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Abstract. In this paper, we introduce and investigate the general solution of a new functional equation
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where a,b > 1 and discuss its Generalized Hyers-Ulam-Rassias stability under the conditions such as even, odd,

approximately even and approximately odd in quasi-(2;p)-Banach spaces.
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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] in 1940
concerning the stability of group homomorphisms. Let (Gy,-) be a group and let (G, *) be a

metric group with the metric d(-,-). Given € > 0, does there exist & > 0 such that if a mapping
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h: Gy — G satisfies the inequality d(h(x-y),h(x)*h(y)) < 0 for all x,y € Gy, then a homo-
morphism H : G| — G, exists with d(h(x),H(y)) < € forallx € G;?
In 1941, Hyers [2] considered the case of approximately additive mappings f : E — E

where E and E are Banach spaces. He proved the following theorem.

Theorem 1.1 [2] E, E' is Banach spaces and let f : E — E'bea mapping satisfying

Ifx+y)=fx) =)l <e

for all x € E and € > 0. Then the limit /(x) = lim % exists forallxe Eand [ : E — E' is

n—-y o0

the unique additive mapping satisfying

1F(x) =l <e
for all x € E. Moreover, if f(zx) is continuous in #(—eo < t < 4-o0) for each fixed x € E, then /
is linear.

From the above property, the additive functional equation f(x+y) = f(x) + f(y) has Hyers-
Ulam stability on (E,E).

The theorem of Hyers was generalized by Aoki [3] for additive mappings. In 1978, Rassias

[4] considered an unbounded Cauchy difference for linear mappings. It states as follows:

Theorem 1.2 [4] Let E, E' be two Banach spaces and let 6 € [0,0) and p € [0,1). If a function

fiE— E' satisfies the inequality

1 Ce+y) = () = fFODI < BlIx[1” + [[y[17]

for all x € E. Then there exists a unique additive mapping 7 : E — E " such that

1Fe) T < =22

< ll”

for all x € E. Moreover, if f(zx) is continuous in #(—eo < t < 4o0) for each fixed x € E, then [
is linear.

The work of Rassias [4] has had a lot of influence in the development of a generalization

of the Hyers-Ulam stability concept. The terminology Hyers-Ulam-Rassias stability originates
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from these historical backgrounds and this terminology is also applied to the case of other

functional equations.

In this paper, we introduce and investigate the general solution of a new functional equation

S [0+ @) fry) + (1= a)f(—x—)]
(1.1)
1
+oalf@tw)+ f(—z—w)]
where a,b > 1 and discuss its Generalized Hyers-Ulam-Rassias stability in quasi-(2;p)-Banach

spaces. It may be noted that f(x) = ax? 4 bx -+ c is a solution of the functional equation.
2. Preliminaries

Before giving the main results, we will present some preliminaries results.

Definition 2.1 [5] Let X be a linear space over R with dimX > 1. A quasi 2-norm is a real-
valued function on X x X satisfying the following conditions:

(1) || x,y ||= 0 if and only if x and y are linearly dependent,

@) [y (=l ysx ]l
) | ax,y [|= || [| x,y || for all & € K,
(4) There is a constant K > 1 such that|| x +,z || < K(||x,z|| + ||y, z]|) for all x,y,z € X. The pair

(X,]-,-]]) is called a quasi 2-normed space if ||-,-|| is a quasi 2-norm on X.
A quasi 2-norm ||-,-|| is called quasi-(2;p)-norm (0 < p < 1) if
e+ y,2l]” < lx 2l 7 + ]y, 2]

for all x,y,z € X. The pair (X, ||-,-]|) is called a quasi-(2; p)-normed space if |-,-| is a quasi-

(2; p)-norm on X.

Definition 2.2 [10] A sequence {x, } in a quasi-(2; p)-normed space (X, ||-,-||) is called a Cauchy

sequence if
Him  ||x, — xm,y|| =0
JA—>$c0

forally € X.
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Definition 2.3 [10] A sequence {x,} in a quasi-(2; p)-normed space (X, ||-,-||) is called a con-
vergent sequence if there is an x € X such that

lim [jx, —x,y| =0
n—-voo

for all y € X. If {x,} converges to x, write x, —> x as n —» oo and call x the limit of {x,}.In

this case,we also write lim x, = x.
n—yoo

Definition 2.4 [10] we say that a quasi-(2;p)-normed spaces (X, ||-,-||) is a quasi-(2;p)-Banach
spaces if every Cauchy sequence in X is a convergent sequence.

