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Abstract. In this paper, a new operator is developed for the floating-point genetic algorithms (FPGAs). The

operator records the family tree of chromosomes, searches a convenient time series model on it and forecasts

offspring which will possibly be generated by usual genetic algorithm operators in future generations. A software

package is developed as an implementation and it is freely available for downloading. The results of a suite of

simulation study show that the proposed operator has a statistically significant effect on reaching the global optima

of test functions in many dimensions of search spaces. The results of simulation study also show that the developed

operator increases the search capabilities of GAs when the number of function parameters increase by means of

obtaining the global optimum more precisely.
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1. Introduction

Genetic algorithms (GAs) are parallel search and optimization algorithms that mimic the

principals of natural selection and genetics [18, 14]. Since GAs are not performed directly
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on the goal function to be optimized, they are problem independent. This property makes

GAs fully applicable in many problems and the function under consideration can be discrete

or non-differentiable and even the optimization problem has not a closed mathematical form.

However, they may have many drawbacks such as problem of diversity if the population size

is not pre-determined correctly or initial population is not well-randomized over the search s-

pace. A randomly generated initial population may not have enough information to reach global

optimum using the usual genetic operators such as crossover, mutation and elitism, etc. If the

goal function has several local optima, algorithm may unluckily get stuck on one of them or

the algorithm may return a result near the global optimum as a result of unsuccessful mutation

and crossing-over operations. To cope with this drawbacks, several genetic algorithm param-

eters should be chosen correctly such as population size, crossover and mutation probability,

number of elitist solutions among others and/or some enhanced versions of these operators and

hybridization tools can be attached to the algorithm [33, 35, 31].

In GAs, a randomly initial population of candidate solutions is created. A fitness value is then

calculated for each single solution to measure the qualities of these solutions on optimizing the

goal function. The term cost function is directly related to fitness if the objective function

under consideration is a minimization. Crossover and mutation operators are then applied to

generate new solutions. If the number of elitism is set to a number greater than zero, then best

k solutions are directly copied into the next generation without any modification. It is expected

that the average fitness of a population at current iteration is better than the one at previous

iterations as proved as in the Schemata Theorem [14].

Since the floating-point genetic algorithms (FPGAs) are directly applied on the real-valued

chromosomes instead of binary representations, phenotype-genotype distinction is not neces-

sary. This is why the new types of crossover and mutation operations are developed for the

FPGAs [6, 17, 21, 24, 28]. Although chromosomes coded in lower cardinality alphabets en-

close much information about the search space [15], FPGAs can still be considered as genetic

algorithms even they have phenotype operators [38]. However there are several attempts to

mimic genotype operators using their phenotype counterparts [7, 8, 30].
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Since the genetic operators that used in GAs are totally blind and the population at iteration

t is generated using the population at iteration t−1, they can be modelled using Markov chains

[5, 23]. In some modified GAs, it is suggested to use ancestors of a chromosome in the fitness

calculation process. It is suggested in [26, p.1–23] to use the Modified Fitness Value of a

chromosome c which is defined as

(1) MFV (c) = α× f it +
2

∑
i=1

βi pi +
4

∑
j=1

γ jgp j,

where α , βi and γ j are weights, f it is fitness of c, pi is the fitness of ith parent of c, gp j is

the fitness of jth grand parent of c. Selecting of weights may be either manual or automatic.

Automatic selection of weights requires longer chromosomes to evolve. It is reported in [26,

p.1–23] that the MFV based GAs outperform the classical GAs.

In this paper, we develop a new genetic operator that shares a similar idea used in [26, p.1–

23]. The devised operator simply mimics the genetic inheritance by recording ancestors of chro-

mosomes and applying a statistical forecast to predict future values, namely offspring, which

will possibly be generated by the classical operators in future generations. In other terms, the

devised operator can be seen as directed or controlled crossover and/or mutation operator. The

operator is also a local search operator which linearly extrapolates an offspring using its fam-

ily tree. Using such an operator as a local optimizer makes any GA hybrid. In section 2, we

introduce the statistical model of inheritance. In section 3, we present the whole algorithm. In

Section 4, we perform some simulations on some well-known set of functions to reveal effects

of our algorithm. Finally, in Section 5, we conclude.

