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Abstract. CR-submanifolds of nearly hyperbolic Sasakian manifold with a semi-symmetric metric connection are 

studied. We obtain 𝜉 −horizontal and 𝜉 −vertical CR- submanifolds of a nearly hyperbolic Sasakian manifold with a 

semi-symmetric metric connection. Parallel distributions on CR-submanifolds of nearly hyperbolic Sasakian 

manifold with semi-symmetric metric connection are calculated.  
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1. Introduction 

Let ∇ be a linear connection in an n-dimensional differential manifold �̅�. The connection ∇ is 

metric connection if there is a Riemannian metric 𝑔 in �̅� such that  ∇𝑔 = 0, otherwise it is non-

metric. Friedmann and Schouten [11] introduced the concept of semi-symmetric linear 

connection. A linear connection ∇ is said to be semi-symmetric connection if its torsion tensor 𝑇 

is of the form [13] 

𝑇(𝑋, 𝑌) =  𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌, 

where 𝜂 is 1-form. Some properties of semi-symmetric metric connection are studies in [2], [4], 

[13], [18]. 
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A. Bejancu introduced the concept of CR-submanifolds of Kaehler manifold as a generalization 

of invariant and anti-invariant submanifolds [5]. Since then, several papers on Kaehler manifolds 

were published. CR-submanifolds of Sasakian manifold was studied by C.J. Hsu in [14] and M. 

Kobayashi in [17]. Yano and Kon [22] studied contact CR-submanifolds. Later, several 

geometers (see, [3], [4], [6], [20]) enriched the study of CR-submanifolds of almost contact 

manifolds. The almost hyperbolic (𝑓, 𝜉, 𝜂, 𝑔)-structure was defined and studied by Upadhyay and 

Dube [21]. CR-submanifolds of trans-hyperbolic Sasakian manifold studied by Bhatt and Dube 

[8]. On the other hand, S. Golab [12] introduced the idea of semi-symmetric and quarter 

symmetric connections. The first author and S.K. Lovejoy Das [10] studied CR-submanifolds of 

LP-Sasakian manifold with semi-symmetric non-metric connection. CR-submanifolds of a nearly 

hyperbolic Sasakian manifold admitting a semi-symmetric semi-metric connection were studied 

by M.D. Siddiqi and S. Rizvi [3]. Motivated by studies [1, 2, 3, 9, 16, 18], in this paper we study 

some properties of CR-submanifolds of a nearly hyperbolic Sasakian manifold with a semi-

symmetric metric connection.  

The paper is organized as follows. In section 2, we give a brief description of nearly hyperbolic 

Sasakian manifold with a semi-symmetric metric connection. In section 3, some properties of 

CR-submanifolds of nearly hyperbolic Sasakian manifold are investigated. In section 4, some 

results on parallel distribution on 𝜉 −horizontal and 𝜉 −vertical CR- submanifolds of a nearly 

Sasakian manifold with a semi-symmetric metric connection are obtained. 

 

2. Preliminaries 

Let �̅�  be an 𝑛 -dimensional almost hyperbolic contact metric manifold with the almost 

hyperbolic contact metric structure(∅, 𝜉, 𝜂, 𝑔), where a tensor ∅ of type(1,1), a vector field 𝜉 

called structure vector field, 𝜂 the dual 1-form of 𝜉 and 𝑔 is Riemannian metric satisfying the 

followings:          

∅2𝑋 = 𝑋 + 𝜂(𝑋)𝜉,            𝑔(𝑋, 𝜉) = 𝜂(𝑋),                                                (2.1) 

𝜂(𝜉) = −1,        ∅(𝜉) = 0,       𝜂𝑜∅ = 0,                                                    (2.2) 

𝑔(∅𝑋, ∅𝑌) = −𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)                                                        (2.3)                                                         

for any 𝑋, 𝑌 tangent to �̅� [7]. In this case 

𝑔(∅𝑋, 𝑌) = −𝑔(∅𝑌, 𝑋).                                                                             (2.4)                                                                                            
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An almost hyperbolic contact metric structure (∅, 𝜉, 𝜂, 𝑔) on �̅�  is called hyperbolic Sasakian 

manifold if and only if  

(∇𝑋∅)𝑌 = 𝑔(𝑋, 𝑌)𝜉 −  𝜂(𝑌)𝑋,                                                                   (2.5)                                      

 ∇𝑋𝜉 = ∅𝑋                                                                                   (2.6)             

for all tangent vectors 𝑋, 𝑌   and a Riemannian metric g and Riemannian connection ∇  on 

manifold �̅�. Further, as a consequence of (2.5), an almost hyperbolic contact metric manifold �̅�  

with (∅, 𝜉, 𝜂, 𝑔) − structure is called a nearly hyperbolic Sasakian manifold if  

(∇𝑋∅)𝑌 + (∇𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 −  𝜂(𝑌)𝑋.                               (2.7)                                                      

Now, Let 𝑀 be a submanifold immersed in �̅�, the Riemannian metric 𝑔 induced on 𝑀. 

