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Abstract. In this paper, we define some general classes of analytic functions by subordination. Moreover, by

making use of the differential subordination of analytic functions, we investigate inclusion relationships among

certain classes of analytic functions.
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1. Introduction

Let ∆ = {z ∈ C : |z| < 1} be the open unit disk in the complex plan C. Let A be the class of

functions f which are analytic in the unit disk and these functions are given by

(1) f (z) = 1+
∞

∑
n=k

akzk, n ∈ N.

A function f analytic in ∆ is said to be univalent in a domain D if

f (z1) = f (z2) =⇒ z1 = z2 z1,z2 ∈ D.

E-mail address: ahsayed80@hotmail.com

Received September 30, 2013
76



DIFFERENTIAL SUBORDINATION 77

The class of all univalent functions f in ∆ and have form (1) will be denoted by S.

A domain D is called convex if for every pair of points w1 and w2 in the interior of D, the line-

segment joining w1 to w2 lies wholly in D. A function f which maps ∆ onto a convex domain

is called a convex function.The necessary and sufficient condition for f ∈ S to be convex in ∆

is that Re (z f ′(z))′

f ′(z) > 0, z ∈ ∆. The class off all functions convex and univalent in ∆ is denoted

by C.

A domain D is said to be starlike with respect to w = 0 if the linear segment joining w = 0 to

any other point of D lies wholly in D. If a function f map ∆ onto a starlike domain with respect

to w = 0, then f is said to be starlike. The necessary and sufficient condition for f ∈ S to be

starlike is that

Re
z f ′(z)
f (z)

> 0, z ∈ ∆.

This class is denoted by S∗, and it was studied first by Alexander [23].

Let f (z) and g(z) be analytic in ∆. We say that f (z) is subordinate to g(z) if there exists a

function φ(z) analytic (not necessarily univalent) in ∆ satisfying φ(0) = 0 and |φ(z)| < 1 such

that

(2) f (z) = g(φ(z)) (|z|< 1).

Subordination is denoted by f (z)≺ g(z). For more details on univalent functions by subordina-

tion, we refer to [21, 22, 27, 34, 28, 35, 38, 39, 40, 41, 42].

Let B be the class of functions, analytic in ∆ and of the form

(3) w(z) =
∞

∑
n=1

bnzn, n ∈ N,

which satisfy the conditions w(0) = 0 and |w(z)|< 1 for all z∈∆. Based on the class B Janowski

[26] defined the class P[A,B], as follows:

Let p be analytic function in ∆, given by

(4) p(z) = 1+
∞

∑
n=1

pnzn.

Then p(z) is said to be in the class P[A,B] ; −1≤ B < A≤ 1 ; if and only if, for z ∈ ∆

(5) p(z) =
1+Aw(z)
1+Bw(z)

;w ∈ B.
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In [41], Ravichandran et.al defined the class Pn[A,B] as follows:

For −1≤ B < A≤ 1 and

p(z) = 1+ cnzn + cn+1zn+1 + ..., n ∈ N,

we say that p ∈ Pn[A,B] if

p(z)≺ 1+Az
1+Bz

, z ∈ ∆.

The class with the property that z f ′(z)
f (z) ∈ Pn[A,B] is denoted by STn[A,B]. If n = 1, we drop the

subscript. Also, Ravichandran et.al [41] obtained the following lemma:

Lemma 1.1 (see [41]) If p ∈ Pn[A,B], then

(6)
∣∣∣∣p(z)− 1−ABr2n

1−B2r2n

∣∣∣∣≤ (A−B)rn

1−B2r2n , |z|= r < 1.

For the special case p ∈ Pn(α) = Pn[1−2α,−1], we get∣∣∣∣p(z)− 1+(1−2α)r2n

1− r2n

∣∣∣∣≤ 2(1−α)rn

1− r2n , |z|= r < 1.

Let A∗ denote the class of functions f analytic in the unit disk ∆= {z : |z|< 1} and normalized

by f (0) = 0 and f ′(0) = 1, then f ∈ S∗n[A j,B j] if and only if

z f ′(z)
f (z)

∈ Pn[A j,B j] and f ∈ A∗.

The following lemma is useful in the sequel.

Lemma 1.2 If ψ(z) = ∑
∞
n=0 bnzn is regular in ∆, φ1(z) and h(z) are convex univalent in ∆ such

that ψ(z)≺ φ1(z), then ψ(z)∗h(z)≺ φ1(z)∗h(z), z ∈ ∆, where

φ1(z) =
∞

∑
n=0

anzn and ψ(z)∗φ1(z) =
∞

∑
n=0

bnanzn.

