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Abstract. CR-submanifolds of nearly hyperbolic Sasakian manifold with a semi-symmetric metric connection are
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1. Introduction
Let V be a linear connection in an n-dimensional differential manifold M. The connection V is
metric connection if there is a Riemannian metric g in M such that Vg = 0, otherwise it is non-
metric. Friedmann and Schouten [11] introduced the concept of semi-symmetric linear
connection. A linear connection V is said to be semi-symmetric connection if its torsion tensor T
is of the form [13]

T(X,Y) = n(¥)X —n(X)Y,
where 1 is 1-form. Some properties of semi-symmetric metric connection are studies in [2], [4],
[13], [18].
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A. Bejancu introduced the concept of CR-submanifolds of Kaehler manifold as a generalization
of invariant and anti-invariant submanifolds [5]. Since then, several papers on Kaehler manifolds
were published. CR-submanifolds of Sasakian manifold was studied by C.J. Hsu in [14] and M.
Kobayashi in [17]. Yano and Kon [22] studied contact CR-submanifolds. Later, several
geometers (see, [3], [4], [6], [20]) enriched the study of CR-submanifolds of almost contact
manifolds. The almost hyperbolic (f, &, n, g)-structure was defined and studied by Upadhyay and
Dube [21]. CR-submanifolds of trans-hyperbolic Sasakian manifold studied by Bhatt and Dube
[8]. On the other hand, S. Golab [12] introduced the idea of semi-symmetric and quarter
symmetric connections. The first author and S.K. Lovejoy Das [10] studied CR-submanifolds of
LP-Sasakian manifold with semi-symmetric non-metric connection. CR-submanifolds of a nearly
hyperbolic Sasakian manifold admitting a semi-symmetric semi-metric connection were studied
by M.D. Siddiqgi and S. Rizvi [3]. Motivated by studies [1, 2, 3, 9, 16, 18], in this paper we study
some properties of CR-submanifolds of a nearly hyperbolic Sasakian manifold with a semi-
symmetric metric connection.

The paper is organized as follows. In section 2, we give a brief description of nearly hyperbolic
Sasakian manifold with a semi-symmetric metric connection. In section 3, some properties of
CR-submanifolds of nearly hyperbolic Sasakian manifold are investigated. In section 4, some
results on parallel distribution on & —horizontal and & —vertical CR- submanifolds of a nearly

Sasakian manifold with a semi-symmetric metric connection are obtained.

2. Preliminaries
Let M be an n-dimensional almost hyperbolic contact metric manifold with the almost
hyperbolic contact metric structure(®,¢,n, g), where a tensor @ of type(1,1), a vector field &

called structure vector field, n the dual 1-form of ¢ and g is Riemannian metric satisfying the

followings:
0°X = X +n(X)¢, g9(X, &) = nX), (2.1)
né)=-1, 08¢ =0 nod=0, (2.2)
9(0X,0Y) = —gX,Y) —n(On(Y) (2.3)

for any X, Y tangent to M [7]. In this case
9(@X,Y) = —g(8Y,X). (2.4)
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An almost hyperbolic contact metric structure (@,£,n,g) on M is called hyperbolic Sasakian
manifold if and only if
(Vx@)Y = g(X,Y)§ — n(¥)X, (2.5)
Vxé = 0X (2.6)
for all tangent vectors X,Y and a Riemannian metric g and Riemannian connection V on
manifold M. Further, as a consequence of (2.5), an almost hyperbolic contact metric manifold M
with (@, &,n, g) — structure is called a nearly hyperbolic Sasakian manifold if
(Vx@)Y + (Vy@)X = 29(X,Y)§ —n(X)Y — n(¥)X. (2.7)
Now, Let M be a submanifold immersed in M, the Riemannian metric g induced on M.
Let TM and T*M be the Lie algebra of vector fields tangential to M and normal to M
respectively and V* be the induced Levi-Civita connection on M, then the Gauss and Weingarten
formulae are given respectively by
VyY = VY + h(X,Y), (2.8)
VyN = —AyX + V3N (2.9)
forany X,Y € TM and N € T*-M, where V* is a connection on the normal bundle T+M, h is the

second fundamental form and Ay is the Weingarten map associated with N as

g(h(X,Y),N) = g(AyX,Y). (2.10)
Any vector X tangent to M is given as
X =PX +0QX, (2.12)

where PX € D and QX € D*.
For any N normal to M, we have

@N = BN + CN, (2.12)
where BN (resp.CN) is the tangential component (resp. normal component) of @N.
Now, we define a semi-symmetric metric connection

VY = VY + (V)X — g(X,Y)é (2.13)
such that Vxg)(Y,Z) = 0.
From (2.13) and (2.7), we have
(VxB)Y + B(VyY) = (V@)Y + B(VxY) — g(X, BY)E.