We introduce a basic property of a quasi-(2;p)-normed space as follows. Let (X,]-,-||) be
linear quasi-(2;p)-normed space, x € X and || x,y ||= 0 for each y € X. suppose x # 0. Since
dimX > 1, choose y € X such that {x,y} is linearly independent so we have ||x,y|| # 0, which

is a contradiction. Therefore, we have the following lemma.

Lemma 2.5 Let (X, ||-,-||) be a linear quasi-(2; p)-normed space. If x € X and ||x,y|| = 0, for

each y € X, then x = 0.

3. odd case

In this section, we assume that E is a real vector space, E» is a quasi-(2;p)-Banach space and

£(0) = 0. For simplicity, given a mapping f : Ey — Ey and Df : Ey X E} X E| X E} —> E; by

xX+y z+w

Df(x,y,z,w) = f( —+t— ) Xy aw

b

A )= (1 +a)f(x+3) + (1 =) f(—x )]

— 3l W)+ f(—ew)

for all x,y,z,w € E|.

Lemma 3.1 [6] Let E| and E, denote real vectors spaces, if f : E; — E> is an even function

satisfying (1.1) for all x,y,z,w € Ey, then f is quadratic.

Lemma 3.2 [6] Let E| and E; denote real vectors spaces, if f: Ey — E3 is an odd function

satisfying (1.1) for all x,y,z,w € Ey, then f is additive.
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Theorem 3.3 Let ¢ : R xR x R x R — [0, 00) be a function such that

- y F4 w

¢ Xy,ZWV Zalpq) | V||7||;7V||7||;7V||7||;7V||)p<°° (31)
for all x,y,z,w,v € E1. If f: E; — E, is an odd mapping satisfies

1D (x,y,2,w), vl < @(ll, I, [y, vl NIz, vl [[w, v (3-2)

for all x,y,z,w,v € E1. Then there exists a unique additive mapping A : E; — E» satisfying the

equation (1.1) such that

a~ 1
||f(x) _A<x)7v|| < E(P()C,O,O,O,V)P (33>
Proof. Using oddness and f(0) = 0 in (3.2) we have
x—l—y Z+w x+y z+w, 2
I ) T 2 eyl < 0l ol vl Tl
(3.4)
for all x,y,z,w,v € Ej. Replace (y,z,w) by (0,0,0) in (3.4) we have
x, 2 » »
H2f(5) - Zf(x)vvu < q)(Hx,vH,0,0,0) (35)
Again replacing x by ax in (3.5) and multiply both sides by (5)? yields
laf(x) = f(ax),v||” < ( )P (llax,v[|,0,0,0)” (3.6)
for all x,v € Ey. Again replacing x by —1 in (3.6) we have
X a X
laf( ,H) FEIP < (570l v11,0,0,0)7 (3.7)
S0,
X
la™ f ( ) —d" f 2ol < Z Haf ’“f(am),VH”
ol X X
- ;a <a,.+1>—f<;>,vup (3.8)

vHOOO)
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for all x,v € E1 and for any n > m > 0. Since the right-hand side of inequality (3.8) tend to O as
m —; oo. We conclude that {a" ()} is a Cauchy sequence in E; and so it converges. Because

of the completeness of E,, we can define a mapping A : E; — E» by

AX) = lim &"f(2)

n—-yoo a’
for all x € E{. By (3.1) and (3.2), we obtain that

Xy zw

IDAGxy 2 w) VI = T @ IDS G S g g VI

. X y < w .
< n]l_r>1’looanp¢<|’a—n,VH, ||a_n’v||’ Ha_navH7 HE,VH)p =0

for all x,y,z,w,v € E1. Hence the mapping A : E; — E» satisfies (1.1). Note that f is an odd

mapping ,we obtain
A(x) +A(—x) = lim a f(=;)+a f(——n) =0
——oo a a

for all x € Ej. So A(x) = —A(—x). Using lemma 3.2, A is additive. Taking m = 0,n — oo in

(3.8), we get
176~ AMIP < i“;”mmgw&mmp
= (5)76(x.0,0,0,v)
SO,

<=

() = AG). vl < 56(x.0,0,0,v)

We get the inequality (3.3). To prove the uniqueness of the additive mapping A, let us assume
that there exists a additive mapping A" E; — E, satisfies (1.1) and (3.3). Using f(0) =0 and

oddness in (1.1), we get

x+y z+w

X+y z+w
f=+77)

