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1. Introduction

The concept of 2-normed spaces was introduced by Gdhler [1] in 1965, and has been de-
veloped extensively in different subjects by others (see [2]). After that, in 1973 and 1977,
Diminnie, Gdhler and White introduced the concept of 2-inner product spaces (see [3,4]). In
2006, Choonkil Park [5] introduced the notion of quasi-2-normed spaces. Our aim in this paper
is to present the recent results of sharp triangle inequalities and Dunkl-Williams inequality in
quasi-2-normed linear spaces and quasi-(2; p)-normed spaces.

In 1964, Dunkl and Williams [12] proved that for any two non-zero elements x,y in a normed
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linear space, then

X y 4llx=yll

| — . (1.1)
[xl [y [l + 1yl

Moreover,they proved that in an inner product space,the constant 4 can be replaced by 2.

| <

This inequality has some important applications in the study of Banach spaces. It is one of
the most fundamental inequality in calculus. Many interesting refinements and reverses of this
inequality in normed linear spaces have been given (see[6,7]). Kirk and Smiley, 1964, proved
that in this inequality with 2 instead of 4 characterizes inner product spaces. Now we extend it

in quasi-2-normed linear spaces.
2. Preliminaries

Definition 2.1. [1] Let X be a linear space of dimension greater than 1 on the field K and let
|-, ||: X x X — [0, +oc0)be a function satisfying the following conditions:
(1) || x,y ||= 0 if and only if x and y are linearly dependent,
@ [[xy =l yx |,
3) || ax,y||=|al || x,y || forall @ € K,
@ [ x+yz <[ x 2]+ yz ],
for all x,y,z € X.||,-|| is called a 2-normed and (X, ||-,||) is called a linear 2-normed space.
It is known that equality holds for every in definition (1.1) part (4) if and only if x and y
are linearly dependent with the same direction. It is easy to show that the 2-norm ||-,|| is

non-negative and ||x,y+ ox|| = ||x,y|| for all x,y € X and o € R.

Example 2.1. In the set consisting of bounded functions of real numbers in interval [a,b]by

£
If.gll = sup sup | |
xelaplyelab] | g(x) g(y)

a 2-norm is defined.

Definition 2.2. [2,3] Let K be the symbol of the field R or C and X be a linear space on K.
Define the K-valued function (-,-|-) on X x X x X with the following properties:
(1) (x,x]y) > 0; (x,x|y) = 0 if and only if x and y are linearly dependent,

) (x,xly) = (n.ylx),
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(3) (x,y]z) = (y,x[2),
4) (ox,y|z) = a(x,y|z) for any a € K,

(5) (x+x',y]2) = (x,y]2) + (', y12),
for all x,x",y,z € X. (+,-|-) is called a 2-inner product and (X, (-,-|)) is called a 2-inner product

space.

Example 2.2. [10] Let R? be a Hilbert space with the usual inner product and (X, ||-,-||) be a

2-normed space. Then by

(x,y]z) = &) (&3] x,v,z€X

2) (2,2)

a 2-inner product is defined.

Definition 2.3. [5] Let X be a linear space. A quasi-2-norm is a real-valued function on X x X
satisfying the following conditions:

(1) || x,y ||= 0 if and only if x and y are linearly dependent,

@) [y (=l ysx ],

3) || ax,y||=|al || x,y || for all @ € K,

(4) There is a constant K > 1 such that|| x+y,z || < K(||x,z|| + ||y, z]|) for all x,y,z € X.
The pair (X, ||-,-]|) is called a quasi-2-normed space if ||-,-|| is a quasi-2-norm on X.

It follows from (4) that
I | = 1H [ = llyzll
xX— —|x,z|| —
»2 = K < »Z
and
I | = 1|| | = lx, 2
X=YZ2| = X Y2 X, 2

S0,

1 1
e =y, 2| = max{Z[bx, zl} = [y zll, 2y 2l = e, 2]l (2.1)
Example 2.3. [11] Let X be a linear space with dim X > 2 and let||-, || be 2-norm on X.

1, ¥llq = 2[lx ¥

is quasi-2-norm on X, and (X, ||-,||) is a quasi-2-normed space.
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A quasi-2-norm ||-,-|| is called quasi-(2;p)-norm (0 < p < 1) if
|[x+y,2l|7 < [, zl|? + [y, (2.2)
for all x,y,z € X. So, Let X be a quasi-(2; p)-normed space, then we have

[, 27 = Iy, 2P| < [lx =y, 217 (2.3)

3. Dunkl-Williams inequality with two elements in quasi-2-normed spaces

Abrishami[7] has refined Dunkl-Williams inequality in quasi-2-normed spaces and prove the

following lemma.