Interchanging X and Y, we have

(Vy®)X + 0(VyX) = (VyB)X + B(VyX) — g(Y, DX)E.



476 MOBIN AHMAD, SHADAB AHMAD KHAN, TOUKEER KHAN

Adding above two equations, we get
(V@)Y + (Vy®)X 4+ 8(VxY — Vi Y) + 8(Vy X — VyX) = (VxB)Y + (VyB)X
—9(X,0Y)§ — g(¥, 0X)¢.
Using equation (2.2), (2.4), (2.7) and (2.13) in above equation, we have
(Vx@)Y + (V@)X = 29(X,Y)§ —n(X)Y

— (V)X —n(X)QY —n(Y)0X. (2.14)
From (2.6) and (2.13), we have
Vié =0X — X —nX). (2.15)

An almost hyperbolic contact metric manifold with almost hyperbolic contact structure
(@,&,n, g) is called nearly hyperbolic Sasakian manifold with semi-symmetric metric connection
if it satisfies (2.14) and (2.15).
In view of (2.8) and (2.9) and (2.13), Gauss and Weingarten formulae for a nearly hyperbolic
Sasakian manifold with semi-symmetric metric connection are given by
VY =V, Y + h(X,Y), (2.16)
VyN = —ApyX + V3N. (2.17)

Definition 2.1. An m-dimensional submanifold M of an n-dimensional nearly hyperbolic
Sasakian manifold M is called a CR-submanifold [3] if there exists a differentiable distribution
D:x - D, on M satisfying the following conditions:

(1) the distribution D is invariant under @, thatis @D, c D, foreachx € M,

(i)  the complementary orthogonal distribution D+ of D is anti-invariant under @, that is

@Dt c T+M forall x € M.

If dim Di = 0 (resp., dim D, = 0), then the CR-submanifold is called an invariant (resp., anti-
invariant) submanifold. The distribution D (resp., D1) is called the horizontal (resp., vertical)

distribution. Also, the pair (D,D*) is called & — horizontal (resp.,vertical),if &y € Dy
(resp., &y € Dy).

3. Some Basic Results
Lemma 3.1. If M be a CR-submanifold of a nearly hyperbolic Sasakian manifold M with a semi
symmetric metric connection. Then

29(X,Y)PE —n(X)PY — n(Y)PX — n(X)@PY — n(Y)DPX + @P(VyY)
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+@P(VyX) = PVx(@PY) + PVy(@PX) — PAgoyX — PAgoxY, (3.1)
2g(X,Y)Q¢ —n(X)QY —n(Y)QX + 2Bh(X,Y) = QVx(DPY) + QVy(DPX)
—QAgorX — QApoxY, (3.2)
—n(X)PQY —n(Y)PQX + 0Q(VxY) + 0Q(VyX) + 2Ch(X,Y) = h(X, @PY)
+h(Y,BPX) + Vx(BQY) + V#(80X) (3.3)
forall X,Y € TM.
Proof. From (2.11), we have
@Y = @PY + @QY.
Differentiating covariantly and using equation (2.16) and (2.17), we have
(V4®)Y + 0(VxY) + Oh(X,Y)
= Vx(BPY) + h(X,BPY) — AgoyX + V§(BQY).
Interchanging X and Y in above equation, we have
Vy®)X + 0(VyX) + Oh(Y, X)
= Vy(BPX) + h(Y,BPX) — AgoxY + V§(BQX).
Adding above two equations, we obtain
VDY + (Vy®)X + 0(VyY) + 0(VyX) + 20h(Y, X)
= V4 (@PY) + V4 (®PX) + h(X, ®PY) + h(Y, OPX)
—AgoyX — AgoxY + V3 (BQY) + Vi (BQX).
Adding (2.14) in above equation, we have
29X, Y)$ =n()Y —=n()X —nX)BY —n(¥)DX + @(VY) + 8(VyX)
+20h(X,Y) = Vx@PY + Vy@PX + h(X,BPY) + h(Y,BPX) — Agor X
—AgoxY + Vx@8QY + Vy 0QX.
Using equations (2.11) and (2.12) in above equation, we have
2g(X,Y)PE +2g9(X,Y)Q$ —n(X)PY —n(X)QY —n(Y)PX —n(¥Y)QX
—n(X)BPY — n(X)BQY — n(Y)BQX + @PVyY + @QVyY + OPV, X
+0QVyX + 2Bh(X,Y) + 2Ch(X,Y) = PV4®PY + QVx@PY + PV, @PX
+QVy@PX + h(X, OPY) + h(Y,®PX) — PAgoyX — QAgoyX — PAgoxY
—QApoxY + Vx®QY + V3 0QX. (3.4)