Recently in [3, 28], using subordination concept the author defined the following classes of

analytic functions in the unit disk ∆;

P(m,n,≺) = Pm1,m2,m3,...,mn
k1,k2,k3,...,kn

[m,n,≺;A1,B1,A2,B2,A3,B3, ...,An,Bn],

P′(m,n,≺) = P′m1,m2,m3,...,mn
k1,k2,k3,...,kn

[n,m,≺;A1,B1,A2,B2,A3,B3, ...,An,Bn].

Moreover, the author in [3] studied some of their basic properties.
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In this paper, we define the following classes analytic functions of the single complex variable

z in the unit disk ∆ = {z : |z|< 1} :

L(m,n,≺) = Lm1,m2,m3,...,mn
k1,k2,k3,...,kn

[n,m,≺;A1,B1,A2,B2,A3,B3, ...,An,Bn],

and

W (m,n,≺) =W m1,m2,m3,...,αn
k1,k2,k3,...,kn∗

[m,n,≺;A1,B1,A2,B2,A3,B3, ...,An∗,Bn].

Also, we study some of their basic properties.

2. General Analytic Classes

Now, we give the following definitions.

Definition 2.1

Let f ∈ A∗ , then f ∈ L(m,n,≺), if and only if, there exist functions h j,C j ∈ S∗n[A j,B j]; j =

1,2,3, ...,n, such that

(7) f ′(z) =
n∗

∏
j=1

{
h j(z)

z

}α j
(k j+2)

4
{

C j(z)
z

}−α j
(k j−2)

4

.

Definition 2.2 Let f ∈ A∗, then f ∈W (m,n,≺) if and only if, there exist functions h j,C j ∈

S∗n[A j,B j] ; j = 1,2,3, ...,n , such that

(8) f (z) =
N

∏
j=1

{
h j(z)

}α j
(k j+2)

4
{

C j(z)
}−α j

(k j−2)
4

.

Remark 2.1 It follows from (7) and (8), that f ∈ L(m,n,≺), if and only if

z f ′(z) ∈ L(m,n,≺).

Remark 2.2 The classes L(m,n,≺) and W (m,n,≺) generalizing some classes in [32].

Theorem 2.1 Let fi(z) ∈ L(m,n,≺), i = 1,2,3, . . .n and and λi are positive constants. Then,
n
∑

i=1
λi fi(z) ∈ L(m,n,≺) if and only if

n

∑
i=1

λi
z f ′i (z)
fi(z)

∈ P(m,n,≺).

Proof. The proof is similar to the corresponding result in [32], so it will be omitted.

Now, we give the following result:
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Theorem 2.2 Let fi(z) ∈ L(m,n,≺), i = 1,2,3, . . .n and λi are positive constants. Then,

n

∑
i=1

λi fi(z)
∣∣∣∣(z f ′i (z))

′

f ′i (z)

∣∣∣∣≤ n

∑
i=1

λi

s

∑
j=1

∣∣∣∣m jk j

2

∣∣∣∣∣∣∣∣1+A jrn

1+B jrn

∣∣∣∣.
Proof. Let fi(z) ∈ L(m,n,≺), i = 1,2,3, . . .n and λi. Then, as in [26, 32], we deduce

log f ′i (z) =
s

∑
j=1

m j

{
(
k j +2

4
) log(

h j(z)
z

)− (
k j−2

4
) log

C j(z)
z

}
.

Differentiating both sides with respect to z it follows that

f ′′i (z)
f ′i (z)

=
s

∑
j=1

m j

{
(
k j +2

4
)(

zh′j(z)−h j(z)

z2 )(
z

h j(z)
− (

k j−2
4

)(
zC′j(z)−C j(z)

z2 )(
z

C j(z)
)

}
.

Therefore

n

∑
i=1

λi

(
1+

z f ′′i (z)
f ′i (z)

)
=

n

∑
i=1

λi

(
(z f ′i (z))

′

f ′i (z)

)

=
n

∑
i=1

λi

( s

∑
j=1

m j

{
(
k j +2

4
)(

zh′j(z)

h j(z)
)− (

k j−2
4

)(
zC′j(z)

C j(z)
)

})
.(9)

Since, ∣∣∣∣zh′j(z)

h j(z)

∣∣∣∣≤ 1+A jrn

1+B jrn ,(10)

Then, we get that
n

∑
i=1

λi

∣∣∣∣(z f ′(z))′

f ′(z)

∣∣∣∣≤ n

∑
i=1

λi

s

∑
j=1

∣∣∣∣α jk j

2

∣∣∣∣∣∣∣∣1+A jrn

1+B jrn

∣∣∣∣,
The proof is therefore completely established.

