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1. Introduction 

In this paper we have two sections. In the first section we introduce the concept of commutative 

groupoid algebra with the binary operation ʘ and obtain certain properties. Futher we prove that 

commutative groupoid algebra is equipped with a structure of a bounded lattice and also is lattice 

commutative groupoid algebra. It is also observed that the binary operation ʘ can never be 

associative. In the second section we introduce two more binary operations “+”, “-” on 

commutative groupoid algebra and obtain certain properties with these operations. Futher we 

prove that any commutative groupoid algebra is a “metric space”. Also we prove that every 

commutative groupoid algebra can be made into a regular autometrized algebra. 

 

2. Commutative groupoid algebra 

In this section introduce a concept of commutative groupoid algebra and obtain some properties. 

Futher we prove that commutative groupoid algebra is equipped with a structure of a bounded 

lattice and also is lattice commutative groupoid algebra. 
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Definition 2.1 Let  (L, ˄, ˅, 0, 1) be a bounded lattice with order reversing involution “ ¬ ” and a 

binary operation “ʘ” satisfying the following axioms:  a, b, c  L. 

(I1) a ʘ (b ʘ ¬c) = b ʘ (a ʘ ¬c). 

(I2) a ʘ ¬a = 0. 

(I3) a ʘ b = b ʘ a. 

(I4) a ʘ ¬b = b ʘ ¬a = 0  a = b. 

(I5) a ʘ ¬(¬b ʘ a) = b ʘ ¬(¬a ʘ b). 

(L1) ¬((a ˅ b) ʘ ¬c) = ¬(a ʘ ¬c) ˄ ¬(b ʘ ¬c). 

(L2) ¬((a ˄ b) ʘ ¬c) = ¬(a ʘ ¬c) ˅ ¬(b ʘ ¬c). 

If (L, ˄, ˅, 0, 1) satisfying (I1)-(I5) then (L, ˄, ˅, 0, 1) is said to be quasi- lattice commutative 

groupoid algebra. 

Definition 2.2 An algebra (L, ʘ, ¬, 0, 1) of type (2, 1, 0, 0) is called a commutative groupoid 

algebra. If it satisfies the following conditions  x, y, z  L.: 

(G1) x ʘ (y ʘ ¬z) = y ʘ (x ʘ ¬z) 

(G2) 1 ʘ x = x 

(G3) x ʘ 0 = 0  

(G4) x ʘ y = y ʘ x  

(G5) x ʘ ¬(¬y ʘ x)  = y ʘ ¬(¬x ʘ y). 

(G6) ¬0 = 1. 

Lemma 2.3 Let L be commutative a groupoid algebra then  

(1) x ʘ ¬x = 0 for all x  L. 

(2) ¬1 = 0. 

Proof 

(1) x ʘ ¬x = x ʘ ¬(x ʘ 1) = x ʘ ¬(x ʘ ¬0) = ¬(0 ʘ ¬x) ʘ 0 = 0.   

(2) ¬1 = 1 ʘ ¬1 = 0 

Define a relation ≤ on L: x ≤ y  x ʘ ¬ y = 0. 

Lemma 2.4 In any commutative groupoid algebra, the following conditions hold  x, y, z  L: 

(1) x ʘ ¬y = 0 = ¬x ʘ y  x = y.  

(2) x ʘ ¬y = 0 = y ʘ ¬z then x ʘ ¬z = 0. 

(3) x ≤ y  z ʘ ¬y ≤ z ʘ ¬x and x ʘ ¬z ≤ y ʘ ¬z. 

(4) ¬(¬(x ʘ ¬y) ʘ ¬y) ʘ ¬y = x ʘ ¬y. 
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(5) ((x ʘ ¬z) ʘ ¬(y ʘ ¬z)) ≤ (x ʘ ¬y). 

Proof 

(1) x ʘ ¬y = 0 implies to x ≤ y, also ¬x ʘ y = 0 implies to  y ʘ ¬x = 0 and then  y ≤ x. 

therefore x = y. Conversely, if x = y  x ʘ ¬y = x ʘ ¬x = 0. Also ¬x ʘ y = 0. 

(2) We have x ʘ ¬z = (x ʘ 1) ʘ ¬z = (x ʘ ¬(x ʘ ¬y)) ʘ ¬z  = ¬z ʘ (¬ (¬x ʘ y) ʘ y) = ¬(¬x 

ʘ y) ʘ (y ʘ ¬z) = ¬(¬x ʘ y) ʘ 0 = 0. 