FACEE T 2 ) (39)

Replacing (z,w) by (0,0) in (3.9), we obtain

X+y
a

P2 = 2 ety (310
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Replacing x by y in (3.10), we obtain

2y, 1
() =1 (3.11)
Replacing 2y by ax in (3.11), we obtain
flax) = af (x) (3.12)

Then it follows that A’ (ax) = aA' (x),A’ (a"x) = a"A'(x). We have

/ A(d™x)  A'(d™x)

JA(x) —A (x),v]]P = || T VP
1 m m p 1 " om m p
< anHA(a x) — f(a"x),v|| +a7pHA (a"x) — f(a"x),v|
< 2 0.0.0 0
< aTP'Z—pq)(a x,0,0,0,v) — as m—s o

for all x,v € Ej. Therefore A is unique.

Corollary 3.4 Let E; be a quasi-2-normed linear space and E» be a quasi-(2;p)-Banach space.
Let 0,r be real numbers such that 8 > 0,r > 1. Suppose that a odd mapping f : E; — E»

satisfies
IDf(x,3,2,w),vI| < O(|lx,v[|" + [[y,vI” + [lz,v[|” + [[w, v]|")

for all x,y,z,w,v € E1. Then there exists a unique additive mapping A : E; — E» satisfying the

equation (1.1) such that

17 () =A(x),v]| <

4. even case

Theorem 4.1 Let ¢ : R xR x R x R — [0, 00) be a function such that

(o)

o(x,y,zwv) =Y

i=0

lyvll, a2 vl fla™  w,v]])?

azip

¢(lla™ x|l |la

<o (4.1)
for all x,y,z,w,v € E1. If f: E; — E5 is an even mapping satisfies

1D (x,y,2,w), vl < @(ll, I, [y, vl Nz, vl [[w, vl (4.2)
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for all x,y,z,w,v € E1. Then there exists a unique quadratic mapping A : £y — E; satisfying

the equation (1.1) such that

I~ 1
Hf(x) —A(X),VH < E(])(X,0,0,0,V)/’ (43)
Proof. Using evenness and f(0) = 0 in (4.2) we have
x+y Z+w x+y z+w 2 2
P+ S 4 p(E ) 2 )+ (o w) P
(4.4)
¢(|lx,VII, 1yl 2 vl fw,vil)?
for all x,y,z,w,v € Ej. Replace (y,z,w) by (0,0,0) in (4.4) we have
2 p
H2f( ) == (), vI” < o(|lx,v][,0,0,0)” (4.5)
Again replacing x by ax in (4.5) and dividing both sides by 27 yields
1 p_ |
1f(x) = 5 flax),v][P < o5 ¢ ([lax, v][,0,0,0) (4.6)
for all x,v € E|. Again replacing x by a'x in (4.6) we have
iy Lo 1 i+1
1f(a") = — £ (@ x) v < 550 (]la™ x,v]], 0,0,0) (4.7)
ol
fa) flat) o, N fa) flat )
I a2m g2 VP < Z, I i 2(i+1) vIP
- L
Z RGN (4.8)

n—1
I
<Y 55 9(a1x,v],0,0,0)7
i=m

for all x,v € E and for any n > m > 0. Since the right-hand side of inequality (4.8) tend to O as
m — oo, We conclude that {f } is a Cauchy sequence in E; and so it converges. Because
of the completeness of E,, we can define a mapping A : E; — E» by

A(x) = Tim L4

n—soo  q2"
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for all x € E|. By (4.1) and (4.2), we obtain that

||Df(xay7ZaW),V||p = lim

n—soo g 210

|Df(d"x,d"y,a"z,a"w),v||P

) 1
< tim o (] vl "z, ] = 0

for all x,y,z,w,v € Ey . Hence the mapping A : E; — E; satisfies (1.1). Note that f is an even

mapping ,we obtain

AG)—A(—x) = tim L&D SO

n—oo g2n azn

for all x € E;. So A(x) = A(—x). Using lemma 3.1 A is quadratic. Taking m = 0,n — oo in

(4.8), we get
10 =AW < T g0 (1 xs].0.0.0
= (%)pa(x,0,0,0,v)
SO,

<=

1709~ A), vl < 59(5,0,0,0)