Comparing tangential, vertical and normal components in (3.4), we get desired results.
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Lemma 3.2. If M be a CR-submanifold of a nearly hyperbolic Sasakian manifold M with semi
symmetric metric connection. Then
2(Vy@)Y = 2g(X,Y)é —n(X)Y —n(Y)X —n(X)BY —n(Y)DX +Vx@Y
—Vy®X + h(X,0Y) — h(Y,0X) - B[X,Y],  (35)
2(Vy@)X = 29(X,V)éE —n(X)Y —n(Y)X —n(X)QY —n(Y)BX+V,0X
—Vx@Y + h(Y,0X) — h(X,0Y) + 0[X,Y] (3.6)
forall X,Y € D.

Proof. From Gauss formula (2.16), we get

V@Y — Vy0X = V4, 0Y — Vy,0X + h(X, 0Y) — h(Y, 0X). (3.7)
Also, by covariant differentiation, we have
V@Y —V,0X = (Vy®)Y — (Vy,0)X + B[X,Y]. (3.8)

From (3.7) and (3.8), we get
V@)Y — (Vy®)X = V4 0Y — V,0X + h(X,0Y) — h(Y,8X) — @[X, Y]. (3.9)
Adding (3.9) and (2.14), we have
2(V4@)Y =2g(X,Y)E —n(X)Y —n()X —n(X)OY —n(Y)DX+V,0Y
—Vy@X + h(X,0Y) — h(Y,0X) — O[X,Y]
Subtracting (3.9) from (2.14), get
2(Vy®)X = 29X, Y)E —n(X)Y —n(V)X —n(X)QY — n(Y)PX+V,0X
—Vx0Y + h(Y,0X) — h(X,0Y) + O[X,Y]
forall X,Y € D.
Corollary 3.3. If M be a ¢ — vertical CR-submanifold of a nearly hyperbolic Sasakian manifold
M with semi-symmetric metric connection. Then
2(Vy®)Y = 2g(X,Y)é + V@Y — Vo 0X + h(X,8Y) — h(Y,0X) — @[X, Y]
2(Vy®)X = 29(X,Y)E + Vy0X — V@Y + h(Y,0X) — h(X,@Y) + @[X, Y]
forall X,Y € D.

Lemma 3.4. If M be a CR-submanifold of a nearly hyperbolic Sasakian manifold M with semi
symmetric metric connection. Then
2(Vx@)Y = 2g(X,Y)E —n(X)Y —n(V)X — n(X)BY —n(Y)BX+AsxY
—AgyX + V@Y — V$@X — @[X, Y] (3.10)
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—AgxY + Vy@X — V3@Y + 0[X, Y] (3.11)

forall X,Y € D*.
Proof. For X,Y € D+, from Weingarten formula (2.17), we have
V@Y — VyBX = ApxY — Agy X + V50BY — VE0X
Comparing equations (3.12) and (3.8), we have
(Vx®)Y — (Vy®)X + O[X, Y] = ApxY — AgyX + V@Y —V30X
(Vx®)Y — (Vy @)X = ApxY — Agy X + V¥@Y — V30X — @[X, Y]
Adding (3.14) and (2.14), we get
2(Vx@)Y = 2g(X,Y)¢ —n(X)Y —n(Y)X — n(X)BY — n(Y)BX+AyxY
—AgyX + V@Y — Vi 0X — @[X, Y]
Subtracting (3.14) from (2.14), we get
2(Vy@)X = 2g(X,Y)§ —n(X)Y —n(V)X —n(X)BY — n(Y)BX+Apy X
—AgxY + Vy0X — V¥0Y + @[X, Y]
forall X,Y € D*.

(3.12)

(3.13)
(3.14)

Corollary 3.5. If M be a & — horizontal CR-submanifold of a nearly hyperbolic Sasakian

manifold M with semi symmetric metric connection. Then
2(Vx@)Y = 2g(X,Y)E+AgxY — AgyX + Vx0Y — Vi0X — O[X, Y],
2(Vy®)X = 2g(X,Y)E+Agy X — AgxY + V30X — Vx0Y + O[X, Y]
forall X,Y € D*.