Let 𝑇𝑀  and 𝑇𝑀   be the Lie algebra of vector fields tangential to 𝑀  and normal to 𝑀 

respectively and  ∇∗ be the induced Levi-Civita connection on 𝑀, then the Gauss and Weingarten 

formulae are given respectively by 

∇𝑋𝑌 = ∇∗
𝑋𝑌 + ℎ(𝑋, 𝑌),                                                                              (2.8)                                                                                   

∇𝑋𝑁 = −𝐴𝑁𝑋 + ∇𝑋
⊥𝑁                                                                                (2.9)                                                                                                     

for any 𝑋, 𝑌 ∈ 𝑇𝑀 and 𝑁 ∈ 𝑇𝑀, where ∇ is a connection on the normal bundle 𝑇𝑀, ℎ is the 

second fundamental form and  𝐴𝑁 is the Weingarten map associated with 𝑁 as 

𝑔(ℎ(𝑋, 𝑌), 𝑁) = 𝑔(𝐴𝑁𝑋, 𝑌).                                                                    (2.10)                                                                                         

Any vector 𝑋 tangent to 𝑀 is given as 

𝑋 = 𝑃𝑋 + 𝑄𝑋,                                                                                          (2.11)                                                                                                             

where 𝑃𝑋 ∈ 𝐷 and 𝑄𝑋 ∈ 𝐷⊥. 

For any 𝑁 normal to 𝑀, we have  

∅𝑁 = 𝐵𝑁 + 𝐶𝑁,                                                                                       (2.12) 

where 𝐵𝑁 (resp. 𝐶𝑁) is the tangential component (resp. normal component)  of ∅𝑁. 

Now, we define a semi-symmetric metric connection  

∇̅𝑋𝑌 = ∇𝑋𝑌 + 𝜂(𝑌)𝑋 − 𝑔(𝑋, 𝑌)𝜉                                                (2.13) 

such that                  (∇̅𝑋𝑔)(𝑌, 𝑍) = 0. 

From (2.13) and  (2.7), we have  

          (∇̅𝑋∅)𝑌 + ∅(∇̅𝑋𝑌) = (∇𝑋∅)𝑌 + ∅(∇𝑋𝑌) − 𝑔(𝑋, ∅𝑌)𝜉. 

Interchanging 𝑋 and  𝑌, we have 

         (∇̅𝑌∅)𝑋 + ∅(∇̅𝑌𝑋) = (∇𝑌∅)𝑋 + ∅(∇𝑌𝑋) − 𝑔(𝑌, ∅𝑋)𝜉. 
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Adding above two equations, we get 

         (∇̅𝑋∅)𝑌 + (∇̅𝑌∅)𝑋 + ∅(∇̅𝑋𝑌 − ∇𝑋𝑌) + ∅(∇̅𝑌𝑋 − ∇𝑌𝑋) = (∇𝑋∅)𝑌 + (∇𝑌∅)𝑋 

                                              −𝑔(𝑋, ∅𝑌)𝜉 − 𝑔(𝑌, ∅𝑋)𝜉. 

Using equation (2.2), (2.4), (2.7)  and  (2.13) in above equation, we have 

           (∇̅𝑋∅)𝑌 + (∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 

                      − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋.                                                       (2.14)   

From (2.6) and  (2.13), we have 

∇̅𝑋𝜉 = ∅𝑋 − 𝑋 − 𝜂(𝑋).                                                                            (2.15)                                                                                                                                               

An almost hyperbolic contact metric manifold with almost hyperbolic contact structure 

(∅, 𝜉, 𝜂, 𝑔) is called nearly hyperbolic Sasakian manifold with semi-symmetric metric connection 

if  it satisfies (2.14) and  (2.15). 

In view of (2.8) and (2.9) and (2.13),  Gauss and Weingarten formulae for a nearly hyperbolic 

Sasakian manifold with semi-symmetric metric connection are given by 

∇̅𝑋𝑌 = ∇𝑋𝑌 + ℎ(𝑋, 𝑌),                                                                            (2.16)                                                                                           

∇̅𝑋𝑁 = −𝐴𝑁𝑋 + ∇𝑋
⊥𝑁.                                                                            (2.17)  

                                                                

Definition 2.1. An m-dimensional submanifold 𝑀  of an n-dimensional nearly hyperbolic 

Sasakian manifold �̅� is called a CR-submanifold [3] if there exists a differentiable distribution 

𝐷: 𝑥 →  𝐷𝑥 on 𝑀 satisfying the following conditions: 

(i) the distribution 𝐷 is invariant under ∅, that is  ∅𝐷𝑥 ⊂ 𝐷𝑥  for each 𝑥 ∈ 𝑀, 

(ii) the complementary orthogonal distribution 𝐷  of 𝐷  is anti-invariant under  ∅ , that is 

∅𝐷
𝑥 ⊂ 𝑇𝑀 for all 𝑥 ∈  𝑀.  