(3) Suppose x ≤ y then x ʘ ¬y = 0. 

Now, consider (z ʘ ¬y) ʘ ¬(z ʘ ¬x)  = ¬(z ʘ ¬x) ʘ (¬y ʘ z) = ¬y ʘ (z ʘ ¬(z ʘ ¬x)) = 

¬y ʘ (¬(¬z ʘ x) ʘ x) = ¬(¬z ʘ x) ʘ (¬y ʘ x) = ¬(¬z ʘ x) ʘ 0 = 0. 

Also, (x ʘ ¬z) ʘ ¬(y ʘ ¬z) = (¬z ʘ x) ʘ ¬(y ʘ ¬z) = x ʘ (¬z ʘ ¬(y ʘ ¬z)) = x ʘ (¬(z ʘ 

¬y) ʘ ¬y) = ¬(z ʘ ¬y) ʘ (x ʘ ¬y) = ¬(z ʘ ¬y) ʘ 0 = 0. 

Conversely, suppose that x ʘ ¬z ≤ y ʘ ¬z and take z = 0 we get x ≤ y.  

(4) ¬(¬( x ʘ ¬y) ʘ ¬y) ʘ ¬y = ¬y ʘ ¬(¬y ʘ ¬(x ʘ ¬y)) = (x ʘ ¬y) ʘ ¬(y ʘ (x ʘ ¬y)) = (x ʘ 

¬y) ʘ ¬(x ʘ (y ʘ ¬y)) = (x ʘ ¬y) ʘ ¬0 = x ʘ ¬ y. 

(5) [(x ʘ ¬z) ʘ ¬(y ʘ ¬z)] ʘ ¬(x ʘ ¬y) = ¬(x ʘ ¬y) ʘ [¬(y ʘ ¬z) ʘ (x ʘ ¬z)]=  

¬(x ʘ ¬y) ʘ [x ʘ (¬(y ʘ ¬z) ʘ ¬z)] = ¬(x ʘ ¬y) ʘ [x ʘ (¬ (z ʘ ¬y) ʘ ¬y)] =  

¬(x ʘ ¬y) ʘ [¬(z ʘ ¬y) ʘ (x ʘ ¬y)] = ¬(z ʘ ¬y) ʘ [¬(x ʘ ¬y) ʘ (x ʘ ¬y)]=  

(¬z ʘ ¬y) ʘ 0 = 0. Thus (x ʘ ¬z) ʘ ¬(y ʘ ¬z) ≤ (x ʘ ¬y). 

Lemma 2.5 Let L be a commutative groupoid algebra. Then ¬(¬x) = x.  x  L. 

Now we define two binary operations ˅ and ˄ on a commutative groupoid algebra L by  

x ˄ y = x ʘ ¬ (x ʘ ¬ y) = y ʘ ¬ (y ʘ ¬ x) 

x ˅ y = ¬[¬ (x ʘ ¬ y) ʘ ¬ y] = ¬[¬(y ʘ ¬x) ʘ ¬x]. 

Theorem 2.6  In any lattice commutative groupoid algebra L. the following hold  x, y  L. 

(1) ¬(x ˅ y) = ¬x ˄ ¬y. 

(2) ¬(x ˄ y) = ¬x ˅ ¬y. 

Proof:   

(1) Since ¬(x ˅ y) ʘ ¬( ¬x ˄  ¬y) = {¬(x ʘ ¬ y) ʘ ¬y} ʘ ¬{ ¬x ʘ ¬(¬x ʘ y)}= {¬(y ʘ ¬x) 

ʘ ¬x} ʘ ¬{¬(y ʘ ¬x) ʘ ¬x)} = 0. Thus ¬(x ˅ y) ≤ ¬x ˄ ¬y. Also, (¬x ˄ ¬y) ʘ ¬( ¬(x ˅ 

y)) = 0. 

(2) From (1) we have ¬(¬x ˅ ¬y) = ¬(¬x) ˄ ¬(¬y) = x ˄ y. Thus ¬(x ˄ y) = ¬x ˅ ¬y. 

Theorem 2.7 In any commutative groupoid algebra L. the following hold  x, y  L: 
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(1) x ˄ y ≤ x, y ≤ x ˅ y. 

(2) x ˅ y is the least upper bound of {x, y}. 