2. Inheritance Model

Suppose a stationary time series process in a time domain t = 1,2, ...,N is generated using

the formula

(2) Yt = α0 +α1Yt−1 +α2Yt−2 + ...+αpYt−p + εt
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where Yt is a random variable observed in a point at time t, αi for i = 0,1, ..., p are unknown

parameters, εt is the stochastic error term with zero mean and constant variance. (2) follows

an AR(p) (Auto-Regressive) process in which the random variable of interest is a function of

a constant, its previous values at time t− 1, t− 2, ..., t− p and an error term [2]. Note that the

weak stationary process satisfies that all Yt have constant mean, variance and auto-covariance

parameters over the time. If the data generating process of Yt is

(3) Yt = φ0 +φ1εt−1 +φ2εt−2 + ...+φqεt−q + εt

then (3) is said to be an MA(q) (Moving Average) process in which the random variable of

interest is a function of a constant, current and previous values of an error term. Note that an

ARMA(p,q) model can both include AR and MA terms as in shown in (4).

Yt = α0 +α1Yt−1 +α2Yt−2 + ...+αpYt−p

+φ1εt−1 +φ2εt−2 + ...+φqεt−q + εt(4)

Since a data generating process can be estimated better by using only specific lag terms of

variables, an ARMA(A,B) model can be used instead where A is a set of pi and B is a set of

p j for 0 ≤ i ≤ p and 0 ≤ j ≤ q. An ARMA(A,B) model is a nested model of an ARMA(p,q).

For instance, an ARMA(2, 4, 5) model can be written as shown in (5) and it is nested by the

ARMA(4,5) model which is shown in (6).

(5) Yt = α0 +α1Yt−2 +α2Yt−4 +φ1εt−5 + εt

Yt = α0 +α1Yt−1 +α2Yt−2 +α3Yt−3

+α1Yt−4 +φ1εt−1 +φ2εt−2

+φ3εt−3 +φ4εt−4 +φ5εt−5 + εt(6)

Now suppose a chromosome is generated using its ancestors as
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(7) Ot = f (OM
t−1,O

F
t−1)+δt ,

where Ot is the generated chromosome, OM
t−1 and OF

t−1 are the mother and the father of chro-

mosome Ot , respectively; f (x,y) = (1−ωi)xi + ωiy is the crossover function, δt is the m-

dimensional mutation vector, ωi is a random variable that follows a Uni f orm(0,1) distribution

if the ith gene is selected for crossover, m is the chromosome length and i = 1,2, ...,m. Since

the FPGAs are not sexist, labels M and F are assigned randomly when a selection operator is

applied and an M labelled chromosome would be labelled as F in previous generations or vice

versa. This property takes into account the non-linearity as follows:

(8) Ot =

 f (O(1)
t−1,O

(2)
t−1)+δt , i f O(1)

t−1 is mother

g(O(1)
t−1,O

(2)
t−1)+δt , i f O(2)

t−1 is mother

where g(x,y) = ωix+(1−ωi)y. Equation (8) can be expressed in a single line as

(9) Ot = I× f (O(1)
t−1,O

(2)
t−1)+(1− I)×g(O(1)

t−1,O
(2)
t−1)+δt

where I is a function that returns 1 if Ot−1 is mother, otherwise, returns 0. Note that since the

predicted value of Ot+1 is a function of its whole ancestors, a huge number of parameters should

be estimated depending on the current number of generations including the I parameter which

is discrete.

For simplicity, we suppose the inheritance model is based only on a chromosome’s father or

mother and the omitted ancestor is handled by the error term and its lagged values as shown in

the formula

(10) Ot = α +AR(S1)+MA(S2)+ εt

where S1 and S2 are sets of lagged terms of the chosen ancestor and stochastic error term,

respectively. Once the correct variable set and parameters of model (10) is estimated, the future

value Ot+1 can be predicted. In GAs, it is expected that the average fitness of a population is



ARIMA FORECASTING AS A GENETIC INHERITANCE OPER. IN FPGAS 365

better than the average of a population in previous generations. Since the fitness is a function of

parameters in chromosomes, time series of the parameters are not stationary, that is, at least the

first moment of a time series changes by time. The I term in ARIMA modelling handles this

issue. Addition to this, chromosomes that created by crossover operator extends its ancestors in

previous generations, that is, using a family tree or at least only a branch of tree can be used to

estimate offspring. The AR term in ARIMA modelling stands for this issue. As it is mentioned

before the (10), the other variables that affects the offspring can be summed up by MA terms

which are based on the lagged values of the error term.

