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Abstract. The paper Chaos synchronization using Backstepping control method of   two systems studied the 

performance of synchronization between master and slave system by using single controller. The advantage in many 

application is that only one controller is used no matter how much the dimensions are there in the system to be 

synchronized. 
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I.  INTRODUCTION 

After the pioneering work on the chaos control [1-2], synchronization attract the wide attention. 

Generally, two systems are used in synchronization one master as an input system and other is 

slave as an output System. Synchronization becomes a very active area of interest in the 

nonlinear science and in the area of applied mathematics and automation engineering [7-13]. 

Many more application as secure communication [3-6] the topic of synchronization has various 

application. Different effective methods are used for the different chaotic systems which are 

based on the different methods Recently backstepping and active control method gain the 

popularity in the area of synchronization as these methods are more powerful and effective. For 

strict feedback systems it is effective in global stabilities, tracking, and transient performance. 

When the key parameters unknown, transformation of many chaotic system into non-

autonomous form including Duffing oscillator, Rossler system, Chen system and Chua’s circuit, 
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has been studied and to control these chaotic systems the backstepping control schemes have 

been employed. In recent year this method has importance in hydraulic servo system [15], 

backstepping Decision and fractional derivative equation [14]. Among other applications 

recursive procedure has importance in to demonstrate to control a third-order phase-locked 

loops.With the design of the controller the backstepping method is effective to choice of 

lyapunov exponent. Through the transmission of the signal the trajectory of slave system 

approaches asymptotically to the trajectory of master system which is input system so that the 

error dynamics converges to zero. When several single oscillators are coupled together then a 

complicated system is obtained. For the study of these types of oscillators complex variables are 

used which are more convenient. Based on Lyapunov function for determination of the 

controllers the backsteeping technique is used and also for synchronize two identical chaotic 

system. In this paper, between two chaotic systems for achieving the global synchronization we 

design backstepping control method. This presentation is divided in sections: In Section II, 

formulation of the problem is introduced.in III. Design for chaos synchronization and 

methodology is presented. SectionIV, deals with numerical simulation results. Section V, 

presented finally the simulation results. 

 

II. PROBLEM FORMULATION 

    Consider the system of the form 

 𝑥1̇ = 𝑓1 ( 𝑥1, 𝑥2 ) 

 𝑥2̇ = 𝑓2 ( 𝑥1, 𝑥2, 𝑥3 ) 

 𝑥�̇� = 𝑓𝑛  ( 𝑥1, 𝑥2 , 𝑥3, … … . 𝑥𝑛)                   (1.1) 

In the system (1.1) the function  𝑓1 is the linear function and the functions used ( 𝑓2……𝑓𝑛) are 

the nonlinear function . The input system (1.1) is considered as an master system. 

Now consider the another system which is taken as output system as that is the slave system 

 𝑦1̇ = 𝑓1 ( 𝑦1, 𝑦2 ) 

 𝑦2̇ = 𝑓2 ( 𝑦1, 𝑦2, 𝑦3 ) 

 𝑦�̇� = 𝑓𝑛  ( 𝑦1, 𝑦2 , 𝑦3, … … . 𝑦𝑛) +𝑢                (1.2) 

System (1.2) is the output that is slave system of system (1.1) and  𝑢 is an controller by assuming 

the appropriate value of the controller between two system that is master and slave 

synchronization is obtained. 
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For the two systems (1.1) and (1.2) considering the error dynamical system as 

 𝑒𝑖 =  𝑦𝑖 − 𝑥𝑖                                                     (1.3) 

After subtracting  (1.2) and (1.1) the error system becomes 

 𝑒1̇ = ℎ1 ( 𝑒1, 𝑒2 ) 

 𝑒2̇ = ℎ2 ( 𝑒1, 𝑒2, 𝑒3, 𝑥1, 𝑥2, 𝑥3 ) 

 𝑒�̇� = ℎ𝑛  ( 𝑒1, 𝑒2 , 𝑒3, … … . 𝑒𝑛,𝑥1, 𝑥2 , 𝑥3, … … . 𝑥𝑛) +𝑢                (1.4) 

the function  ℎ1 is the linear function and the functions used ( ℎ2……ℎ𝑛) are the nonlinear 

function with inputs of system (1.1) that is (𝑥1, 𝑥2 , 𝑥3, … … . 𝑥𝑛). Now choosing of appropriate 

value of the controller 𝑢 is the problem so that drive and response system are synchronized and 

error vector becomes zero when time is increased. In this paper our objective is achieved by 

using backsteeping method. 