We get the inequality (4.4). To prove the uniqueness of the quadratic mapping A, let us assume
that there exists a quadratic mapping A E| — E, satisfies (1.1) and (4.3). Using f(0) =0

and evenness in (1.1), we get

+y |zt +y o+ 2 2
FE2 ) H (2 = S 2) = S leky) + (a4 w) (49)
Replacing (z,w) by (0,0) in (4.9), we obtain
x+y, 1
A2 = S pety) (4.10
Replacing x by 0 in (4.10), we obtain
1
fC) == f0) (4.11)

Replacing y by ax in (4.11), we obtain

flax) = a®f(x) (4.12)
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. ’ ’ ’ /
Then it follows that A’ (ax) = a?A (x),A (a"x) = a®™A (x). We have

Ald™x)  A'(a"x)

R L e e
1 1 /
< g llAl@”x) = f(a"x) V|7 + —2 D llA (a"x) = fa"0), |
< 2 L5 am0,0.0 0
~ az_mpz_p ((l X, U, U, 7V)—>

as m — oo for all x,v € Ej. Therefore A is unique.

Corollary 4.2 Let E| be a quasi-2-normed linear space and E; be a quasi-(2;p)-Banach space.
Let 6,r be real numbers such that 6 > 0,r < 2. Suppose that a even mapping f : E; — E»

satisfies
IDf(x,3,2,w),vI| < O(|lx,v[|" + [[y,v[I” + [lz,v[|” + [, v]]")

for all x,y,z,w,v € E1. Then there exists a unique quadratic mapping A : E; — E; satisfying
the equation (1.1) such that

ar

0
—A ) S_ ) "
1709 A0 < Sl =

Corollary 4.3 Let E| be a quasi-2-normed linear space and E> be a quasi-(2;p)-Banach space.
Let 0 be real numbers such that 8 > 0. Suppose that a even mapping f : E; — E satisfies

[Df(x,y,2,w),v|| < 6

for all x,y,z,w,v € E1. Then there exists a unique quadratic mapping A : £y — E; satisfying
the equation (1.1) such that

1

0
If ) =AM < 5 ==

5. Approximately even case

Lemma 5.1 Let ¢ : R x R xR xR — [0,00) be a given mapping. Suppose that a mapping

f: Ei — E; satisfies

1D (x,3,2,w), vl < @l vl [y, vil, Nz, vl [lw, v (5.1)
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for all x,y,z,w,v € E;. We have

1700~ S () + & o (') o]
n 1 g 1 S 4 o 4 o (52)
< YAl )+ G 0 xSl )
for all x,v € E; and n € N.
Proof. We use mathematical induction on n to prove lemma. Putting x =y =z,w = —x in (5.1)
yields
127 C) = o 20+ L p 20, < ol vl el el e (53)

for all x,v € Ey. Replacing x by % in (5.3) and dividing by 27 gives

1/ (x) = 2 2 - flax) + 2 5 =1 f-av), VIIP_2p¢(|| =l IS VII,II%CNH,H%VH)’) (5:4)

for all x,v € E;. Note that (5.4) proves the validity of inequality (5.2) for the case n = 1.Assume

that inequality (5.2) holds for n € N. Replacing x by a"x in (5.4) yields

n 1+a n n
()~ o fla ) + S (), v
5.5)
1 atTlx atlx an+1 a7l ( ’
< 5=V lI=5=vIL | VLIS
We have the following relation:
1 +an+1 a1
|0 = Sty F @0+ S = )
1+a" a—1
< NF0) = g fla") + S (=) v
1+a" l+a

+(aMHmm322(W*)22ﬂ & 1x) v

al’l

+ (22n

Pl = Fa) 4 o )~ L ) o)

1 +ak 1 akfl -1 ak ak ak ak

< TG+ G W e IS Gl )y
1+a" a7y n-l-l an—Hx atTlx
. - - P
T LR T (et N KSR N LN LR
a'—1 1 an—i—l n+1 an—Hx an—Hx
+ (S 0 U S IS S IS )P
n+1 1 +Clk 1 akfl -1 ak ak ak ak
< Z{ 4. g2k— 2 (4.(12](,2 )pM)(H?x,V”,||7X,V||,||7X,V||,||7X,VH)F}
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for all x,v € E;. This proves the validity of inequality (5.2) for the case n+ 1.