(3) x ˄ y is the greatest lower bound of {x, y}. 

proof: 

(1) Since (x ˄ y) ʘ ¬x = (y ʘ ¬(y ʘ ¬x)) ʘ ¬x = ¬x ʘ (¬(y ʘ ¬x) ʘ y) = ¬(y ʘ ¬x) ʘ (y ʘ 

¬x) = 0. Also, (x ˄ y) ʘ ¬y = (x ʘ ¬(x ʘ ¬y)) ʘ ¬y = (x ʘ ¬y) ʘ ¬(x ʘ ¬y) = 0. Also, x 

ʘ ¬(x ˅ y) = x ʘ [¬(x ʘ ¬y) ʘ ¬y] = ¬(x ʘ ¬y) ʘ (x ʘ ¬y) = 0. y ʘ ¬(x ˅ y) = y ʘ [¬(y 

ʘ ¬x) ʘ ¬x)] = ¬(y ʘ ¬x) ʘ (y ʘ ¬x) = 0.  

(2) From 1, it can be observed that x ˅ y is an upper bound for {x, y}. Suppose that r be any 

upper bound for x, y. this implies that x ʘ ¬ r = 0 = y ʘ ¬ r. 

Now we shall prove that x ˅ y ≤ r.  

Since (x ˅ y) ʘ ¬r = ¬(¬(x ʘ ¬y) ʘ ¬y) ʘ ¬r  = ¬(¬(x ʘ ¬y) ʘ ¬y) ʘ (¬r ʘ1) = ¬(¬(x ʘ 

¬y) ʘ ¬y) ʘ (¬r ʘ ¬0) = ¬(¬(x ʘ ¬y) ʘ ¬y) ʘ (¬r ʘ ¬(y ʘ ¬r)) = ¬(¬(x ʘ ¬y) ʘ ¬y) ʘ 

(¬y ʘ ¬(¬y ʘ r)) = ¬(¬(x ʘ ¬y) ʘ ¬y) ʘ (¬(¬y ʘ r) ʘ ¬y) = ¬(¬y ʘ r) ʘ (¬(¬(x ʘ ¬y) 

ʘ ¬y) ʘ ¬y) = ¬(r ʘ ¬y) ʘ (x ʘ ¬y) (by lemma 2.4 (4)). = ¬(r ʘ ¬y) ʘ (x ʘ ¬y) = (x ʘ 

¬y) ʘ ¬(r ʘ ¬y). ≤ x ʘ ¬r = 0. (by lemma 2.4(5)). So r ≥ x ˅ y. Therefor x ˅ y = l. u. b 

{x, y} 

(3) From (1) it can be observed that x ˄ y is a lower bound for {x, y}. Suppose that r is any 

lower bound for {x, y} then r ≤ x and r ≤ y. this implies that r ʘ ¬x = 0 = r ʘ ¬y. 

Since r ʘ ¬(x ˄ y) = (r ʘ 1) ʘ ¬(x ʘ ¬(x ʘ ¬y)) = (r ʘ ¬0) ʘ ¬(x ʘ ¬(x ʘ ¬y)) =  

(r ʘ ¬(r ʘ ¬x) ʘ ¬(x ʘ ¬(x ʘ ¬y) = (x ʘ ¬(¬ r ʘ x)) ʘ ¬(x ʘ ¬(x ʘ ¬y)) ≤  

 ¬(¬r ʘ x) ʘ (x ʘ ¬y) (By lemma 2.4 (6)) = (¬y ʘ x) ʘ ¬(¬r ʘ x) ≤ ¬y ʘ r = 0 (By 

lemma 2.4 (6)). Therefor  r ≤ x ˄ y and hence x ˄ y = g. l. b{x, y} 

Remark 2.8  

1) Let (L, ʘ, ≤) be a commutative groupoid then L is a partially ordered set “Poset” from 

lemma 2.3(1) and lemma 2.4(1, 2). It is clear that L is a partially ordered set “Poset”. 

Since for x  L we have x ʘ ¬1 = 0  x ≤ 1. Also, 0 ʘ ¬x = 0  0 = x. L is a bounded 

poset.  

2) From lemma 2.7 we have that every two elements in a commutative groupoid algebra has 

supremum and infumum. Hence (L, ≤, ˅, ˄, 0, 1) is a bounded lattice with bounds 0 and 1. 

Now we have the following corollaries 2.9 and 2.10 as consequence of lemma 2.7. 
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Corollary 2.9 In any commutative groupoid algebra L the following hold  x, y  L: 

1) x ≤ y , x ≤ z  x ≤ y ˄ z. 