 Theorem 1(a):- LaSalle-Yoshizawa theorem 

       Let  𝑥 = 0  be an equilibrium point of 

              �̇�    =   𝑓 (𝑥, 𝑢)  

       Let  𝑣(𝑥) be a continuous differentiable positive definite and radially unbounded function 

such that 

             𝑣 =  
𝜕𝑣

𝜕𝑥
  𝑓(𝑥, 𝑡) ≤  −𝑤(𝑥) ≤ 0 

Where  𝑤 is a continuous function. Then all solution of   �̇�    =   𝑓 (𝑥, 𝑢) are globally uniformly 

bounded and satisfy lim
𝑡→∞

𝑤(𝑥(𝑡)) = 0  

 

III. Backstepping design for synchronization of two systems 

 In this section for chaos synchronization Backstepping method is designed which produces     

 Reliable performance of the control method for chaos synchronization. 

𝑥1̇ = ∝(𝑥2 − 𝑥1) 

𝑥2̇ =(𝛶−∝)𝑥1 −𝑥1𝑥3 + 𝛶𝑥2 

𝑥3̇ = −β𝑥3 −δ𝑥4 +𝑥1𝑥2 

 𝑥4̇ = −𝑑𝑥4 + 𝑓𝑥3 + 𝑥1𝑥2                                       (1.5) 

And the response system is:- 

𝑦1=̇  ∝(𝑦2−𝑦1) 

𝑦2= ̇  𝑏𝑦1 − 𝑐𝑦2−𝑦1𝑦3  



1136                                         AYUB KHAN, NET RAM GARG, GEETA JAIN 

𝑦3= ̇  𝑦1
2 − 𝑑𝑦3                                (1.6) 

𝑦4=̇ −𝑦1𝑦3 −δ𝑦4 + 𝑢   

Where 𝑢  is the controller . The given system has the error dynamics as 

𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖  

𝑒1 = 𝑦1 − 𝑥1  

𝑒2 = 𝑦2 − 𝑥2  

𝑒3 = 𝑦3 − 𝑥3  

𝑒4 = 𝑦4 − 𝑥4                                    (1.7) 

And the system 

𝑒1̇ = 𝑦1̇ − 𝑥1̇  

𝑒2̇ = 𝑦2̇ − 𝑥2̇  

𝑒3̇ = 𝑦3̇ − 𝑥3̇  

𝑒4̇ = 𝑦4̇ − 𝑥4̇                                     (1.8) 

Thus  

𝑒1̇ = −∝(𝑥2 − 𝑥1)+ ∝(𝑦2−𝑦1) 

𝑒1̇ =∝(𝑒2 − 𝑒1) 

𝑒2̇ =  𝑏𝑦1 − 𝑐𝑦2−𝑦1𝑦3 −(𝛶−∝)𝑥1 +𝑥1𝑥3 − 𝛶𝑥2  

𝑒2̇ =  𝑏𝑒1 + 𝑥1(𝑏 − 𝛶+∝)−𝑐𝑒2 − 𝑥2(𝑐 + 𝛶) − 𝑒3(𝑒1 + 𝑥1)−𝑒1𝑥3 

𝑒3̇ = 𝑦1
2 − 𝑑𝑦3  +β𝑥3 +δ𝑥4 −𝑥1𝑥2     

𝑒3̇ = 𝑒1
2 +𝑥1

2 + 2𝑒1𝑥1 − 𝑑𝑒3+𝑥3(β−𝑑)+𝛿𝑥4 − 𝑥1𝑥2 

𝑒4̇ = −𝑦1𝑦3 −δ𝑦4 + 𝑢 +𝑑𝑥4 − 𝑓𝑥3 − 𝑥1𝑥2    

𝑒4̇ =  −  𝑒3  (𝑒1 +  𝑥1 )  − 𝑥3 (𝑒1 + 𝑓 + 𝑥1  )−  δ𝑒4 − 𝑥4 (𝛿 − 𝑑 )+𝑢 −   𝑥1𝑥2      (1.9) 

System (1.9) exist an equilibrium (0,0,0,0) when there is no controller,then the synchronization 

problem of  the drive (input)-response (output) system would be reduced to that of asymptotic  

stability of system (1.9). Thus, the main aim  is to find a controller  u such that system (1.9) is 

stabilized at the origin. The stability of system considered as : 

𝑒1̇ =∝(𝑒2 − 𝑒1) 

And assuming  that  ∝(𝑒2 − 𝑒1) as a virtual control function , for the virtual control  ∝(𝑒2 − 𝑒1) 

function designed an estimate stabilizing function ∝1 𝑒1. 