Theorem 2.3 Let fi(z) ∈W (m,n,≺), i = 1,2,3, . . .n and λi are positive constants. Then,

n

∑
i=1

λi fi(z)
∣∣∣∣(z f ′i (z))

′

f ′i (z)

∣∣∣∣≤ n

∑
i=1

λi

s

∑
j=1

∣∣∣∣m jk j

2

∣∣∣∣∣∣∣∣1+A jrn

1+B jrn

∣∣∣∣.
Proof. The proof is very much akin to the proof of Theorem 2.2, so it will be omitted.

3. Main results
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Theorem 3.1 Let log(| f ′(z)|) ∈ L(m,n,≺). Then

s

∑
j=1

{
[1−B jrn]k j+2

[1+B jrn]k j−2

}m j
4

(A j−B j)
B j+γ(B j)

− rn

2
[ s

∑
s∗=1

ms∗`s∗As∗γ(Bs∗)
]}
≤ log(| f ′(z)|)

≤
s

∑
j=1

{
[1+B jrn]k j+2

[1−B jrn]k j−2

}m j
4

(A j−B j)
B j+γ(B j)

+

{
rn

2
[ s

∑
s∗=1

ms∗`s∗As∗γ(Bs∗)
]}

,(11)

where γ(Bs) is defined as above. The function log(| f ′(z)|) given by

log(| f ′(z)|) =
s

∑
j=1

{
[1+B jδ jzn]k j+2

[1−B jη jzn]k j−2

}α j
4

(A j−B j)
B j+γ(B j)

+

{
zn

2
[
∗

∑
s∗=1

sms∗ks∗As∗γ(Bs∗)]

}
,

shows that the above result is sharp.

Proof. The proof follows from Lemmas 1.1, 1.2 and Definition 2.1.

Theorem 3.2 Let log(| f ′i (z)|) ∈ L(m,n,≺). Then

n

∑
i=1

λi

[ s

∑
j=1

{
[1−B jrn]k j+2

[1+B jrn]k j−2

}m j
4

(A j−B j)
B j+γ(B j)

− rn

2
[ s

∑
s∗=1

ms∗`s∗As∗γ(Bs∗)
]]
≤

n

∑
i=1

λi

[
log(| f ′i (z)|)

]

≤
n

∑
i=1

λi

[ s

∑
j=1

{
[1+B jrn]k j+2

[1−B jrn]k j−2

}m j
4

(A j−B j)
B j+γ(B j)

+

{
rn

2
[ s

∑
s∗=1

ms∗`s∗As∗γ(Bs∗)
]]
,(12)

where γ(Bs) is defined as above. The function log(| f ′i (z)|) given by

log(| f ′i (z)|) =
s

∑
j=1

{
[1+B jδ jzn]k j+2

[1−B jη jzn]k j−2

}α j
4

(A j−B j)
B j+γ(B j)

+

{
zn

2
[
∗

∑
s∗=1

sms∗ks∗As∗γ(Bs∗)]

}
,

shows that the above result is sharp.

Proof. The proof follows from Theorem 3.1.

Theorem 3.3 Let log(| f ′i (z)|) ∈W (m,n,≺). Then

n

∑
i=1

λi

[ s

∑
j=1

{
[1−B jrn]k j+2

[1+B jrn]k j−2

}m j
4

(A j−B j)
B j+γ(B j)

− rn

2
[ s

∑
s∗=1

ms∗`s∗As∗γ(Bs∗)
]]
≤

n

∑
i=1

λi

[
log(| f ′i (z)|)

]

≤
n

∑
i=1

λi

[ s

∑
j=1

{
[1+B jrn]k j+2

[1−B jrn]k j−2

}m j
4

(A j−B j)
B j+γ(B j)

+

{
rn

2
[ s

∑
s∗=1

ms∗`s∗As∗γ(Bs∗)
]]
,(13)
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where γ(Bs) is defined as above. The function log(| f ′i (z)|) given by

log(| f ′i (z)|) =
s

∑
j=1

{
[1+B jδ jzn]k j+2

[1−B jη jzn]k j−2

}α j
4

(A j−B j)
B j+γ(B j)

+

{
zn

2
[
∗

∑
s∗=1

sms∗ks∗As∗γ(Bs∗)]

}
,

shows that the above result is sharp.

Proof. The proof can be obtained by using Lemma 1.2 and Definition 2.2.

Remark 3.1 The new results in this paper extend and improve a lot of known results (see

[23, 27, 32, 33]).

Remark 3.2 It is still an open problem to study subordination concept in spaces of analytic

functions which defined by integral norms. For various definitions of such analytic classes, we

refer to [1, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 36, 37] and others.

Remark 3.3 It is still an open problem to extend the concept of subordination to Clifford

analysis. For more details on some classes of quaternion function spaces, we refer to [1, 2, 4, 5,

6, 8, 10, 19, 20, 29, 30, 31].
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