Although the simplified model given in (10) presents an intelligent crossover like operator, it is

not that simple to estimate because of unknown lagged term sets of S1 and S2. Auto-correlation

function - ACF and Partial Auto-correlation function - PACF can be manually analysed for

determining the correct MA and AR terms, respectively [3, 22]. Determining the lags of model

(6) is also considered as an optimization problem in the literature. [25] and [11] suggested

to use a genetic algorithm with binary chromosomes of candidate models to identify correct

lag terms by minimizing Schwarz’s (Bayesian) Criterion. [13] devised a 2-stage algorithm in

which a set of integers indicating the lag terms is determined using simulated annealing in the

first stage and estimating the parameters using a genetic algorithm in the second stage. [20]

used a step-wise model selection algorithm and packaged in an R [27] library [37].

The average fitness of a population Pt in generation t is expected to be higher than the average

fitness of Pt−1. If the initial population is well-scattered in the search space, differences between

the average fitness values in early iterations are higher than the ones in later iterations. This

causes the sudden level shifts [12] to be appeared in ancestors of chromosomes in early stages

of GAs. In the design of the operator, we apply robust filtering to extract signals from the time

series of ancestors. Repeated Median, Least Median of Squares Regression, Least Trimmed

Squares Regression and Deepest Regression can be used in robust filtering of signals in time

series data [12, 4].

3. Proposed Algorithm
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The proposed operator consists on recording ancestors of chromosomes, searching a con-

venient ARIMA model on a family tree of chromosomes and applying forecasts to generate

offspring more rapidly before the classical crossover and mutation operators generated them.

We also develop a software package [32] to reveal the effect of the proposed operator. Since the

algorithm requires many linked lists and complex data structures, many parts of the algorithm

are implemented in C++ and the classes and the methods are wrapped in R language using the

Rcpp package [9].

A diagram and the pseudo-code of the proposed algorithm is shown in Figure 1 and Algorithm

1, respectively. The description of the whole algorithm in great detail is as follows: An initial

population of chromosomes is generated using the user-defined ranges for all genes. After

fitness calculations, the best chromosome is selected for ARIMA forecasting. If the length

of the family tree of the selected chromosome is bigger or equal than the minimum forecast

length then the forecast process starts. Each gene of the selected chromosome is forecasted

respect to the probability of forecasting. If a gene is subject to be forecasted, a robust filtering

is applied on the family tree. This process is necessary because of the sudden level shifts in

very early stages of the GAs. After robust filtering, the best ARIMA model is searched and the

new offspring is generated by forecasting using the model. Forecasting the offspring is simply

by-passing the usual crossover and mutation operators, that is, the linear combination of genes

are used to generate future values which will then possibly be generated by the GA operators.

After generating a single offspring, usual crossover and mutation operators are applied using a

tournament selection. Algorithm continues while the stopping criterion is not met.

In our implementation, we use the R packages robfilter [10] for robust filtering stage and

forecast [19] for automatic ARIMA model selection and forecasting, respectively. C++ classes

of Chromosome and Population are wrapped in R language [32].
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FIGURE 1. FPGA with forecast operator
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initialize random population;

while currentIter < maxNumberOfIterations do

calculateFitness(all);

best := applyElitism()[0];

family := getAncestors(best);

offspring := SearchModelAndForecast(family);

calculateFitness(offspring);

selection();

crossover();

mutation();

recordAncestors();

end
Algorithm 1: Pseudo-code of devised algorithm

4. Simulations

We perform a simulation study on a suite of well-known test functions which are previously

used for comparing performances of evolutionary optimization algorithms [16, 34, 36, 29, 1].

These functions are reported in Table 1. As in seen in Table 1, the suite includes both discrete,

continuous and non-differentiable functions in several domains. The common property of these

functions is that they are 0 at their global minimum.

We compare the performances of FPGAs with or without the inheritance operator. Functions

are optimized by the algorithms for p = 10,25,50 parameters. Each single configuration is re-

peated 500 times. We set the crossover and the mutation probability to 1 and 0.05, respectively.