Now   Lyapunov function is chosen such that 
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𝑣1(𝑒1)=
1

2
(𝑒1

2) 

The derivative is 

𝑣1̇(𝑒1) = 𝑒1̇𝑒1 

For  𝑣1(𝑒1 ) to be negative definite, then, 𝑒1̇ = −𝑒1, so that 

𝑣1̇(𝑒1)= − 𝑒1
2  < 0 

Thus. ∝1 (𝑒1) = −𝑒1   , when   ∝(𝑒2 − 𝑒1) is considered as a controller then function  ∝1 𝑒1 is an 

estimate control function . Let us consider 

𝑤2 = 𝑒2 + 𝑒1  

𝑤2 = 𝑒2 −∝1 (𝑒1 ) 

𝑒2 = 𝑤2 − 𝑒1                                                (1.10) 

and consider the subspace (𝑒1, 𝑤2) given by 

𝑒1̇ =∝(𝑒2 − 𝑒1) 

𝑒2̇ =  𝑏𝑒1 + 𝑥1(𝑏 − 𝛶+∝)−𝑐𝑒2 − 𝑥2(𝑐 + 𝛶) − 𝑒3(𝑒1 + 𝑥1)−𝑒1𝑥3 

𝑒2̇ =  𝑒1(𝑏 + 𝑐)+𝑥1 (𝑏 − 𝛶 + 𝛼)−𝑐𝑤2 −𝑥2(𝑐 + 𝛶)−𝑒3(𝑒1 + 𝑥1) – 𝑒1𝑥3           (1.11) 

 As virtual controller in system is ∝(𝑒2 − 𝑒1) and assume that when ∝(𝑒2 − 𝑒1)  = ∝1(𝑒1,𝑤2) 

system (1.11) is made asymptotically stable. Choose the Lyapunov   function 

𝑣2(𝑒1, 𝑤2) = 𝑣1 (𝑒1) + 
1

2
(𝑤2

2)                                (1.12) 

for subspace above. The derivative of (1.12) is given by 

𝑣2(̇ 𝑒1, 𝑤2)̇̇ = 𝑣1̇(𝑒1̇) +𝑤2𝑤2̇ 

𝑣2(̇ 𝑒1, 𝑤2)̇̇  = −𝑒1
2 − 𝑤2

2 + 𝑤2[𝑒1(𝑏 + 𝑐)+𝑥1 (𝑏 − 𝛶 + 𝛼)−𝑐𝑤2 −𝑥2(𝑐 + 𝛶)−𝑒3(𝑒1 + 𝑥1) 

– 𝑒1𝑥3+∝(𝑒2 − 𝑒1)] 

If ∝1(𝑒1,𝑤2)= −[ 𝑒1(𝑏 + 𝑐)+𝑥1 (𝑏 − 𝛶 + 𝛼)−𝑐𝑤2 −𝑥2(𝑐 + 𝛶)−𝑒3(𝑒1 + 𝑥1) – 𝑒1𝑥3] 

Then 

∝(𝑒2 − 𝑒1) = −[ 𝑒1(𝑏 + 𝑐)+𝑥1 (𝑏 − 𝛶 + 𝛼)−𝑐𝑤2 −𝑥2(𝑐 + 𝛶)−𝑒3(𝑒1 + 𝑥1) – 𝑒1𝑥3] 

And the subspace 

𝑣2̇(𝑒1, 𝑤2) = −𝑒1
2 − 𝑤2

2 < 0                                      (1.13) 

This is negative definite. Consider the error dynamics 𝑤3 as 

𝑤3 = −∝2(𝑒1,𝑤2)+𝑒3 

 Now discuss the full dimension space (𝑒1, 𝑤2, 𝑤3) 

𝑒1̇ = −[ 𝑒1(𝑏 + 𝑐)+𝑥1 (𝑏 − 𝛶 + 𝛼)−𝑐𝑤2 −𝑥2(𝑐 + 𝛶)−𝑒3(𝑒1 + 𝑥1) – 𝑒1𝑥3] 
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𝑒1̇ =∝(𝑒2 − 𝑒1) 

𝑤2̇ = 𝑏𝑒1 + 𝑥1 (𝑏 − 𝛶 + 𝛼)−𝑐𝑤2 −𝑥2(𝑐 + 𝛶)−𝑒3(𝑒1 + 𝑥1) – 𝑒1𝑥3 

𝑤3̇ = 𝑒1
2 + 𝑥1

2 +2𝑒1𝑥1 − 𝑑𝑒3 + 𝑥3(β−𝑑)+δ𝑥4 − 𝑥1𝑥2 

𝑤3̇ = 𝑒1
2 + 𝑥1

2 +2𝑒1𝑥1 − 𝑑𝑤3 + 𝑥3(β−𝑑)+δ𝑥4 − 𝑥1𝑥2 

𝑤4̇ = −𝑒3(𝑒1 + 𝑥1)−𝑥3(𝑒1 + 𝑓 + 𝑥1)−𝛿𝑒4 − 𝑥4(δ−𝑑)+𝑢 − 𝑥1𝑥2 

𝑤4̇ = −𝑒3(𝑒1 + 𝑥1)−𝑥3(𝑒1 + 𝑓 + 𝑥1)−𝛿𝑤4 − 𝑥4(δ−𝑑)+𝑢 − 𝑥1𝑥2 

Define the error dynamics 𝑤4as 

𝑤4 = 𝑤4 −∝3 (𝑒1𝑤3) 