If  dim 𝐷𝑥
⊥ = 0 (𝑟𝑒𝑠𝑝. ,  dim 𝐷𝑥 = 0), then the CR-submanifold is called an invariant (resp., anti-

invariant) submanifold. The distribution 𝐷 (𝑟𝑒𝑠𝑝. , 𝐷⊥) is called the horizontal (resp., vertical) 

distribution. Also, the pair (𝐷, 𝐷⊥)  is called 𝜉 − horizontal (resp. , vertical), 𝑖𝑓 𝜉𝑋 ∈ 𝐷𝑋 

(resp. , 𝜉𝑋 ∈ 𝐷𝑋
⊥).  

 

3. Some Basic Results 

Lemma 3.1. If 𝑀 be a CR-submanifold of a nearly hyperbolic Sasakian manifold �̅� with a semi 

symmetric metric connection. Then 

 2𝑔(𝑋, 𝑌)𝑃𝜉 − 𝜂(𝑋)𝑃𝑌 − 𝜂(𝑌)𝑃𝑋 − 𝜂(𝑋)∅𝑃𝑌 − 𝜂(𝑌)∅𝑃𝑋 + ∅𝑃(∇𝑋𝑌) 
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+∅𝑃(∇𝑌𝑋) = 𝑃∇𝑋(∅𝑃𝑌) + 𝑃∇𝑌(∅𝑃𝑋) − 𝑃𝐴∅𝑄𝑌𝑋 − 𝑃𝐴∅𝑄𝑋𝑌,    (3.1) 

        2𝑔(𝑋, 𝑌)𝑄𝜉 − 𝜂(𝑋)𝑄𝑌 − 𝜂(𝑌)𝑄𝑋 + 2𝐵ℎ(𝑋, 𝑌) = 𝑄∇𝑋(∅𝑃𝑌) + 𝑄∇𝑌(∅𝑃𝑋) 

−𝑄𝐴∅𝑄𝑌𝑋 − 𝑄𝐴∅𝑄𝑋𝑌,    (3.2) 

       −𝜂(𝑋)∅𝑄𝑌 − 𝜂(𝑌)∅𝑄𝑋 + ∅𝑄(∇𝑋𝑌) + ∅𝑄(∇𝑌𝑋) + 2𝐶ℎ(𝑋, 𝑌) = ℎ(𝑋, ∅𝑃𝑌) 

+ℎ(𝑌, ∅𝑃𝑋) + ∇𝑋
⊥(∅𝑄𝑌) + ∇𝑌

⊥(∅𝑄𝑋)    (3.3) 

for all 𝑋, 𝑌 ∈ 𝑇𝑀. 

Proof.  From (2.11), we have 

          ∅𝑌 = ∅𝑃𝑌 + ∅𝑄𝑌. 

Differentiating covariantly and using equation (2.16) and (2.17), we have 

          (∇̅𝑋∅)𝑌 + ∅(∇𝑋𝑌) + ∅ℎ(𝑋, 𝑌) 

                                          = ∇𝑋(∅𝑃𝑌) + ℎ(𝑋, ∅𝑃𝑌) − 𝐴∅𝑄𝑌𝑋 + ∇𝑋
⊥(∅𝑄𝑌). 

Interchanging 𝑋 and 𝑌 in above equation, we have 

         (∇̅𝑌∅)𝑋 + ∅(∇𝑌𝑋) + ∅ℎ(𝑌, 𝑋) 

                                         = ∇𝑌(∅𝑃𝑋) + ℎ(𝑌, ∅𝑃𝑋) − 𝐴∅𝑄𝑋𝑌 + ∇𝑌
⊥(∅𝑄𝑋). 

Adding above two equations, we obtain 

          (∇̅𝑋∅)𝑌 + (∇̅𝑌∅)𝑋 + ∅(∇𝑋𝑌) + ∅(∇𝑌𝑋) + 2∅ℎ(𝑌, 𝑋) 

                                          = ∇𝑋(∅𝑃𝑌) + ∇𝑌(∅𝑃𝑋) + ℎ(𝑋, ∅𝑃𝑌) + ℎ(𝑌, ∅𝑃𝑋) 

                                             −𝐴∅𝑄𝑌𝑋 − 𝐴∅𝑄𝑋𝑌 + ∇𝑋
⊥(∅𝑄𝑌) + ∇𝑌

⊥(∅𝑄𝑋).    

Adding (2.14) in above equation, we have 

2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋 + ∅(∇𝑋𝑌) + ∅(∇𝑌𝑋) 

+2∅ℎ(𝑋, 𝑌) = ∇𝑋∅𝑃𝑌 + ∇𝑌∅𝑃𝑋 + ℎ(𝑋, ∅𝑃𝑌) + ℎ(𝑌, ∅𝑃𝑋) − 𝐴∅𝑄𝑌𝑋 

−𝐴∅𝑄𝑋𝑌 + ∇𝑋
⊥∅𝑄𝑌 + ∇𝑌

⊥∅𝑄𝑋. 

