve consists of two connected parts one to the left of the point x_0 of a shape \subset , let us call it C_1 , which passes through the points (x_0,y_8) , (r_1,y_4) , $(c_1,0)$, (r_1,y_1) , and (x_0,y_5) . The other part is of the shape \supset , let us call it C_2 , and it is on the right of the point x_0 and passes through the points (x_0,y_7) , (r_2,y_3) , $(c_2,0)$, (r_2,y_2) and (x_0,y_6) . Recall that, we have $0 < y_5 < y_6$, and $y_8 < y_7 < 0$. So there are two line segments one L_1 connecting the endpoint (x_0,y_5) of the part C_1 with endpoint (x_0,y_6) of the part C_2 . The other line segment L_2 connecting the endpoint (x_0,y_7) of the part C_2 with endpoint (x_0,y_8) of the part C_1 . The vector field of the system (2.1) on the line segment L_1 is directing towards right and on the line segment L_2 is directing towards left. Therefore the curve $C_1 \cup L_1 \cup C_2 \cup L_2$ is connected closed transversal piecewise-smooth curve.

Then, consequently, if we apply Poincare-Bendixon theorem [1], we can state and prove the following theorem.

Theorem 1. For system (2.1), if conditions H1 and H2 are valid then in the phase space in the region $R = \{(x,y) \in (a,\infty) \times (\alpha,\beta)\}$ there is a piecewise-smooth transversal closed curve which intersects the straight line y = 0 at the certain points $a < c_1 < r_1$ and $r_2 < c_2$. If in addition, in region R, system (2.1) has only one unstable focal equilibrium, then the system has a periodic solution.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

- [1] Jordan D.W. and Smith P., Nonlinear Ordinary Differential Equations, Clarendon Press, Oxford, 1977.
- [2] Lefschetz S., Differential Equations: Geometric Theory (Interscience Publishers, New York, (1957).
- [3] Leonov G., Hilbert's 16th Problem For Quadratic Systems, New Method Based On A Transformation To The Lienard Equation, International Journal of Bifurcation and Chaos 18(3),(2008),877-884.
- [4] Raouf A. Chouikha, and Timoumi M., On the Period Function of Newtonian Systems, ArX-iv:1302.6400v1[math.CA] 26 Feb 2013.
- [5] Sabatini M., On the period Function of Lienard Systems, Journal of Differential Equations, 152,(1999), 467-487.