Lemma 3.6. If M be a CR-submanifold of a nearly hyperbolic Sasakian manifold M with semi

symmetric metric connection. Then
2(Vx@)Y = 2g(X,Y)§ —n(X)Y —n(N)X —n(X)BY —n(Y)PX—Agy X
+V+0Y — V60X — h(Y,0X) — 0[X,Y],
2(Vy®)X = 2g(X,Y)§ = n(X)Y —n(N)X —n(X)BY — n(Y)BX+AgyY
—Vx®Y + Vy@X + h(Y,0X) + O[X, Y]
forall X e DandY € D*.
Proof. Let X € D and Y € D+, then from Gauss formula (2.16), we have

(3.15)

(3.16)
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Vy0X = Vy®X + h(Y, 0X).
From Weingarten formula (2.17), we have
Vx@Y = —AgyX + V3 0Y.
Now, from above two equations, we get
VyxBY — Vy0X = —Agy X + V@Y — Vy0X — h(Y, 0X). (3.17)
Comparing equation (3.17) and (3.8), we have
(Vx@)Y — (Vy®)X + B[X,Y] = —Agy X + V3@8Y — V,0X — h(Y, 0X)
—nX)Y.
(V@)Y — (Vy®)X = —AgyX + V3®Y — Vy0X — h(Y,0X) — n(X)Y
—@[X, Y. (3.18)
Adding (3.18) and (2.14), we have
2(Vx@)Y = 2g(X,Y)§ —n(X)Y —n(V)X —n(X)BY — n(Y)BX—Agy X
+V5@Y — V80X — h(Y,0X) — 0[X,Y].
Subtracting (3.18) from (2.14), we find
2(Vy®)X = 2g(X,Y)¢ —n(X)Y —n(Y)X —n(X)BY —n(Y)BX+Ag X
—Vx®Y + Vy@X + h(Y, 0X) + O[X,Y]
forall X e DandY € D*.

Corollary 3.7. If M be a & — horizontal CR-submanifold of a nearly hyperbolic Sasakian
manifold M with semi symmetric metric connection. Then
2(Vg@)Y = 2g(X,Y)é —n(X)Y —n(X)QY—Agy X + V¥@Y — V, 60X
—h(Y,0X) — 0[X,Y],
2(Vy @)X = 2g(X,Y)E —n(X)Y —n(X)BY +Agy X — V¥0Y + V, 60X
+h(Y,0X) + 0[X,Y]
forall X € D and Y € D,

Corollary 3.8. If M be a & — vertical CR-submanifold of a nearly hyperbolic Sasakian manifold
M with semi symmetric metric connection. Then
2(Vx@)Y = 2g(X,Y)§ —n(V)X —n(Y)BX—Agy X + Vx@Y — Vy0X
—h(Y,0X) — Q[X,Y],
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2(Vy@)X = 29(X,V)éE —n(Y)X —n(Y)BX+Agy X — V£BY + V, 60X
+h(Y,0X) + 0[X,Y]
forall X € DandY € D*.

4. Parallel Distributions
Definition 4.1. The horizontal (resp., vertical) distribution D(resp., D1) is said to be parallel [7]
with respect to the connection Von M if VyY € D(resp.,V,W € D*) for any vector field
X,Y € D (resp.,W,Z € D).

Theorem 4.2. Let M be a & — vertical CR-submanifold of a nearly hyperbolic Sasakian
manifold M with semi symmetric metric connection. Then
h(X,®Y) = h(Y, 8X) (4.1)
forany X,Y € D.
Proof. Using parallelism of horizontal distribution D, we have
V@Y €D and Vy0X € D, (4.2)
forall X,Y € D. From (3.2), we have
2g(X,Y)Q§ —n(X)QY —n(Y)QX + 2Bh(X,Y) = QVx(QPY)
+QVy (OPX) — QApoyX — QAgoxY-

As Q is a projection operator on D+, so we have

gX,Y)¢+ Bh(X,Y) = 0. (4.3)
As we know from (2.12), we have
Oh(X,Y) = —g(X,Y)é + Ch(X,Y). (4.4)

Now, from (3.3) we have
-n(X)OQY —n(Y)PQX + 0Q(VxY) + 0Q(VyX) + 2Ch(X,Y)
= h(X,®PY) + h(Y,®PX) + V3 (0QY) + Vi (0QX).