Using equations (2.11) and (2.12) in above equation, we have 

       2𝑔(𝑋, 𝑌)𝑃𝜉 + 2𝑔(𝑋, 𝑌)𝑄𝜉 − 𝜂(𝑋)𝑃𝑌 − 𝜂(𝑋)𝑄𝑌 − 𝜂(𝑌)𝑃𝑋 − 𝜂(𝑌)𝑄𝑋 

   −𝜂(𝑋)∅𝑃𝑌 − 𝜂(𝑋)∅𝑄𝑌 − 𝜂(𝑌)∅𝑄𝑋 + ∅𝑃∇𝑋𝑌 + ∅𝑄∇𝑋𝑌 + ∅𝑃∇𝑌𝑋 

           +∅𝑄∇𝑌𝑋 + 2𝐵ℎ(𝑋, 𝑌) + 2𝐶ℎ(𝑋, 𝑌)  = 𝑃∇𝑋∅𝑃𝑌 + 𝑄∇𝑋∅𝑃𝑌 + 𝑃∇𝑌∅𝑃𝑋  

          +𝑄∇𝑌∅𝑃𝑋 + ℎ(𝑋, ∅𝑃𝑌)  + ℎ(𝑌, ∅𝑃𝑋) − 𝑃𝐴∅𝑄𝑌𝑋 − 𝑄𝐴∅𝑄𝑌𝑋 − 𝑃𝐴∅𝑄𝑋𝑌 

−𝑄𝐴∅𝑄𝑋𝑌 + ∇𝑋
⊥∅𝑄𝑌 + ∇𝑌

⊥∅𝑄𝑋.                               (3.4) 

Comparing tangential, vertical and normal components in (3.4), we get desired results. 
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Lemma 3.2. If 𝑀 be a CR-submanifold of a nearly hyperbolic Sasakian manifold �̅� with semi 

symmetric metric connection. Then 

          2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋 +∇𝑋∅𝑌 

−∇𝑌∅𝑋 + ℎ(𝑋, ∅𝑌) − ℎ(𝑌, ∅𝑋) − ∅[𝑋, 𝑌],        (3.5)                   

          2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋+∇𝑌∅𝑋 

−∇𝑋∅𝑌 + ℎ(𝑌, ∅𝑋) − ℎ(𝑋, ∅𝑌) + ∅[𝑋, 𝑌]        (3.6)                   

for all 𝑋, 𝑌 ∈ 𝐷. 

Proof.  From Gauss formula (2.16), we get 

∇̅𝑋∅𝑌 − ∇̅𝑌∅𝑋 = ∇𝑋∅𝑌 − ∇𝑌∅𝑋 + ℎ(𝑋, ∅𝑌) − ℎ(𝑌, ∅𝑋).                      (3.7)                                                    

Also, by covariant differentiation, we have  

∇̅𝑋∅𝑌 − ∇̅𝑌∅𝑋 = (∇̅𝑋∅)𝑌 − (∇̅𝑌∅)𝑋 + ∅[𝑋, 𝑌].                                      (3.8)                                                                                       

From (3.7) and (3.8), we get 

(∇̅𝑋∅)𝑌 − (∇̅𝑌∅)𝑋 = ∇𝑋∅𝑌 − ∇𝑌∅𝑋 + ℎ(𝑋, ∅𝑌) − ℎ(𝑌, ∅𝑋) − ∅[𝑋, 𝑌]. (3.9)                       

Adding (3.9) and (2.14), we have  

       2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋+∇𝑋∅𝑌 

                                                       −∇𝑌∅𝑋 + ℎ(𝑋, ∅𝑌) − ℎ(𝑌, ∅𝑋) − ∅[𝑋, 𝑌] 

Subtracting (3.9) from (2.14), get 

      2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋+∇𝑌∅𝑋 

                                                            −∇𝑋∅𝑌 + ℎ(𝑌, ∅𝑋) − ℎ(𝑋, ∅𝑌) + ∅[𝑋, 𝑌] 

for all 𝑋, 𝑌 ∈ 𝐷. 

Corollary 3.3. If 𝑀 be a 𝜉 − vertical CR-submanifold of a nearly hyperbolic Sasakian manifold 

�̅� with semi-symmetric metric connection. Then 

        2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉 + ∇𝑋∅𝑌 − ∇𝑌∅𝑋 + ℎ(𝑋, ∅𝑌) − ℎ(𝑌, ∅𝑋) − ∅[𝑋, 𝑌] 

        2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 + ∇𝑌∅𝑋 − ∇𝑋∅𝑌 + ℎ(𝑌, ∅𝑋) − ℎ(𝑋, ∅𝑌) + ∅[𝑋, 𝑌]                                  

for all 𝑋, 𝑌 ∈ 𝐷. 