Theorem 5.2 Let ¢ : R X R X R x R — [0, o) be a function such that

~ > ax v, |lavyv|, laz. v, |ladw,v])?
Fs 2 = § Sl vl el ) 56
i=0

for all x,y,z,w,v € E|. Let y : R — [0, o) satisfies

lim M =0 (5.7)

n—-yoo a

forall x € E|. If f: E; — E5 is a mapping satisfies

15 () = f (=), vl < wlllx, vl]) (5-8)

for all x,v € Ey and

1Df(x,y,2,w),vI| < @(llx, I, [y, vll, Nz, vl [[w, v (5.9)

for all x,y,z,w,v € E1. Then there exists a unique quadratic mapping A : E; — E; satisfying

the equation (1.1) such that

1£() Ao
e A R N N Eaa o 10
Proof. It follows from (5.2) and (5.8) that we have
170~ LG o
<)~ S )y + o ) vl (P = ) + (') o]
e (e N SN E e N E ot
FE Dl vy

(5.11)



724 MENG LIU, MEIMEI SONG

for all x,v € Ej and n € N. By virtue of (4.11), for n,m € N with n > m, we obtain

flam) fla)

H a2m a2n )

1 f(@ " a"x)
= az—mpr(amx) - W,VHP
1 nom 1_|_ak—1 Clk_l -1 ak—!—m k+m k+m ak—i—m
< a2mp kzl [(4 . q2k—2 )p + (4 . q2k—2 )P] ’ ¢(||Tx7v||7 ||T-x7v||7 ||Tx7v||7 ||T)C,V||)p
a}’l*m_l —m
+ [W]pW(Ha x,v[[)?

(5.12)
for all x,v € Ej and n € N. From (5.6) and (5.7), the right-hand side of inequality (5.12) tends
to 0 as m — oo, the sequence {%} is a Cauchy sequence. Completeness of E; allows us to

assume that there exists a mapping A so that

A(x) = lim fla'x)

n—soo  q2n

for all x € E{. By (5.9), we obtain that

“DA(xﬂy7Z7W)7va - lim

w0 2np |Df(a"x,a"y,a"z,d"w),v|”

L o(lla"x,v[|, lla"y,vll, "z, v]], [la"w, vi])”

< lim
n—soo q'P ap

—0

as n — oo for all x,y,z,w,v € E| and so the mapping A satisfies (1.1). We have the following

results

IAG) —A(—x)v? = tim (LED A,

N——y00 azn azn

<

a2np ll/(Hanx7V“)p —0

as n — oo for all x,v € E. So, A(x) = A(—x) and A is quadratic. Taking m = 0,n — oo in
(5.12), we get (5.10).
Next, we prove the uniqueness of A. A satisfies (1.1) and putting y =z = w = 0, we have

PYTES PR Y

o A(-x) =0 (5.13)

a2

for all x € E;. Using evenness of A and replacing x by ax in (5.13), we have

A(ax) = a®A(x)
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for all x € E;. So,we assume that A" : E; —» E, be another quadratic mapping satisfying (1.1)

and (5.10),we calculate

1A (x) —A'(x),v]|?

Aa"x) A(a"x) [P
azn an

1 :
1A(a"x) = fla"x), [P + 551 £ (a"x) — A (a"x), v][”

1+ akfl akfl -1 ak+n k+n ak+n ak+n
< a2np '];1[(4'(12](2 )p_|_ (4-(12]‘72 )p] '¢(||Txav||> ||Tx7v”= ||Txav||a HT%VH)I’

asn —> oo forall x € E;.

6. Approximately odd case

Lemma 6.1 Let ¢ : R x R xR xR — [0,00) be a given mapping. Suppose that a mapping

f: Ei — E satisfies

1D (x,y,2,w),vI[ < @(ll, vI[, [y, vl NIz, vl [[w, vl (6.1)

for all x,y,z,w,v € E;. We have

a -+ a2n X a2n —a"

X
_ il P
@ - o) - S =2l -
n a2k_|_ak a2k_ak :
< LI+ 00 s v g o)
for all x,y € E; and n € N.
proof. Replacing x by 7 in (5.4), we have
X 1+a a—1 X
1) = S )+ S vl < 0 U3 v I3 VI I L I (63)
Replacing x by —x in (6.3), we have
x, l+4a a—1
_ P < p
-5 o 1)+ S F@ P < 0 (vl I3 VI IS LI (64)
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From (6.3) and (6.4), we get

a—l—a2 X at—a X a2~|—a

R e (GO RY L

LR NERT RER N E
P15 1501 15 vl 151

o (6.5)

