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Abstract. In this paper, we introduce the sequence spaces Z I
0 (F,4) and Z I

∞(F,4) for the sequence of modulii

F = ( fk) and study some inclusion relations that arise on the said spaces.
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1. Introduction

Let N,R and C be the sets of all natural, real and complex numbers respectively.

We write

ω = {x = (xk) : xk ∈ R or C },

the space of all real or complex sequences.

Let `∞, c and c0 be the linear spaces of bounded, convergent and null sequences respectively,

normed by

||x||∞ = sup
k
|xk|, where k ∈ N.
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The approach of constructing new sequence spaces by means of the matrix domain of a partic-

ular limitation method have been recently employed by Altay, Başar and Mursaleen[1], Başar

and Altay[2], Malkowsky[11], Ng and Lee[13], and Wang[15].

Şengönül[14] defined the sequence y = (yi) which is frequently used as the Zp transform of the

sequence x = (xi) i.e,

yi = pxi +(1− p)xi−1

where x−1 = 0, p 6= 1, 1 < p < ∞ and Zp denotes the matrix Zp = (zik) defined by

zik =


p, (i = k),

1− p, (i−1 = k),(i,k ∈ N)

0 otherwise

Following Başar and Altay[2], Şengönül[14] introduced the Zweier sequence spaces Z and

Z0 as follows

Z = {x = (xk) ∈ ω : Zpx ∈ c}

Z0 = {x = (xk) ∈ ω : Zpx ∈ c0}.

The idea of difference sequence spaces was introduced by Kizmaz [10] as

`∞(4) = {x = (xk) ∈ ω : (4xk) ∈ `∞},

c(4) = {x = (xk) ∈ ω : (4xk) ∈ c},

and

c0(4) = {x = (xk) ∈ ω : (4xk) ∈ c0},

where4x = (xk− xk+1) and40x = (xk).

These are Banach spaces with the norm

||x||4 = |x1|+ ||4x||∞.

The idea of modulus was structured by Nakano[12].

A function f : [0,∞)−→[0,∞) is called a modulus if

(1) f (t) = 0 if and only if t = 0,
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(2) f (t+u)≤ f (t)+ f (u) for all t, u≥0,

(3) f is increasing, and

(4) f is continuous from the right at zero.

If X be a non- empty set, then a family of set I ⊂ P(X)(P(X) denoting the power set of X) is

called an ideal in X if and only if

(a) φ ∈ I;

(b) For each A,B ∈ I, we have A∪B ∈ I;

(c) For each A ∈ I and B⊂ A we have B ∈ I.

If X be a non- empty set. A non- empty family of sets F ⊂ P(X)(P(X) denoting the power

set of X) is called a filter on X if and only if

(a) φ /∈ F ;

(b) For each A,B ∈ F , we have A∩B ∈ F ;

(c) For each A ∈ F and A⊂ B we have B ∈ F.

Recently Khan, Ebadullah and Yasmeen[9] introduced the following classes of sequences.

Z I
0 = {x = (xk) ∈ ω : I− limZpx = 0},

Z I = {x = (xk) ∈ ω : I− limZpx = L for some L∈ C},

Z I
∞ = {x = (xk) ∈ ω : sup

k
|Zpx|< ∞}.

In [6] for a modulus function f

Z I
0 ( f ) = {(xk) ∈ ω : for a given ε > 0,{k ∈ N : f (|x/k |)≥ ε} ∈ I},

Z I( f ) = {(xk) ∈ ω : ∃L ∈C such that for a given ε > 0,{k ∈ N : f (|x/k−L|)≥ ε} ∈ I},

Z I
∞( f ) = {(xk) ∈ ω : {k ∈ N : f (|x/k |)≥M} ∈ I, for each fixed M>0}.
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where (x/k) = (Zpx)

In [8] for a sequence of modulii F = ( fk)

Z I
0 (F) = {(xk) ∈ ω : {k ∈ N : fk(|x

/
k |)≥ ε} ∈ I},

Z I(F) = {(xk) ∈ ω : {k ∈ N : fk(|x
/
k−L|)≥ ε, for some L∈C} ∈ I},

Z I
∞(F) = {(xk) ∈ ω : {k ∈ N : fk(|x

/
k |)≥M, for each fixed M>0} ∈ I}.

We need the following results in order to establish some of the results of this article.

Lemma 1.1.[3, Lemma 1.2.] The condition sup
k

fk(t)< ∞, t > 0 holds if and only if there is

a point t0 > 0 such that sup
k

fk(t0)< ∞.

Lemma 1.2.[3, Lemma 1.3.] The condition inf
k

fk(t) > 0 holds if and only if there exists a

point t0 > 0 such that inf
k

fk(t0)> 0.

Theorem 1.3.[14, Theorem 2.2.] The sequence spaces Z and Z0 are linearly isomorphic to

the spaces c and c0 respectively, i.e Z ∼= c and Z0 ∼= c0

Theorem 1.4.[14, Theorem 2.3.] The inclusions Z0 ⊂Z strictly hold for p 6= 1.

c.f. ([3],[4],[5],[7],[9]).

2. MAIN RESULTS.

In this article we introduce the following classes of sequence spaces.