 

Lemma 3.4. If 𝑀 be a CR-submanifold of a nearly hyperbolic Sasakian manifold �̅� with semi 

symmetric metric connection. Then 

   2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋+𝐴∅𝑋𝑌 

−𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌

⊥∅𝑋 − ∅[𝑋, 𝑌]  (3.10) 
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   2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋+𝐴∅𝑌𝑋 

−𝐴∅𝑋𝑌 + ∇𝑌
⊥∅𝑋 − ∇𝑋

⊥∅𝑌 + ∅[𝑋, 𝑌]  (3.11) 

for all 𝑋, 𝑌 ∈ 𝐷⊥. 

Proof. For  𝑋, 𝑌 ∈ 𝐷⊥, from Weingarten formula (2.17), we have 

     ∇̅𝑋∅𝑌 − ∇̅𝑌∅𝑋 = 𝐴∅𝑋𝑌 − 𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌

⊥∅𝑋                                (3.12)                                                                         

Comparing equations (3.12) and (3.8), we have 

(∇̅𝑋∅)𝑌 − (∇̅𝑌∅)𝑋 + ∅[𝑋, 𝑌] = 𝐴∅𝑋𝑌 − 𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 −∇𝑌

⊥∅𝑋            (3.13)                                           

(∇̅𝑋∅)𝑌 − (∇̅𝑌∅)𝑋 = 𝐴∅𝑋𝑌 − 𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌

⊥∅𝑋 − ∅[𝑋, 𝑌]           (3.14)                                        

Adding (3.14) and (2.14), we get 

    2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋+𝐴∅𝑋𝑌 

                                                             −𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌

⊥∅𝑋 − ∅[𝑋, 𝑌] 

Subtracting (3.14) from (2.14), we get 

   2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋+𝐴∅𝑌𝑋 

                                                                    −𝐴∅𝑋𝑌 + ∇𝑌
⊥∅𝑋 − ∇𝑋

⊥∅𝑌 + ∅[𝑋, 𝑌] 

for all 𝑋, 𝑌 ∈ 𝐷⊥. 

 

Corollary 3.5.  If 𝑀 be a 𝜉 −  horizontal CR-submanifold of a nearly hyperbolic Sasakian 

manifold �̅� with semi symmetric metric connection. Then 

          2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉+𝐴∅𝑋𝑌 − 𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌

⊥∅𝑋 − ∅[𝑋, 𝑌], 

          2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉+𝐴∅𝑌𝑋 − 𝐴∅𝑋𝑌 + ∇𝑌
⊥∅𝑋 − ∇𝑋

⊥∅𝑌 + ∅[𝑋, 𝑌] 

for all 𝑋, 𝑌 ∈ 𝐷⊥. 

 

Lemma 3.6. If 𝑀 be a CR-submanifold of a nearly hyperbolic Sasakian manifold �̅� with semi 

symmetric metric connection. Then 

   2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋−𝐴∅𝑌𝑋 

+∇𝑋
⊥∅𝑌 − ∇𝑌∅𝑋 − ℎ(𝑌, ∅𝑋) − ∅[𝑋, 𝑌],            (3.15)   

   2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋+𝐴∅𝑌𝑌 

−∇𝑋
⊥∅𝑌 + ∇𝑌∅𝑋 + ℎ(𝑌, ∅𝑋) + ∅[𝑋, 𝑌]            (3.16) 

for all 𝑋 ∈ 𝐷 and 𝑌 ∈ 𝐷⊥. 

Proof.  Let 𝑋 ∈ 𝐷 and 𝑌 ∈ 𝐷⊥, then from Gauss formula (2.16), we have 
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          ∇̅𝑌∅𝑋 = ∇𝑌∅𝑋 + ℎ(𝑌, ∅𝑋). 

From Weingarten formula (2.17), we have 

          ∇̅𝑋∅𝑌 = −𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌. 

Now, from above two equations, we get 

∇̅𝑋∅𝑌 − ∇̅𝑌∅𝑋 = −𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌∅𝑋 − ℎ(𝑌, ∅𝑋).                         (3.17)                                                               

Comparing equation (3.17) and (3.8), we have 

          (∇̅𝑋∅)𝑌 − (∇̅𝑌∅)𝑋 + ∅[𝑋, 𝑌] = −𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌∅𝑋 − ℎ(𝑌, ∅𝑋) 

           −𝜂(𝑋)𝑌. 

          (∇̅𝑋∅)𝑌 − (∇̅𝑌∅)𝑋 = −𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌∅𝑋 − ℎ(𝑌, ∅𝑋) − 𝜂(𝑋)𝑌 

−∅[𝑋, 𝑌].                                               (3.18) 

Adding (3.18) and (2.14), we have 

            2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋−𝐴∅𝑌𝑋                                          

                             +∇𝑋
⊥∅𝑌 − ∇𝑌∅𝑋 − ℎ(𝑌, ∅𝑋) − ∅[𝑋, 𝑌]. 