Lemma 3.1. [7] For all non-zero vectors X, y and z in a quasi-2-normed space X with z ¢

span{x,y }, we have

Y i< Kllx—y,z|| + K|y, z]| — ||x,z]|]

X
I — 7= (3.1)
bzl sz max{||x, ][, [[y,zl}
x oy s eyl =Ky 2] = e 2l] )
I a2l = : (3:2)
bzl [zl min{]}x, ][, [y [}

where K > 1.
The following result is needed to prove our theorems. It given a equivalent condition of
inequality (3.1).

Theorem 3.1. Let X be a quasi-2-normed space with K > 1. The following statements are
equivalent:

(1) For all non-zero vectors x,y € X and z ¢span{x,y} it is true that

x oy Klxe=yz Kyl — [lx 2] 13
| 2l < (3.3)
Izl izl max{||x, z[[, ||y, z]|}
(2) If x,y € X are such that ||x,z|| = ||y,z|]| = 1, then
x+y K||(1—=1)x+1ty,z|| + K[2t — 1
==zl < (3.4)
2 2max{l —1,t}

foreacht € (0,1).



SOME REFINEMENT OF THE INEQUALITY 455

Proof. (1) = (2). Assume that the statement (1) holds. Then (1)implies the following

xX+y 1—1t t
-7 - 14+ —
| 5 4l > ( +1_t)HX+y,ZH
1— X %1)’
= (le Z||+|| y,ZII)II - 2|
lx,2ll [zl
_ 1_t(||xZH+|| t yZH)KIIX—ﬁy7Z||+K|||ﬁy,Z|l—le,ZI||
-2 1—17 max{||x,z|, || A7y, 2|}
TP )KHx—t_%y,Z\HK\%\
2 1—1¢ max{1, =}
_ K[[(1=t)x+ty,z| +K[2t — 1|
B 2max{1—1z,t}

i.e. the inequality (3.4) holds true.

(2) = (1). Let assume that the statement (2) holds true. Let x and y be arbitrary non-zero

vectors in X. Then, if we take that

oo vzl = ez +2
4
then by (3.4) we get that
S —
X Y [xzll " szl
| -l = 2l
Izl 2l 2
< KJ|(1 - )sz\|+f|yz||7z||+K|2t 1]

- 2max{l —1,t}

2|y, +lx, 2=l 42—
K|| Hyzu I\xz\|,||x)7cz|‘+|\yZH ULXZH |y§H,zH+1K|Hy,zH llx, z]||

1 2— |yl +lixzll - lyzll=llxzl+2
3 max{ 5 , 5 }

Kl|x =,z + K[|,z — []x,z]|]
max{||x,z], ||y, 2]/}

i.e. the inequality (3.3) holds true.

Now we are ready to prove the main theorem. A refinement of (1.1) has been obtained by

Mercer [14]. Now, we use Mercer’s inequality and give a refinement of (3.1) and (3.2).
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Theorem 3.2 Let x, y and z be non-zero vectors in a quasi-2-normed space X with z ¢

span{x,y}. We put

ﬁ _ Hx—y,Z“Z _Kz(Hy?ZH - HvaH)Z
lx =, 2012 = (ly, 2l = [, 2]|)?

and f satisfies the condition 8 > 0. Then we have

1 (ly, zll — 1=, z[])?
— ~(K*+1) B
2 ([[y 2l + [}, z]])?
~Jae e pedEll =l gy g 202 Dzl — 1 2l])? — 4l -y 2]
(K2 +1)? (=) B2 —4B- 5
|y, 2| + [, 2| ([ly, 2|l =+ [, z][)
x y
< ——— 7| 3.5
el el (3:5)
1 (ly, zll — Ix, z[])?
< ——(K*+1) VAR
2 (s 2l + llx,z[])?

