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Abstract. In this paper, tool trihedron for timelike ruled surface with spacelike ruling and spacelike directrix is

constructed. Transition relations among surface trihedron, tool trihedron, generator trihedron, natural trihedron

and also Darboux vectors for each trihedron are obtained. Then, the curvature theory of the constructed frame is

applied to determine the differential properties of the motion. Finally the dynamical motion of the tool frame along

the trajectory planning is determined.
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1. Introduction

The methods of robot trajectory control are currently used and are based on PTP (point

to point) and CP (continuous path) methods. These methods are basically interpolation tech-

niques and, therefore, are approximations of the real path trajectory . In such cases, when a

precise trajectory is needed, or we need to trace a free formed or analytical surface accurately,

the precision is only proportional to the number of intermediate data points for offline program-

ming. For accurate robot trajectory, the most important aspect is the continuous representation
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of orientation where as the position representation is relatively easy. There are methods such

as homogeneous transformation, Quaternion, and Euler Angle representation to describe the

orientation of a body in a three dimensional space . These methods are easy in concept but have

high redundancy in parameters and are discrete representation in nature rather than continuous.

Therefore, a method based on the curvature theory of a ruled surface has been proposed as an

alternative . Ruled surfaces are widely used in many areas in modern surface modelling sys-

tems. The ruled surfaces are surfaces swept out by a straight line moving along a curve and the

study of ruled surfaces is an interesting research area in the theory of surfaces in Euclidean ge-

ometry. Theory of ruled surfaces is developed by both surface theory and E. Study map which

enables one to investigate the geometry of ruled surfaces by means of one real parameter. It is

also known that theory of ruled surfaces is applicable to theoretical kinematics.

1.1. Minkowski space [1,6]

Let R3 be a real 3-dimensional vector space with a metric tensor

≺,�: R3×R3→ R, ≺V ,W �=V1W1 +V2W2−V3W3

such that ≺ V ,W � is a non degenerate symmetric bilinear form, the pair (R3,≺,�) is called

Minkowski (Lorentz) space and is denoted by R1
3.

Definition 1.1 A vector V in lorentz space R1
3 is called

(i) Spacelike if ≺V ,V �> 0,orV = 0

(ii) Timelike if ≺V ,V �< 0

(iii) Lightlike (Null)if ≺V ,V �= 0, f orV 6= 0.

Definition 1.2 Let ξ be the set of all timelike vectors in Lorentz vector space V . For v ∈ ξ , the

set

C(v) = {w ∈ ξ :≺ v,w�< 0}

is the lightcone V of containing

Lemma 1.1 Timelike vectors V and W in Lorentz space are in the same timecone if and if only

≺V ,W �< 0 .

Definition 1.3 The vectors V and W in Lorentz space are called orthogonal if and only if
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≺V ,W �= 0.

Lemma 1.2 If V and W are in the same timecone of R1
3 there is a unique number φ ≥ 0 is

called the hyperbolic angle between V and W such that

≺V ,W �=−‖V‖‖W‖coshφ .

Lemma 1.3 If V and W are timelike and spacelike vectors respectively, then

≺V ,W �=−i‖V‖‖W‖coshφ ,where i =
√
−1.

Definition 1.4 let V be a vector in Lorentz space R1
3. The norm ‖‖ of a vector V is defined as

‖V‖=
√
| ≺V ,V � |.

For any vector V in Lorentz space R1
3 we have

(i) ‖V‖ ≥ 0.

(ii) ‖V‖= 0⇔V be a null vector or V = 0.

(iii) ‖V‖2 =≺V ,V �⇔V be spacelike vector.

(iv) ‖V‖2 =−≺V ,V �⇔V be timelike vector.