Subtracting (3.18) from (2.14), we find 

        2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋+𝐴∅𝑌𝑋 

                               −∇𝑋
⊥∅𝑌 + ∇𝑌∅𝑋 + ℎ(𝑌, ∅𝑋) + ∅[𝑋, 𝑌]               

for all 𝑋 ∈ 𝐷 and 𝑌 ∈ 𝐷⊥. 

                                                                           

Corollary 3.7. If 𝑀  be a 𝜉 −  horizontal CR-submanifold of a nearly hyperbolic Sasakian 

manifold �̅� with semi symmetric metric connection. Then 

           2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑋)∅𝑌−𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌∅𝑋 

−ℎ(𝑌, ∅𝑋) − ∅[𝑋, 𝑌], 

           2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑋)∅𝑌+𝐴∅𝑌𝑋 − ∇𝑋
⊥∅𝑌 + ∇𝑌∅𝑋 

+ℎ(𝑌, ∅𝑋) + ∅[𝑋, 𝑌] 

for all 𝑋 ∈ 𝐷 𝑎𝑛𝑑 𝑌 ∈ 𝐷⊥. 

 

Corollary 3.8. If 𝑀 be a 𝜉 − vertical CR-submanifold of a nearly hyperbolic Sasakian manifold 

�̅� with semi symmetric metric connection. Then 

          2(∇̅𝑋∅)𝑌 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 − 𝜂(𝑌)∅𝑋−𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∇𝑌∅𝑋 

−ℎ(𝑌, ∅𝑋) − ∅[𝑋, 𝑌], 
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          2(∇̅𝑌∅)𝑋 = 2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 − 𝜂(𝑌)∅𝑋+𝐴∅𝑌𝑋 − ∇𝑋
⊥∅𝑌 + ∇𝑌∅𝑋 

+ℎ(𝑌, ∅𝑋) + ∅[𝑋, 𝑌] 

for all 𝑋 ∈ 𝐷 and 𝑌 ∈ 𝐷⊥. 

 

4. Parallel Distributions 

Definition 4.1. The horizontal (resp., vertical) distribution 𝐷(resp. , 𝐷⊥) is said to   be parallel [7] 

with respect to the connection  ∇ 𝑜𝑛 𝑀 if ∇𝑋𝑌 ∈ 𝐷(resp. , ∇𝑍𝑊 ∈ 𝐷⊥)  for any vector field  

𝑋, 𝑌 ∈ 𝐷 (resp. , 𝑊, 𝑍 ∈ 𝐷⊥). 

 

Theorem 4.2. Let 𝑀  be a 𝜉 − vertical  CR-submanifold of a nearly hyperbolic Sasakian 

manifold �̅� with semi symmetric metric connection. Then                                            

ℎ(𝑋, ∅𝑌) = ℎ(𝑌, ∅𝑋)                                                                               (4.1)                                                                                                                                                       

for any 𝑋, 𝑌 ∈ 𝐷. 

Proof. Using parallelism of horizontal distribution D, we have  

 ∇𝑋∅𝑌 ∈ 𝐷    𝑎𝑛𝑑 ∇𝑌∅𝑋 ∈ 𝐷,                                                                   (4.2)                                                                                                

for all 𝑋, 𝑌 ∈ 𝐷. From (3.2), we have 

           2𝑔(𝑋, 𝑌)𝑄𝜉 − 𝜂(𝑋)𝑄𝑌 − 𝜂(𝑌)𝑄𝑋 + 2𝐵ℎ(𝑋, 𝑌) = 𝑄∇𝑋(∅𝑃𝑌) 

                                                    +𝑄∇𝑌(∅𝑃𝑋) − 𝑄𝐴∅𝑄𝑌𝑋 − 𝑄𝐴∅𝑄𝑋𝑌. 

As Q is a projection operator on  𝐷⊥, so we have 

𝑔(𝑋, 𝑌)𝜉 + 𝐵ℎ(𝑋, 𝑌) = 0.                                                                        (4.3)                                                                                                                                                  

As we know from (2.12), we have 

∅ℎ(𝑋, 𝑌) = −𝑔(𝑋, 𝑌)𝜉 + 𝐶ℎ(𝑋, 𝑌).                                                         (4.4)                                                                                                                             

Now, from (3.3) we have 

           −𝜂(𝑋)∅𝑄𝑌 − 𝜂(𝑌)∅𝑄𝑋 + ∅𝑄(∇𝑋𝑌) + ∅𝑄(∇𝑌𝑋) + 2𝐶ℎ(𝑋, 𝑌) 

                                = ℎ(𝑋, ∅𝑃𝑌) + ℎ(𝑌, ∅𝑃𝑋) + ∇𝑋
⊥(∅𝑄𝑌) + ∇𝑌

⊥(∅𝑄𝑋). 