(K2 + D) (Il 2ll = [l%,2l1)* = 4llx =y 2]*

e, 2
+%K+D( PP RN

[y 2+ [, 2]
Proof. Let o0 = || 757 — m,zH. From (3.2) we know

o> e =, 2l — K1y, 2] — [}zl
Kmin{|lx,z[|, |ly 2]l }

Clearly, we have
Kl[ly,2ll = Il 2l[[ = [lx =y, 2l +- 2K min{lx, 2[[, [l, 2|} = K[y, 2| + K]}, 2l = [l =y, 2]
SO,
Klly 2l +Klx, 2] = [lx = y,zll = K (2 — ety min{]lx, z][, |y, ][ }-
A simple computation shows that

Re(y2) | 1o o Ix=nalP= (el = xal)?

b zllllyzll 2 [, 2| [], ]
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Therefore,

Iy, 2l + x|
R L e

_ A=y 2Pl vzl = szl + e 2D = v 20 = K2y, 2l = 1, 2[1)°]
4x, 2]l |l 2l

_ A=y 2Pl zllllyzll = Al zll + lle 20?1 — v,z

4lx, 2]l |y 2
Y, 2| — ||X,Z Y,z X, Z
+K2(|| = [l 2D [y, 21l + 1,211
Alx, 2 |y, 2

_ ==y 2Pl zll = [ 2lD? + K2y, 2l = [l 2D (. 2l + e, 21)
A, zl]]y, 2]

(ly, zl| — [, z[])? 2 2
= (K 2|l + Klx,z||)* = [|x =y, 2]|7]
4|, z|[ [, 2|

Iy 2l = Il 2l1)
- 4”x ZHH}’ ZH [K“y,Z”-i-KHX,ZH—||X—y,Z||][K||y,Z||+K||X7Z||+||X—y,z||]
(s zll = llx, 211)?

4|x,2[[ [y, 2l

K (2 — o) min{||x, z[|, [[y,z[| } (K1]y, zl| + K [, ]

1 1
+maX{E||x,ZI| — [ly:z]], Elly,ZII —|lx,zl|})

e Rl M T
= g el — sl
Hence,
fr—yealP — g (2l KL oy a2
Therefore,
i o 1y Ul = Il o 22+ Dl — )~ e —yealP g

(ly,zll + [|x,z[])? ([ly,zll + [|x,z[])? -

So, o is between two roots of the quadratic equation

_ 2 2UK2 41 _ 2 Allx— )
)LZ_/»L<K2+1)(||)’7ZH ||x7Z||)2B+ ( + )(Hy,ZH ||X7Z||) _ ||x y)z”
(||y7Z||+||va”) (||y,Z||+||X,Z”)

Hence, we get (3.5). This completes the proof.

4. Triangle inequality in quasi-(2;p)-normed spaces
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In this section ,we refine triangle inequalities in quasi-(2;p)-normed spaces.

Theorem 4.1 Let X be a quasi-(2;p)-normed spaces on the field K. For all z,xy,...,x, € X and

ai,...,a, € K, we have
n n n
1Y ai,z||” < lin}gn{la,-\”\lin,zHP+2!a,-—ajlp\lxi,z\lp}, (4.1)
i=1 =I= i=1 i=1
n n n
1Y aixi,zl|” > max {|a;|P|| ) xi,2||” = Y |aj — ail”[|xi,z]|”}- (4.2)
i=1 I<jsn i=1 i=1

Proof. For a fixed 1 <i <n, we have

n
1Y axizll? = | Za;XHrZ —aj)x;,z|[f
i=1
< ||Za]x,,z||p—|—||z a;—a; )xi, z||”
< ajf?] ZXL,Z||’)+Z (@i —aj)xi,zl|”

= |%\”HZX~Z|I”+Z| ai —aj)|”||xi,z]|”.

By taking minimum over i = 1, ...,n, we obtain (4.1). Now, we have

n

1Y aixiz|l” = IIZam Za ai)x;,z||”

i=1 i=1

Il Zajxlﬂsz_ I Z ai)xi,z||”|
Iaj\”HquZII” ZH ai)x;,z||”

= !%\”HZWIIP Z! j—ai)|Pllxi; 2|7

Y

v

By taking maximum over i = 1,...,n, we obtain (4.2).

Theorem 4.2 Let X be a quasi-(2;p)-normed space. For all z,xy,...,x, € X and ay,...,a, € K

the following inequalities hold true

I ZazquH” > |1, 2|l Z

n
1
P -y |W\|x1,ZH —aillxi, 2|7, (4.3)
i=1 1%

H”,|
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IIZazxz,Z||p<||xn7Z||”||ZH a H”+Z|az|lxz,ZH "
l l7

forO<p<1.

Proof.

I Z Haxl,

e

IN

IN

a;xX;

” Z T Z e
a;xXi

| 2 Hxl Ll Z

| Za Xi,Z||P +

[ler, 2]l ZH”

IIZaquII +

[ler, 2]l Z||”

I Ewel? = o P Y
aix i<

SO,
Further,
H Z a;xi
|| Xns Z”
SO,

| Za %, 2|7 < 2, 27 Z

This completes the proof.
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