Definition 1.5 let V and W be two vectors in lorentz space. The vectorial product of V and W

is defined as

V ∧W =

∣∣∣∣∣∣∣∣∣
e1 e2 −e3

V1 V2 V3

W1 W2 W3

∣∣∣∣∣∣∣∣∣ .
A timelike curve α = α(s) ∈ R1

3, parameterized by the natural parametrization, is a frame field

{e1,e2,e3}, having the following properties

(1) ≺ e1,e1 �=≺ e2,e2 �= 1,≺ e3,e3 �=−1

(2) e1∧ e2 =−e3 ,e1∧ e3 =−e2 , e2∧ e3 = e1

Lemma 1.4 Let V and W be two vectors in R1
3, we have
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V W V ∧W

spacelike spacelike timelike

spacelike timelike spacelike

timelike timelike spacelike

timelike null spacelike

null null spacelike

spacelike null null i f ≺V ,W �= 0

spacelike null spacelike i f ≺V ,W �6= 0

1.2.Curves and ruled surfaces in Lorentz space [1]

Definition 1.6 A curve in R1
3 is a smooth mapping α : I→ R1

3 , where I is an open interval

in the real line. The velocity vector of α at s ∈ I is α ′(s) = d
dsα(s). A curve α = α(s) is regular

provided α ′(s) 6= 0, for all s ∈ I. A curve α in R1
3 is said to be a spacelike, timelike and null

curve if the velocity vector α ′(s) is a spacelike, timelike and null (lightlike), respectively

Definition 1.7 A surface M in the Lorentz space is called of type spacelike or timelike accord-

ing to the induced metric g on M is positive definite or a negative definite (Lorentz) metric,

respectively.

Definition 1.8 The surface M is said to be a type spacelike or timelike according to the normal

vector N on the surface is a timelike vector or a spacelike vector, respectively.

1.3. Robot trajectory planning [2,3,4]

The motion of robot end-effector is referred to as the robot trajectory. A robot trajectory

consists of

(i) A sequence of positions, velocities, accelerations of a fixed point in the end-effector.

(ii) A sequence of orientations, angular velocities and angular accelerations of the end-effector.

The fixed point in the end-effector will be referred to as the tool center point and is denoted by

TCP. The orientation of the end-effector is best described by a coordinate frame attached to the

end-effector, referred to as the tool frame and is denoted by TF.

1.4. Motion Of A Robot End-Effector [2,3]
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A typical robot trajectory is shown in Figure 1. The location and orientation of the robot end-

effector are completely described using the tool frame (TF) and the tool center point (TCP). The

tool frame consists of three unit vectors; namely, the orientation vector O, the approach vector

A and the normal vector N. The tool center point TCP is chosen to be the origin of the tool

frame.

1.5. Representation of a robot trajectory using a ruled surface

Each of the three unit vectors of the tool frame generates a ruled surface while the three

ruled surfaces share a common direcrix traced (trajectory) by the TCP. It is not necessary to

use all three ruled surfaces to represent a robot trajectory; in fact, one ruled surface will suffice.

As shown in Figure 2, the ruled surface generated by the normal vector N is chosen here to

represent the trajectory. We may note, however, that the orientation of other vectors, A and O,

are not specified yet. Theoretically, this is because a robot end-effector motion, in general, has

six degrees of freedom in space while a ruled surface provides only five independent parameters.

Therefore, a robot trajectory may be completely described by adding one parameter to specify

the orientation of the two vectors. The additional parameter referred to, in this study, as the spin

angle and denoted as η . The spin angle is measured from the surface normal vector Sn of the

ruled surface to the normal vector N as shown in Figure 2. The ruled surface and the spin angle

which completely describes a robot trajectory, respectively, are

X(s,v) = α(s)+ vR(s), η = η(s), (1.1)

where α is the directrix , v is a real-values parameter, and R is the ruling. We choose the

normal vector N, to be the ruling. Any one of the three vectors in tool frame could be chosen as

the ruling and the spin angle describes the orientation of the other two vectors in cyclic order.

There are four frames of reference which are essential in the study of the motion of the end-

effectors which are costruction as the following (Fig.3):

(i) The tool frame (O,A,N) .

(ii) The surface frame (N,Sn,Sb) .

(iii) The generator trihedron (r, t∗, tc) .
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(iv) The natural trihedron (t∗,n∗,b∗) .

The differential properties of the motion of the tool frame and the TCP are studied based on

the curvature theory of the ruled surface, using the relationships between the four frames of

reference.