The best chromosome is directly copied into the next population, that is, number of elitism is

1 for all cases. The forecasting probability parameter f cp is set to 0 for classical FPGA. In

order to measure the effect of this operator we set f cp to 0.05. Simulation results are reported

in Table 2, 3 and 4.
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Table 2 summarizes the simulation results that are performed for the 10-parameters versions

of the functions. For each single function, the table includes two rows for the cases in which

the devised operator is whether applied or not. Descriptive statistics of final results returned by

the test functions are also reported. Average values of standard FPGA for Maxmod, Rastrigin,

Rosenbrock and Schaffer are significantly better than the devised GA1. Addition to this, FGPA

with the devised operator has the smallest minimum value except Maxmod. Contrarily, standard

FPGA has a better performance when the maximum values are considered for functions Ackley,

Hyperellipsoid, Levy, Maxmod, Rosenbrock, Schaffer, Sphere and Sumsquares. Differences

between the mean and the median values are considerably small for all rows, that is, algorithms

do not generate extreme results in iterations. It can be said that the GA with the devised operator

is successful in 10 of 14 scenarios when the statistical evidence is considered which is based on

the averages.

Table 3 summarizes the simulation results that are performed for the 25-parameters versions

of the functions. It is shown in Table 3 that the minimum, mean, median and the maximum

values are better when the devised operator is applied for all of the functions. The hypothesis

of equality of location parameters is also rejected2 for all cases after performing the Wilcoxon

test for all test functions. The results reported in Table 4 are similar with the results reported

in Table 3. Addition to this, when the number of parameters p is 50, differences of descriptive

statistics are revealed more clearly. In epitome, applying the devised operator has a significantly

better impact on optimizing the test functions in higher number of dimensions.

5. Conclusion

The idea of including the fitness values of ancestors of chromosomes in selection procedure

is not new. Standard GA operators in floating-point optimization are totally blind. However,

a generated offspring is a linear combination of its parents and a random error term which

1The null hypothesis of equality of location parameters is rejected for all cases for α = 0.01 significance level

using the Wilcoxon test. The alternative hypothesis is inequality of location parameters of final values returned by

the functions

2p-value < 0.01
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Function Definition Domain

Ackley 20exp(−0.2
√

1
n ∑

n
i=1 x2

i )− exp(1
n ∑

n
i=1 cos(2πxi))+20+ e −30≤ xi ≤ 30

Bohachevksy ∑
n
i=1(x

2
i +2x2

i+1−0.3cos(3πxi)−0.4cos(4πxi+1)+0.7) −50≤ xi ≤ 50

Griewank 1+ 1
4000 ∑

n
i=1 x2

i −∏
n
i=1 cos( xi√

i
) −600≤ xi ≤ 600

Holzman ∑
n
i=1 ix4

i −10≤ xi ≤ 10

Hyperellipsoid ∑
n
i=1 ii + x2

i −5.12≤ xi ≤ 5.12

Levy
sin2 (πy0)+

n−2

∑
i=0

(yi−1)2(1+10sin2 (πyi +1))

+(yn−1−1)2(1+ sin2 (2πxn−1))

yi = 1+
xi−1

4

−10≤ xi ≤ 10

Maxmod max(|xi|) −10≤ xi ≤ 10

Multimod ∑
n
i=1|xi|∏n

i=1|xi| −10≤ xi ≤ 10

Rastrigin ∑
n
i=1 x2

i −10cos(2πxi)+10 −5.12≤ xi ≤ 5.12

Rosenbrock ∑
n
i=2 100(xi− x2

i−1)
2 +(1+ xi−1)

2 −10≤ xi ≤ 10

Schaffer ∑
n−1
1 ((x2

i + x2
i+1)

1/4 sin(50(x2
i + x2

i+1)
1/10))2 +1 −100≤ xi ≤ 100

Schwefel ∑
n
i=1{∑

j<i
j=1 xi}2 −10≤ x≤ 10

Sphere ∑
n
i=1 x2

i −10≤ xi ≤ 10

Sumsquares ∑
n−1
i=0 ix2

i −10≤ x≤ 10

TABLE 1. Test Functions Used in Simulations
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Prob Min Mean Median Max Std. Dev. MAD