2) y ≤ x , z ≤ x  y ˅ z ≤ x. 

proof: 

1) Let x ≤ y, x ≤ z then by lemma 2.4(3) z ʘ ¬y ≤ z ʘ ¬x, and x ʘ ¬z ≤ y ʘ ¬z, and  

x ʘ ¬z = 0. Since x ʘ ¬(y ˄ z) = x ʘ ¬[z ʘ ¬(z ʘ ¬y)] ≤ x ʘ ¬[z ʘ ¬( z ʘ ¬x)] =  

x ʘ ¬[x ʘ ¬(x ʘ ¬z)] = x ʘ ¬(x ʘ ¬0) = x ʘ ¬x = 0. Therefor x ≤ y ˄ z. 

2) Let y ≤ x, z ≤ x then by lemma (2.4) we have y ʘ ¬z ≤ x ʘ ¬z, and z ʘ ¬x = 0.  

(y ˅ z) ʘ ¬x = ¬[¬(y ʘ ¬z) ʘ ¬z] ʘ ¬x ≤ ¬[¬(x ʘ ¬z) ʘ ¬z] ʘ ¬x =  

¬[¬x ʘ ¬(z ʘ ¬x)] ʘ ¬x = ¬(¬x ʘ ¬0) ʘ ¬x = ¬(¬x) ʘ ¬x = 0. Therefore y ˅ z ≤ x. 

Corollary 2.10 In any lattice commutative groupoid algebra L the following hold  x, y, z  L: 

(1) (x ˅ y) ʘ ¬z ≤ x ʘ ¬z and (x ˅ y) ʘ ¬z ≤ y ʘ ¬z. 

(2) x ʘ ¬z ≤ (x ˄ y) ʘ ¬z and ¬y ʘ z ≤ (x ˄ y) ʘ ¬z. 

Proof:  Clear by using 2.9 and lemma (2.4)(3). 

Theorem 2.11 In any commutative groupoid algebra L the following hold  x, y, z  L: 

(1) ¬[(x ˅ y) ʘ ¬z] = ¬(x ʘ ¬z) ˄ ¬(y ʘ ¬z) 

(2) ¬[(x ˄ y) ʘ z] = ¬(x ʘ ¬z) ˅ ¬(y ʘ ¬z) 

Proof: 

(1) By corollaries 2.9 and 2.10 we get  

¬ [(x ˅ y) ʘ ¬ z] ≤ ¬ (x ʘ ¬ z) ˄ ¬ (y ʘ ¬ z) 

Now consider  

{¬ (x ʘ ¬ z) ˄ ¬(y ʘ ¬ z)} ʘ ((x ˅ y) ʘ ¬ z) 

= {¬(x ʘ ¬z) ʘ ¬ [¬(x ʘ ¬z) ʘ (y ʘ ¬z)]} ʘ {¬(¬(x ʘ ¬y) ʘ ¬y) ʘ ¬z} 

= [¬(¬(x ʘ ¬y) ʘ ¬y)] ʘ {{¬(x ʘ ¬z) ʘ ¬[¬(x ʘ ¬z) ʘ (y ʘ ¬z)]} ʘ ¬z} 

= ¬(¬(x ʘ ¬y) ʘ ¬y) ʘ {{¬(x ʘ ¬z) ʘ ¬z} ʘ ¬[¬(x ʘ ¬z) ʘ (y ʘ ¬z)]} 

= ¬(¬(x ʘ ¬y) ʘ ¬y) ʘ {{¬(x ʘ ¬z) ʘ ¬z} ʘ ¬[y ʘ {¬(x ʘ ¬z) ʘ ¬z}]} 

= ¬(¬(x ʘ ¬y) ʘ ¬y) ʘ{¬[¬(¬(x ʘ ¬z) ʘ ¬z) ʘ ¬y] ʘ ¬y} 

= ¬[¬(¬(x ʘ ¬z) ʘ ¬z) ʘ ¬y] ʘ [¬(¬(x ʘ ¬y) ʘ ¬y) ʘ ¬y] 

By lemma (2.4) (4) 

= ¬[¬(¬(x ʘ ¬z) ʘ ¬z) ʘ ¬y] ʘ(x ʘ ¬y) (By lemma 2.4 (4)) 

≥ (¬(x ʘ ¬z) ʘ ¬z) ʘ x. (By lemma 2.4 (5)) 



267                                                    ALLAM, MIKHAEEL AND MERDACH 

= x ʘ (¬(x ʘ ¬z) ʘ ¬z) = ¬(x ʘ ¬z) ʘ (x ʘ ¬z) = 0 

(2) Similar to the proof (1). 