+(°

» X E
(RN RN RSN R}

for all x,v € E;. Note that (6.5) proves the validity of inequality (6.2) for the case n = 1.Assume
that inequality (6.2) holds for n € N. Replacing x by - in (6.5), we get

a+a2 X az—a X a2+a

D) f(an+1)_ D) f(_a,H_l)?VHpS(

Y95V 15

X
) — p
I7) vl H2 -, H2 =)

2a nV
a*—a

+(

05Vl oVl s VI s V)

S0,

ian _|_a2(n+l) X g2(n+1) _ gntl X

70— S f) — S fe )

ny a2n X a2n —a" X

<) - =51 ) — = —f (=)l

2”—|—a a+a* x a*—a X

)Hf( ) D) f(an-i-l)_ B f(_an+1)7v||p

a"—a" X a+a2 X a*—a X

P2 = ) = S Al

+(

" q — X X X X
< I+ 00 g gz i ¥ e
A N H2 vl )7

p
)l ¥l gVl s s V1)
for all x,v € E;. This proves the validity of inequality (6.2) for the case n+ 1.

Theorem 6.2 Let ¢ : R xR x R xR — [0,00) be a function such that
¢ (x,y,2,w,v) Zaz’pﬁb ,,VH I Z,VH I ,,V|| | l>VH)p<°° (6.6)
for all x,y,z,w,v € E|. Let y : R — [0, ) satisfies

tim a"y (]| 2 vl) =0 (6.7)

n—soo
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forall x € E1. If f: E; — E> 1s a mapping satisfies
£ () + £ (=), vl < wlllx, vl (6.8)
for all x,v € Ej.and
1DF e, y,2,w) vl < @l v s vl llzs vl [Tws vl (6.9)

for all x,y,z,w,v € E1. Then there exists a unique additive mapping A : E; — E» satisfying the
equation (1.1) such that

1F(x) = A(x), vl

X X X X 1
p p

(6.10)
proof. It follows from Lemma 6.1 and (6.8) that we have

() =" ()P

2n n 2n n 2n n
a’+a X at—a X a’t—a X X
< _ Ny _ p p el _ p
<[F0) = T () = )P+ (I )+ £ (=)
2k k 2k k
a’*+a a"t—a X X X X
< DI+ 0 s g gD
a2n_an

(6.11)
for all x,v € E1 and n € N. By virtue of (6.11), for n,m € N with n > m, we obtain

m X n X
la" () —a"F ()l
=" () =@ () P

nom g2k 4 gk a* — gk X X X X

<@ TP + (VW0 g Y g Y g Y i
2n—m n

a —a X

Dyl

(6.12)
for all x,v € Ej and n € N. From (6.6) and (6.7), the right-hand side of inequality (6.12) tends

to 0 as m — oo, the sequence {a" f(Zr)} is a Cauchy sequence. Completeness of E; allows us
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to assume that there exists a mapping A so that
Ax) = lim @"f(>)
n—->oo a

for all x € E;. By (6.9), we obtain that

Xy z w
o @

IDA(x,y,2,w),v[|P = lim a™|[Df(
n—-yoo

< lim a"P¢(|

X y Z w
= e |J’VH’HJ’VH’HJ’VH’“a_’”v“)p_>0

as n — oo for all x,y,z,w,v € E| and so the mapping A satisfies (1.1). We have the following

results

JAG) +A(=2) WP = tim [la" f(Z) +a"f (= )1

. X
< lim @y 0)" —0

as n —» oo for all x,v € E|. So, A(x) = —A(—x) and A is additive. Taking m = 0,n — oo in
(6.12), we get (6.10).
Next, we prove the uniqueness of A. A satisfies (1.1) and putting y =z =w = 0, we have

24(%) - IZ“A(X) + aa_zlA(—x) —0 (6.13)

for all x € E;. Using oddness of A and replacing x by ax in (6.13), we have
A(ax) = aA(x)

for all x € E;. So,we assume that A : E; — E, be another quadratic mapping satisfying (1.1)

and (6.5),we calculate

1A (x) —A'(x), V)7

Ald"x)  A'(a"x)

= || PrE——— V||P
1 n n P 1 n " n p
< pllAla™) = f(a) vl|P + — | fla"x) — A (a"x) v
2 & a+d a*k —d* ax ax a*x a'x
- P p P
< an,,kZ]K A0 v vl = v e vID” — 0

as n — oo for all x € E;. This completes the proof.
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