Ackley 0 0.0579 0.2287 0.2208 0.5719 0.0756 0.0716

0.05 0.0038 0.0734 0.0574 0.7333 0.0689 0.0409

Bohachevsky 0 0.1754 1.7035 1.6385 4.3864 0.6745 0.6985

0.05 0.0015 0.3747 0.1923 3.2220 0.4621 0.2227

Griewank 0 0.0003 0.0025 0.0023 0.0103 0.0013 0.0011

0.05 0.0000 0.0004 0.0002 0.0088 0.0009 0.0002

Holzman 0 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

0.05 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

Hyperellipsoid 0 0.0001 0.0019 0.0018 0.0058 0.0009 0.0008

0.05 0.0000 0.0005 0.0002 0.0149 0.0011 0.0002

Levy 0 0.3372 3.1317 2.8697 9.6854 1.5662 1.4541

0.05 0.0005 2.3189 2.0138 11.1370 2.1362 2.6094

Maxmod 0 0.0148 0.0318 0.0312 0.0686 0.0081 0.0075

0.05 0.0356 0.1489 0.1407 0.4299 0.0552 0.0530

Multimod 0 0.0000 0.0836 0.0872 0.1987 0.0355 0.0261

0.05 0.0000 0.0182 0.0149 0.0938 0.0142 0.0129

Rastrigin 0 0.0825 1.4130 1.2820 6.5973 1.2180 1.2539

0.05 0.0002 1.4272 1.1186 6.4626 1.3441 1.5114

Rosenbrock 0 5.4774 8.1814 8.3045 9.6554 0.5774 0.4317

0.05 0.9982 12.9854 8.1374 153.7519 16.4957 0.8131

Schaffer 0 3.1016 5.0875 5.0796 7.2582 0.6915 0.6448

0.05 1.0455 6.3968 6.0946 14.5236 2.3211 2.1870

Schwefel 0 17.4613 34.0956 32.5590 66.8198 7.9051 6.4944

0.05 0.2968 1.2817 1.1317 4.3681 0.7613 0.6316

Sphere 0 0.0010 0.0074 0.0069 0.0225 0.0035 0.0034

0.05 0.0000 0.0019 0.0008 0.0534 0.0036 0.0009

Sumsquares 0 0.0011 0.0075 0.0069 0.0240 0.0036 0.0033

0.05 0.0000 0.0019 0.0008 0.0367 0.0034 0.0010
TABLE 2. Simulations for p=10
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Prob Min Mean Median Max Std.Dev. MAD

Ackley 0 2.9002 3.7817 3.7926 4.5383 0.2622 0.2639

0.05 0.0228 0.1600 0.1241 1.5651 0.1455 0.0673

Bohachevsky 0 40.4351 79.1801 78.1808 123.5290 13.9832 13.3394

0.05 0.1502 2.2641 1.9431 8.0950 1.4313 1.3431

Griewank 0 0.3901 0.9723 0.9455 1.9924 0.2452 0.2299

0.05 0.0001 0.0018 0.0014 0.0122 0.0015 0.0010

Holzman 0 0.2529 1.2502 1.1423 3.7206 0.5489 0.5072

0.05 0.0000 0.0000 0.0000 0.0006 0.0001 0.0000

Hyperellipsoid 0 0.9571 2.3115 2.2869 4.5050 0.5560 0.5261

0.05 0.0003 0.0050 0.0038 0.0355 0.0042 0.0024

Levy 0 66.2106 119.7350 119.2752 175.3249 16.9267 16.6394

0.05 0.1509 8.6419 8.0528 25.3093 5.2961 5.9740

Maxmod 0 0.3165 0.4764 0.4749 0.6781 0.0583 0.0572

0.05 0.1364 0.3041 0.2984 0.5150 0.0612 0.0623

Multimod 0 0.0000 3.2797 3.3788 5.7044 0.7397 0.4303

0.05 0.0000 0.0726 0.0706 0.1887 0.0339 0.0288

Rastrigin 0 33.4126 64.9973 64.7518 96.3186 11.0987 11.2791

0.05 0.0287 2.0839 1.6287 9.6301 1.9067 1.7919

Rosenbrock 0 59.9610 131.7415 129.5522 226.7899 27.1603 27.2142

0.05 17.1686 44.8274 25.8228 196.6983 29.3024 7.3546

Schaffer 0 40.8998 52.0038 52.0877 61.9053 3.6027 3.4867

0.05 13.3959 23.8951 23.3254 38.2602 4.9126 5.0899

Schwefel 0 6044.304 8075.2456 8086.3155 10351.01 973.1779 944.1812

0.05 152.0629 262.5874 255.6143 567.9562 66.9413 54.6873

Sphere 0 3.5367 8.9277 8.8302 16.5280 2.0252 2.0143

0.05 0.0009 0.0187 0.0147 0.1891 0.0152 0.0099

Sumsquares 0 3.4760 8.9354 8.8027 16.1854 2.0651 1.9490

0.05 0.0014 0.0189 0.0150 0.1199 0.0141 0.0097
TABLE 3. Simulations for p=25
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Prob Min Mean Median Max Std.Dev. MAD