As Q is a projection operator on  𝐷⊥,  we have 

              ℎ(𝑋, ∅𝑌) + ℎ(𝑌, ∅𝑋) = 2𝐶ℎ(𝑋, 𝑌). 

Using equation (4.4) in above, we have 

ℎ(𝑋, ∅𝑌) + ℎ(𝑌, ∅𝑋) = 2∅ℎ(𝑋, 𝑌) + 2𝑔(𝑋, 𝑌)𝜉.                                (4.5)                                                                                    

Replacing 𝑌 𝑏𝑦 ∅𝑌 in (4.5), we have 

              ℎ(𝑋, ∅2𝑌) + ℎ(∅𝑌, ∅𝑋) = 2∅ℎ(𝑋, ∅𝑌) + 2𝑔(𝑋, ∅𝑌)𝜉. 
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Using (2.1), we have                       

ℎ(𝑋, 𝑌) + ℎ(∅𝑌, ∅𝑋) = 2∅ℎ(𝑋, ∅𝑌) + 2𝑔(𝑋, ∅𝑌)𝜉.                           (4.6)                                                                   

Similarly, replacing 𝑋 𝑏𝑦 ∅𝑋 in (4.5) and using (2.1), we have 

 ℎ(∅𝑋, ∅𝑌) + ℎ(𝑌, 𝑋) = 2∅ℎ(∅𝑋, 𝑌) + 2𝑔(∅𝑋, 𝑌)𝜉.                           (4.7)                                                                                

Comparing (4.6) and (4.7), we have 

               2∅ℎ(𝑋, ∅𝑌) + 2𝑔(𝑋, ∅𝑌)𝜉 = 2∅ℎ(∅𝑋, 𝑌) + 2𝑔(∅𝑋, 𝑌)𝜉. 

Appling ∅ both side, we have 

               ∅2ℎ(𝑋, ∅𝑌) + 𝑔(𝑋, ∅𝑌)∅𝜉 = ∅2ℎ(∅𝑋, 𝑌) + 𝑔(∅𝑋, 𝑌)∅𝜉. 

Using equation (2.2) in above, we have 

               ℎ(𝑋, ∅𝑌) = ℎ(∅𝑋, 𝑌) 

for all 𝑋, 𝑌 ∈ 𝐷. 

 

Theorem 4.3. Let 𝑀  be a 𝜉 − 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 CR-submanifold of a nearly hyperbolic Sasakian 

manifold �̅�  with semi symmetric metric connection.  If the distribution 𝐷⊥  is parallel with 

respect to the connection on 𝑀, then 

𝐴∅𝑋𝑌 + 𝐴∅𝑌𝑋 ∈ 𝐷⊥                                                                                 (4.8)                                                                                                                                               

for all 𝑋, 𝑌 ∈ 𝐷⊥. 

Proof. Let 𝑋, 𝑌 ∈ 𝐷⊥, then from Weingarten formula (2.17), we have 

           (∇̅𝑋∅)𝑌 = −𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∅(∇̅𝑋𝑌). 

Using Gauss equation (2.16) in above, we have 

   (∇̅𝑋∅)𝑌 = −𝐴∅𝑌𝑋 + ∇𝑋
⊥∅𝑌 − ∅(∇𝑋𝑌) − ∅ℎ(𝑋, 𝑌).                                (4.9)                                                                  

Interchanging 𝑋 and 𝑌, we have 

  (∇̅𝑌∅)𝑋 = −𝐴∅𝑋𝑌 + ∇𝑌
⊥∅𝑋 − ∅(∇𝑌𝑋) − ∅ℎ(𝑌, 𝑋).                              (4.10)                                                    

Adding (4.9) and (4.10), we get 

            (∇̅𝑋∅)𝑌 +  (∇̅𝑌∅)𝑋 = −𝐴∅𝑌𝑋 − 𝐴∅𝑋𝑌 + ∇𝑋
⊥∅𝑌 + ∇𝑌

⊥∅𝑋 − ∅(∇𝑋𝑌) 

−∅(∇𝑌𝑋) − 2∅ℎ(𝑋, 𝑌).                                    (4.11)        

Using (2.14) in (4.11), we have 

2𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋 − 𝜂(𝑋)∅𝑌 − 𝜂(𝑌)∅𝑋 = −𝐴∅𝑌𝑋 − 𝐴∅𝑋𝑌 

+∇𝑋
⊥∅𝑌 + ∇𝑌

⊥∅𝑋 − ∅(∇𝑋𝑌) − ∅(∇𝑌𝑋) − 2∅ℎ(𝑋, 𝑌).    (4.12) 

Taking inner product with 𝑍 ∈ 𝐷 in (4.12), we have 
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2𝑔(𝑋, 𝑌)𝑔(𝜉, 𝑍) − 𝜂(𝑋)𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝑔(∅𝑌, 𝑍) 

−𝜂(𝑌)𝑔(∅𝑋, 𝑍) = −𝑔(𝐴∅𝑌𝑋, 𝑍) − 𝑔(𝐴∅𝑋𝑌, 𝑍) + 𝑔(∇𝑋
⊥∅𝑌, 𝑍) 

+𝑔(∇𝑌
⊥∅𝑋, 𝑍) − 𝑔(∅(∇𝑋𝑌), 𝑍 − 𝑔(∅(∇𝑌𝑋), 𝑍) − 2𝑔(∅ℎ(𝑋, 𝑌), 𝑍). 