𝑤4 = 𝑤4 − (−𝑤3) 

𝑤4̇ = −𝑒3(𝑒1 + 𝑥1)−𝑥3(𝑒1 + 𝑓 + 𝑥1)−δ[𝑒1
2 + 𝑥1

2 +2𝑒1𝑥1 − 𝑑𝑒3 + 𝑥3(β−𝑑)+δ𝑥4+𝑒3(𝑒1 +

𝑥1)+𝑥3(𝑒1 + 𝑓 + 𝑥1)+𝛿𝑒4 + 𝑥4(δ−𝑑)−𝑢]− 𝑥4(δ−𝑑)+𝑢 − 𝑥1𝑥2 

Choose a Lyapunov function 

𝑣4(𝑒1, 𝑤3) = 𝑣3(𝑒1, 𝑤3) +
1

2
𝑤4

2  

If 

𝑢 = −
1

(𝛿+1)
 [𝑒3(𝑒1 + 𝑥1)+𝑥3(𝑒1 + 𝑓 + 𝑥1)+ 𝛿[𝑒1

2 + 𝑥1
2 +2𝑒1𝑥1 − 𝑑𝑒3 + 𝑥3(β−𝑑)+δ𝑥4 +

𝑒3(𝑒1 + 𝑥1)+𝑥3(𝑒1 + 𝑓 + 𝑥1)+ 𝛿𝑒4 + δ𝑥4 − d𝑥4]+ 𝑥4(δ−𝑑)+𝑥1𝑥2] 

Then 

𝑣4(𝑒1, 𝑤3) = −𝑒1
2 − 𝑤3

2 − 𝑤4
2 < 0                 (1.14) 

Is a negative definite . and  according to LaSalle-Yoshizawa theorem 1(a), the equilibrium 

(0,0,0,0) remains asymptotically stable and the error dynamics(𝑒1, 𝑒2, 𝑒3, 𝑒4) will converge to 

zero as t→ ∞. Thus, the  two  system are in the synchronized state. 

 

IV.   NUMERICAL RESULTS 

The values of  initials conditions  𝑥(0) = (0.1,0.1,0.1,0) and by choosing  the values of  

(𝛼, 𝛽, 𝛾, 𝛿, 𝑑, 𝑓, 𝑏, 𝑐) as (0.5,0,1,1,0.1,0.5,10) two equations (1.5) and (1.6) are solved by using 

the MATLAB numerically . The error behaviour is shown by Fig 2(a) to 2(b) with time t, shows 

that the two system are  synchronized as error system converges to zero . Between 𝑥𝑖 and 𝑦𝑖 

where 𝑖 = 1,2, … .4  the time series of signals is shown by Fig3 (a) to 3(d) . For the system (1.5) 

and (1.6) the chaotic behaviour is shown by Fig 1.1(a) to 1.1(d) , by choosing the values of 

(𝛼, 𝛽, 𝛾, 𝛿, 𝑑, 𝑓, 𝑏, 𝑐)  as  (10,10,
8

3
,10,10,10) 
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Fig 1.1(a). Chaotic behaviour of master system between 𝑥1, 𝑥2, 𝑥3 

   

Fig 1.1(b). Chaotic behaviour of master system between 𝑥1, 𝑥2, 𝑥4 

 

Fig 1.1(c). Chaotic behaviour of slave system between 𝑦1, 𝑦2, 𝑦3 
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Fig 1.1(d). Chaotic behaviour of slave system between 𝑦1, 𝑦2, 𝑦4 

 

Fig. 2(a).   Synchronization  between 𝑒1 and  𝑒2, 𝑒3 with time t 
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Fig. 2(b ).   Synchronization  between 𝑒4 and time t 

 

 

 

 

Fig. 3(a).   Synchronization  between 𝑥1 and  𝑦1 with time t 
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Fig. 3(b).   Synchronization  between 𝑥2 and  𝑦2 with time t 

 

Fig. 3(c).   Synchronization  between 𝑥3 and  𝑦3 with time t 

 

Fig. 3(d).   Synchronization  between 𝑥4 and  𝑦4 with time t 
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V.     CONCLUSION 

 Chaos synchronization of two systems is presented in this paper by using Backstepping control 

method.  However, due to the effectiveness of the cost and density with one controller 

backstepping is effective. The advantage of this procedure is that there is only one controller no 

matter how much dimension are there in the system to be synchronized. 
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