From remark 2.8 and theorem 2.11 we have the following 

Theorem 2.12 let (L, ʘ, ¬, 0, 1) be a commutative groupoid algebra, then (L, ˅, ˄, 0, 1) is a 

lattice commutative groupoid algebra. 

Remark 2.13 Let (L, ʘ, ¬, 0, 1) be a commutative groupoid then ʘ can never be associative as 

the following example. 

Example 2.14  

Let L = {0, a, b, c, d, e, f, 1} be a chain defined 0  a  b  c  d  e  f  1. Define ¬ and ʘ as 

follows 

x 0 a b c d e f 1 

¬x 1 f e d c b a 0 

 

ʘ 0 a b c d e f 1 

0 0 0 0 0 0 0 0 0 

a 0 0 0 0 0 0 0 a 

b 0 0 0 0 0 0 a b 

c 0 0 0 0 0 a b c 

d 0 0 0 0 a c c d 

e 0 0 0 a c d d e 

f 0 0 a b c d e f 

1 0 a b c d e f 1 

 

Clearly ʘ is not associative since (d ʘ e) ʘ f = c ʘ f = b ≠ d ʘ (e ʘ f) = d ʘ d = a. Thus 

(d ʘ e) ʘ f ≠ d ʘ (e ʘ f). 

 

3.  Autometrization on commutative groupoid algebra 

In this section we introduce two binary operations on a commutative groupoid algebra namely + 

and – and we obtain a few results concerning their operations defined. Also, we obtain some 

geometric properties of commutative groupoid algebra. Also we prove any commutative 



COMMUTATIVE GROUPOID ALGEBRA                                                 268 

groupoid algebra is a metric space. Futher we prove that every commutative groupoid algebra 

can be made into regular autometrized algebra. 

We begin with the following 

Let L be commutative groupoid algebra. Define + and – on L as follows.  

x + y = ¬(¬x ʘ ¬y), x - y = x ʘ ¬y.  x, y  L  

Then we obtain the following 

Lemma 3.1 Let L be commutative groupoid algebra, then (L, +, 0) is a commutative monoid. 

Proof: It is sufficient to prove that + is associative and 0 is the identity element with respect to +. 

Let x, y, z  L. Then (x + y) + z = ¬(¬x ʘ ¬y) + z = ¬[(¬x ʘ ¬y) ʘ ¬z]= ¬[¬z ʘ (¬x ʘ ¬y)] = 

¬[¬x ʘ (¬z ʘ ¬y))] = ¬[¬x ʘ ¬(y + z)] = x + (y + z). 

Also, x + 0 = ¬ (¬x ʘ ¬0) = ¬(¬x ʘ 1) = ¬(¬x) = x. 

Lemma 3.2 For a, b, c, x and y in a commutative groupoid algebra L, the following conditions 

hold: 

(1) a - a = 0 

(2) a - 0 = a. 

(3) (a - b) ˅ 0 = a - b 

(4) a - b = 0  a ≤ b. 

(5) ¬[(a ˄ b) - c] = ¬(a - c) ˅ ¬(b - c) 

(6) a ˅ b = (a - b) + b  

(7) a ˄ b = b - (b - a) 

(8) x ≤ a + b  x - a ≤ b. 

(9) 0 - a = 0. 

(10) a - (b + c) = (a - b) - c. 

(11) (a - b) + (b - c) ≥ a - c. 

(12) a = (a ˅ 0) + (a ˄ 0) 

(13) a - (b + c) = (a - c) - b. 

(14) a ≥ b  (a - b) + b = a. 

(15) [a - (x ˄y)]+ b = [(a - x) + b]˅[(a - y) +  b] 

Now, we are in a position to introduce the concept of a metric on a commutative groupoid 

algebra. 
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Definition 3.3 let L be a commutative groupoid algebra. Define a map *: L  L  L by  

a * b = (a – b) + (b - a) 

Lemma 3.4 In a commutative groupoid algebra L, we have   

¬(a ʘ ¬b) ʘ ¬(b ʘ ¬a) = 1  a = b. 