If 𝐷⊥ is parallel then ∇𝑋𝑌 ∈ 𝐷⊥ and ∇𝑌𝑋 ∈ 𝐷⊥, so that from above equation, 

          0 = −𝑔(𝐴∅𝑌𝑋, 𝑍) − 𝑔(𝐴∅𝑋𝑌, 𝑍). 

 𝑔(𝐴∅𝑌𝑋 + 𝐴∅𝑋𝑌, 𝑍) = 0.                                                                        (4.13)                                                                                                                                 

Consequently, we have 

𝐴∅𝑌𝑋 + 𝐴∅𝑋𝑌 ∈ 𝐷⊥                                                                               (4.14)                                                                                                                                   

for all 𝑋, 𝑌 ∈ 𝐷⊥. 

 

Definition 4.4.  A CR-submanifold is said to be mixed-totally geodesic if     

          ℎ(𝑋, 𝑌) = 0,       for all  𝑋 ∈ 𝐷 and 𝑌 ∈ 𝐷⊥. 

Definition 4.5.  A normal vector field 𝑁 ≠ 0 is called 𝐷 − parallel normal section       if  ∇𝑋
⊥𝑁 =

0  for all 𝑋 ∈ 𝐷. 

 

Theorem 4.6.  Let 𝑀  be a mixed totally geodesic 𝜉 − vertical  CR-submanifold of a nearly 

hyperbolic Sasakian manifold �̅�  with semi symmetric metric connection. Then the normal 

section 𝑁 ∈ ∅𝐷⊥ is 𝐷 − parallel if and only if  ∇𝑋∅𝑁 ∈ 𝐷                  for all 𝑋 ∈ 𝐷. 

Proof. Let 𝑁 ∈ ∅𝐷⊥,  for all 𝑋 ∈ 𝐷 and 𝑌 ∈ 𝐷⊥  then from (3.2), we have  

 2𝑔(𝑋, 𝑌)𝑄𝜉 − 𝜂(𝑋)𝑄𝑌 − 𝜂(𝑌)𝑄𝑋 + 2𝐵ℎ(𝑋, 𝑌) = 𝑄∇𝑋(∅𝑃𝑌) + 𝑄∇𝑌(∅𝑃𝑋) − 𝑄𝐴∅𝑄𝑌𝑋 −

𝑄𝐴∅𝑄𝑋𝑌  

As 𝑀 is a 𝜉 − vertical CR-submanifold of a nearly hyperbolic Kenmotsu manifold �̅� with semi 

symmetric metric connection, so we have from above equation 

2𝐵ℎ(𝑋, 𝑌) = 𝑄∇𝑌(∅𝑋) − 𝑄𝐴∅𝑌𝑋.                                                          (4.15)                                                                                                       

Using definition of mixed geodesic CR-submanifold, we have 

           𝑄∇𝑌(∅𝑋) − 𝑄𝐴∅𝑌𝑋 = 0. 

𝑄∇𝑌∅𝑋 = 𝑄𝐴∅𝑌𝑋.                                                                                  (4.16)                                                                                                             

From (3.3), we have 

  −𝜂(𝑋)∅𝑄𝑌 − 𝜂(𝑌)∅𝑄𝑋 + ∅𝑄(∇𝑋𝑌) + ∅𝑄(∇𝑌𝑋) + 2𝐶ℎ(𝑋, 𝑌)   

   = ℎ(𝑋, ∅𝑃𝑌)ℎ(𝑌, ∅𝑃𝑋) + ∇𝑋
⊥(∅𝑄𝑌) + ∇𝑌

⊥(∅𝑄𝑋).       (4.17) 



484                             MOBIN AHMAD, SHADAB AHMAD KHAN, TOUKEER KHAN 

Using (4.16) in (4.17), we have 

∅𝑄∇𝑋(∅𝑁) = ∇𝑋
⊥𝑁.                                                                                (4.18)                                                                                                                               

Then by definition of parallelism of 𝑁, we have 

            ∅𝑄∇𝑋(∅𝑁) = 0. 

Consequently, we have 

∇𝑋(∅𝑁) ∈ 𝐷                                                                                         (4.19)                                                                                                                                                                    

for all 𝑋 ∈ 𝐷. 

Converse part is a easy consequence of (4.19).                                                            
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