Ackley 0 5.5889 6.8039 6.8284 7.6777 0.3368 0.3520

0.05 0.8090 1.6895 1.7099 2.5268 0.3158 0.3152

Bohachevsky 0 540.0593 915.1087 913.2032 1280.9830 139.5234 147.5285

0.05 26.4656 41.9644 41.9394 67.8257 5.3180 5.1912

Griewank 0 5.8961 11.4845 11.4045 16.1720 1.7567 1.7140

0.05 0.0605 0.1808 0.1718 0.4146 0.0589 0.0508

Holzman 0 73.7300 224.1600 218.9521 474.2187 67.5767 69.4216

0.05 0.0130 0.0778 0.0641 0.5580 0.0533 0.0383

Hyperellipsoid 0 28.1804 65.5965 65.8457 97.4032 9.8273 9.5392

0.05 0.3328 0.8536 0.8137 1.6776 0.2595 0.2346

Levy 0 283.5280 387.2117 388.8155 458.0209 29.3325 31.2710

0.05 73.6633 128.5590 128.5692 193.9864 22.1059 21.9551

Maxmod 0 0.9268 1.3112 1.3093 1.6250 0.1085 0.1129

0.05 0.2247 0.3593 0.3583 0.5580 0.0525 0.0465

Multimod 0 0.0000 17.8652 18.4618 22.7881 3.4284 1.5021

0.05 0.0000 1.6498 1.7046 2.6037 0.4293 0.2851

Rastrigin 0 188.8021 252.2721 252.6259 301.4020 20.9102 21.4464

0.05 16.5305 36.4057 35.9026 71.6754 9.1899 9.0363

Rosenbrock 0 1088.8180 2245.9238 2212.1760 4064.0820 505.4592 494.2128

0.05 59.4509 97.8905 90.4685 199.1299 26.6319 26.6519

Schaffer 0 151.8794 173.0054 173.1660 196.5205 7.7092 7.6203

0.05 46.5284 66.3682 65.7527 104.6872 7.3255 6.6193

Schwefel 0 124804.6 177800.0845 179921 202647.9 14372.2681 12031.4473

0.05 14228.99 21601.6323 21356.92 31799.56 2811.7234 2864.6501

Sphere 0 138.6793 246.6506 246.2349 359.1078 38.1239 39.6904

0.05 1.0224 3.1682 3.0029 7.8608 0.9843 0.8992

Sumsquares 0 159.9675 247.3759 246.1421 341.7786 35.5817 37.8696

0.05 1.0709 3.2555 3.1176 7.2591 0.9795 0.9014
TABLE 4. Simulations for p=50
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corresponds a random mutation. In this paper, we develop a new genetic operator in floating-

point genetic algorithms. The operator searches for a convenient time series model that fits the

data of genes which are collected from the family tree of chromosomes. ARIMA modelling

and forecasting are widely used in the liteature. ARIMA models are also convenient to forecast

future values of chromosomes as they include the lagged terms of the variable of interest and the

lagged terms of error term. Since it is expected to get a better population in each generation in

GAs by means of average fitness, genes in a family tree of chromosomes may not be stationary

in time domain. The I part of ARIMA models are also capable to cope with this issue. This

operator generates new offspring which will possibly be generated by the usual GA operators

such as crossover and mutation. As a result of this, the operator is a short-cut hill-climber

which mimics a local search inner optimizer and inheritance in nature. A software package is

developed as an implementation of the algorithm and it is freely available for downloading and

use. A simulation study is performed on a suite of well-known test functions in dimensions

of p = 10,25, and 50. The results of the simulation study show that the proposed algorithm

significantly increases the search capabilities of GAs. The results of the simulation study also

show that the GA obtains more precise results when the number of function parameters increase.
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