As Q is a projection operator on D+, we have

h(X,®8Y) + h(Y,0X) = 2Ch(X,Y).
Using equation (4.4) in above, we have

h(X,0Y) + h(Y,0X) = 20h(X,Y) + 2g(X,Y)¢. (4.5)

Replacing Y by @Y in (4.5), we have

h(X,82Y) + h(@Y, 8X) = 20h(X,8Y) + 2g(X, @Y)E.
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Using (2.1), we have

h(X,Y) + h(®Y,0X) = 20h(X,0Y) + 2g9(X, BY)¢E. (4.6)
Similarly, replacing X by @X in (4.5) and using (2.1), we have
h(@X,0Y) + h(Y,X) = 20h(0X,Y) + 2g9(DX,Y)¢E. 4.7)

Comparing (4.6) and (4.7), we have

20h(X,0Y) + 2g9(X,0Y)E = 20h(0X,Y) + 2g(BX,Y)E.
Appling @ both side, we have

B2h(X,0Y) + g(X, 0Y)D¢ = O*h(0X,Y) + g(BX,Y)BE.
Using equation (2.2) in above, we have

h(X,0Y) = h(0X,Y)
forall X,Y € D.

Theorem 4.3. Let M be a & — vertical CR-submanifold of a nearly hyperbolic Sasakian
manifold M with semi symmetric metric connection. If the distribution D+ is parallel with
respect to the connection on M, then
AgxY + AgyX € D* (4.8)
forall X,Y € D*.
Proof. Let X,Y € D+, then from Weingarten formula (2.17), we have
(Vx@)Y = —Agy X + V@Y — 0(V,Y).

Using Gauss equation (2.16) in above, we have

(Vx@)Y = —Agy X + Vx®Y — B(VxY) — Bh(X,Y). (4.9)
Interchanging X and Y, we have
(Vy®)X = —ApxY + V30X — @(VyX) — Oh(Y, X). (4.10)

Adding (4.9) and (4.10), we get
(VxD)Y + (Vy@)X = —ApyX — AgxY + VE0OY + VX — @(V4Y)
—@(VyX) — 20h(X,Y). (4.11)
Using (2.14) in (4.11), we have
2g(X,V)§ = (XY — (V)X —n(X)BY — n()BX = —AgyX — AgxY
+Vx@Y + V30X — @(VxY) — B8(VyX) — 20h(X,Y). (4.12)
Taking inner product with Z € D in (4.12), we have
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29(X,Y)9(&,2) —n(X)g(Y,Z) —n(Y)g(X,Z) —n(X)g(9Y,Z)
—n(Y)g(@X,Z) = —g(ApyX,Z) — g(ApxY.Z) + g(VxBY,Z)
+g(V¥0X,Z) — g(B(VxY),Z — g(@(VyX), Z) — 2g(Bh(X,Y), Z).
If D+ is parallel then VyY € D+ and V, X € D+, so that from above equation,
0=—g(AgyX,Z) — g(ApxY,Z).

g(Agy X + ApxY,Z) = 0. (4.13)
Consequently, we have

AgyX + AgxY € D* (4.14)
forall X,Y € D*.

Definition 4.4. A CR-submanifold is said to be mixed-totally geodesic if

h(X,Y)=0, forall Xe DandY € D",
Definition 4.5. A normal vector field N # 0 is called D — parallel normal section  if VxN =
0 forall X € D.

Theorem 4.6. Let M be a mixed totally geodesic ¢ — vertical CR-submanifold of a nearly
hyperbolic Sasakian manifold M with semi symmetric metric connection. Then the normal
section N € @D is D — parallel if and only if V,@N € D forall X € D.
Proof. Let N € @D+, forallX € DandY € D+ then from (3.2), we have
2g(X,Y)Q¢ —n(X)QY —n(Y)QX + 2Bh(X,Y) = QVx(DPY) + QVy(BPX) — QApqrX —
QAgoxY
As M is a & — vertical CR-submanifold of a nearly hyperbolic Kenmotsu manifold M with semi
symmetric metric connection, so we have from above equation
2Bh(X,Y) = QVy(8X) — QAgyX. (4.15)
Using definition of mixed geodesic CR-submanifold, we have
QVy(0X) — QAgyX = 0.
QVy®X = QAgyX. (4.16)
From (3.3), we have
—n(X)PQY —n(Y)PQX + 0Q(VxY) + 8Q(VyX) + 2Ch(X,Y)
= h(X,OPY)h(Y,®PX) + Vx(@®QY) + V¢(0QX).  (4.17)
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Using (4.16) in (4.17), we have

@QV,(BN) = VEN. (4.18)

Then by definition of parallelism of N, we have

Consequently, we have

Vx(®N) € D (4.19)

forall X € D.

Converse part is a easy consequence of (4.19).
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