Proof:  a ʘ ¬b = (a ʘ ¬b) ʘ 1 = (a ʘ ¬b) ʘ [¬(b ʘ ¬a) ʘ ¬(a ʘ ¬b)] = ¬(b ʘ ¬a) ʘ [(a ʘ ¬b) ʘ 

¬(a ʘ ¬b)] = ¬(b ʘ ¬a) ʘ 0 = 0. 

Now, b ʘ ¬a = (b ʘ ¬a) ʘ 1= (b ʘ ¬a) ʘ [¬(a ʘ ¬b) ʘ ¬(b ʘ ¬a)] = ¬(a ʘ ¬b) ʘ [(b ʘ ¬a) ʘ 

¬(b ʘ ¬a)] = ¬(a ʘ ¬b) ʘ 0 = 0. Therefor a = b. 

Theorem 3.5 let L be a commutative groupoid algebra. then for all a, b, c in L, we have  

a ≤ b  a + c ≤ b + c 

Proof: Let a ≤ b, then a ʘ ¬b = 0, 

(a + c) ʘ ¬(b + c) = ¬(¬a ʘ ¬c) ʘ (¬b ʘ ¬c) = ¬b ʘ [¬(¬a ʘ ¬c) ʘ ¬c] = ¬b ʘ [¬c ʘ ¬(¬a ʘ ¬c)] 

= ¬b ʘ [a ʘ ¬(a ʘ c)] = ¬(a ʘ c) ʘ (a ʘ ¬b) = ¬(a ʘ c) ʘ 0 = 0. 

Corollary 3.6 In any commutative groupoid algebra L, we have   

a ≤ b and c ≤ d  a + c ≤ b + d for all a, b , c , d  L 

Theorem 3.7 (L, *) is a metric space where a * b = (a - b) + (b - a) 

Proof: Let a, b, c  L 

  a * b = (a - b) + (b - a) ≥ a - a = 0.(by lemma 3.2 (11). Also, a * b = b * a. Let a * b = 0. Thus (a 

- b) + (b - a) = 0 this implies that ¬(a ʘ ¬b) ʘ ¬(b ʘ ¬a) = 1  (by lemma 3.4) a = b. 

Conversely, if a = b, then a * a = 0, a - a = 0. Finally, (a * b) + (b * c) = {(a - b) + (b - a)} + {(b - 

c) + (c - b)} = {(a - b) + (b - c)} + {(c - b) + (b - a)} ≥ (a - c) + (c - a) = a * c. Thus * is a metric 

on L. 

Definition 3.8 [3] A system A = (A, +, ≤, *) is called an “Autometrized Algebra” if and only if 

1.1 (A, +) is a binary commutative algebra with a distinguished element Zero: “0” 

1.2 ≤ is an anti-symmetric, reflexive ordering on A and 

1.3 *:A X A is a mapping satisfying the formal properties of a distance function namely: 

1) a * b ≥ 0 with equality  a = b  

2) a * b = b * a and  

3) a * c ≤  a * b + b * c 

Definition 3.9 [3] An Autometrized Algebra L is said to be regular if a * 0 = a,  a  L. 

Theorem 3.10 Let L be a commutative groupoid algebra, then a * 0 = a,  a  L. 
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Proof: a * 0 = (a - 0) + (0 - a) [(by lemma 3.2(2) a - 0 = a, 0 – a = 0 ʘ ¬a = 0]. 

                    = a + 0 = ¬(¬a ʘ ¬0) = ¬ (¬a ʘ 1) = ¬ (¬a) = a 

By theorem 3.7 and theorem 3.8 we get the following 

Theorem 3.10 Any commutative groupoid algebra L is a regular autometrized algebra.  

We end this section by looking at the following example: 

Example 3.10 Let L = {0, a, b, c, d, e, f, 1} be a chain defined 0  a  b  c  d  e  f  1. In 

example (2. 14) we defined ¬, ʘ and in this example we define * as follows 

* 0 a b c d e f 1 

0 0 a b c d e f 1 

a a 0 a b c b e f 

b b a 0 a c d d e 

c c b a 0 a c c d 

d 1 c b a 0 0 b c 

e e d d c 0 0 a b 

f f e d c b a 0 a 

1 1 f e d c b a 0 

 

   Clearly 0 is the additive element, since x * 0 = 0 * x = x for all x. Also every element which it 

is the inverse of itself since x * x = 0 for all x. Further it is observed that * is not associative. 

Since instance (a * b) * c = a * c = b ≠ a * (b * c) = a * a = 0. Therefor * is not a group operation. 
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