Z I
0 (F,4) = {x = (xk) ∈ ω : I-lim fk(|4x/k |) = 0};

Z I
∞(F,4) = {x = (xk) ∈ ω : sup

k
fk(|4x/k |)< ∞}.

where (x/k) = (Zpx)
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Theorem 2.1. For a sequence F = ( fk) of moduli, the following statements are equivalent:

(a) Z I
∞(4)⊆Z I

∞(F,4)

(b) Z I
0 (4)⊂Z I

∞(F,4)

(c) sup
k

fk(t)< ∞, (t > 0)

Proof. (a) implies (b) is obvious.

(b) implies (c). Let Z I
0 (4)⊂Z I

∞(F,4).

Suppose that (c) is not true.

Then by Lemma 1.1 sup
k

fk(t) = ∞ for all t > 0, and, therefore there is a sequence (ki) of positive

integers such that

fki(
1
i
)> i for i=1,2,3..... [2.1]

Define x = (xk) as follows

xk =

 1
i , if k = ki, i = 1,2,3.......;

0, otherwise.

Then x ∈Z I
0 (4) but by [2.1], x /∈Z I

∞(F,4) which contradicts (b).

Hence (c) must hold.

(c) implies (a). Let (c) be satisfied and x ∈Z I
∞(4).

If we suppose that x /∈Z I
∞(F,4) then

sup
k

fk(|4xk|) = ∞ for4x ∈Z I
∞
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If we take t = |4x| then sup
k

fk(t) = ∞ which contradicts (c).

Hence Z I
∞(4)⊆Z I

∞(F,4).

Theorem 2.2. If F = ( fk) is a sequence of moduli, then the following statements are equiva-

lent:

(a) Z I
0 (F,4)⊆Z I

0 (4),

(b) Z I
0 (F,4)⊂Z I

∞(4),

(c) inf
k

fk(t)> 0, (t > 0).

Proof. (a) implies (b) is obvious.

(b) implies (c). Let Z I
0 (F,4)⊂Z I

∞(4).

Suppose that (c) does not hold.

Then, by lemma 1.2 ,

inf
k

fk(t) = 0,(t > 0), [2.2]

and therefore there is a sequence (ki) of positive integers such that

fki(i
2)<

1
i

for i = 1,2, ..........

Define the sequence x = (xk) by

xk =

 i2, if k = ki, i = 1,2,3.......;

0, otherwise.

By [2.2] x ∈Z I
0 (F,4) but x /∈Z I

∞(4) which contradicts (b).
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Hence (c) must hold.

(c) implies (a). Let (c) holds and x ∈Z I
0 (F,4) that is

lim
k

fk(|4xk|) = 0

.

Suppose that x /∈Z I
0 (4).

Then for some ε0 > 0 and positive integer k0 we have |4xk| ≤ ε0 for k ≥ ko.

Therefore fk(ε0)≥ fk(|4xk|) for k≥ k0 and hence lim
k

fk(ε0)> 0 which contradicts x /∈Z I
0 (4).

Thus Z I
0 (F,4)⊆Z I

0 (4).

Theorem 2.3. The inclusion Z I
∞(F,4)⊆Z I

0 (4) holds if and only if

lim
k

fk(t) = ∞ for t > 0. [2.3]

Proof. Let Z I
∞(F,4)⊆Z I

0 (4) such that lim
k

fk(t) = ∞ for t >0 does not hold.

Then there is a number t0 > 0 and a sequence (ki) of positive integers such that

fki(t0)≤M < ∞. [2.4]

Define the sequence x = (xk) by

xk =

 t0, if k = ki, i = 1,2,3.......;

0, otherwise.

Thus x ∈Z I
∞(F,4), by [2.4].

But x /∈Z I
0 (4), so that [2.3] must hold If Z I

∞(F,4)⊆Z I
0 (4).

Conversely, let [2.3] hold.

If x ∈Z I
∞(F,4), then fk(|4xk|)≤M < ∞

for k = 1,2,3.......Suppose that x /∈Z I
0 (4).

Then for some ε0 > 0 and positive integer k0 we have |4xk| < ε0 for k ≥ k0. Therefore

fk(ε0)≤ fk(|4xk|)≤M for k≥ k0 which contradicts [2.3].
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Hence x ∈Z I
0 (4).

Theorem 2.4. The inclusion Z I
∞(4)⊆Z I

0 (F,4) holds, if and only if

lim
k

fk(t) = 0 for t > 0. [2.5]

Proof. Suppose that Z I
∞(4)⊆Z I

0 (F,4) but [2.5] does not hold.

Then

lim
k

fk(t0) = l 6= 0. [2.6]

for some t0 > 0.

Define the sequence x = (xk) by

xk = t0
k−1

∑
v=0

(−1)

k− v

k− v


for k = 1,2,3..........

Then x /∈Z I
0 (F,4), by [2.6].

Hence [2.5] must hold.

Conversly , let x ∈Z I
∞(4) and suppose that [2.5] holds.

Then |4xk| ≤M < ∞ for k = 1,2,3.....

Therefore fk(|4xk|)≤ fk(M) for k = 1,2,3..... and

lim
k

fk(|4xk|)≤ lim
k

fk(M) = 0, by [2.5].

Hence x ∈Z I
0 (F,4).
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