2. Reference Frames

Each vector of tool frame in end-effector defines its own timelike ruled surface while robot

moves. The path of tool center point is directrix and N is the ruling. As α(s) is a spacelike

curve and R(s) is spacelike straight line, let us take the following timelike ruled surface

X(s,v) = α(s)+ vR(s). (2.1)

The normalized parameter s may be based on the directrix α or on the ruling R as in the

following.

s(ϕ) =
∫

ϕ

0
|dα(ϕ)

dϕ
|dϕ, (2.2)

s(ϕ) =
∫

ϕ

0
|dR(ϕ)

dϕ
|dϕ. (2.3)

Through out this paper we use the normalized parameter as in (2.3).

2.1. Surface frame

To determined the orientation of tool frame relative to the timelike ruled surface, we define a

surface frame at the TCP as shown in Figure 3. The surface frame is defined by three orthogonal

unit vectors, the orientation vector O, the surface normal vector Sn, and binormal vector Sb. The

surface normal vector is determined by using the definition of the normal vector to the surface

Sn =
Xv∧X s

|Xv∧X s|
. (2.4)

The surface binormal vector is

Sb = Sn∧N. (2.5)
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2.2. Frenet frame

The frenet frame is defined by three orthogonal unit vectors, namely; the tangent vector t, the

normal vector n, and the binormal vector b, where

t = α
′, n =

t ′

k
, b = n∧ t, (2.6)

where k = |t ′|, is the curvature of the directrix α .

2.3. Generator trihedron

Generator trihedron moves along the striction curve. Generator trihedron is used to study

the positional and angular variation of ruled surface. The generator trihedron is defined by

three orthogonal unit vector, namely; the generator vector r, the central normal vector t and the

central tangent vector k. Since the ruling is not necessarily, so a unit vector, the generator vector

(spacelike) is defined as

r =
R
R
. (2.7)

The central normal vector (spacelike) is defined as

t∗ = R′. (2.8)

The central tangent vector(timelike) is defined as

tc = t∗∧ r. (2.9)

The striction curve of timelike ruled surface is

β (s) = α(s)−µ(s)R(s), (2.10)

where µ is a real valued parameter, the distance from the striction curve to the directrix along

the ruling is µR, where R = |R|, by using the definition of the striction curve we have

µ =≺ α
′,R′ �, (2.11)

Differentiating Equation (2.9), gives the first order positional variation of the striction point of

the timelike ruled surface expressed in the generator trihedron,

β
′ = Γr+∆tc, (2.12)
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where

Γ = 1
R ≺ α ′,R�−µ ′R

∆ = 1
R [α

′,R,R′]
, (2.13)

From a study of motion of generator trihedron and the striction curve, we can obtain the dif-

ferential motion of the end-effector in a simple and systematic manner. The first-order angular

variation of the generator trihedron defined in the following matrix

d
ds


r

t∗

tc

=
1
R


0 1 0

−1 0 γ

0 −γ 0




r

t∗

tc

=Ur∧


r

t∗

tc

 , (2.14)

where

γ =≺ R′′,(R∧R′)�, (2.15)

Ur =
−1
R

tc +
γ

R
r, (2.16)

is the Darboux vector of the generator trihedron.

2.4. Darboux frame for the ruled surface X

The Darboux frame for a ruled surface X is defined by three orthogonal unit vector, namely;

the tangent vector T the normal vector SN and the geodesic vector ng .

T =
dx
ds

= t + vt∗− v′

R
(µ− v | R |)r, (2.17)

SN =
X1∧X2

| X1∧X2 |
=

v′

Π
((µ + v | R |)tc +

v′

R
t∗), (2.18)

where, Π =
√
(µ− v | R |)2 +∆2

ng =T ∧SN =
1
Π
((µ−v |R |)(t∧tc))−∆(t∧t∗+v(µ−v |R |)r+ v′(µ− v | R |)

| R |
t∗− v∆′

| R |
tc),

(2.19)

2.5. Central normal surface and natural trihedron

The natural trihedron used to study the angular and positional variation of the central normal

surface. As the generator trihedron moves along the striction curve, the central normal vector
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generates another ruled surface called the central normal surface. The central normal surface,

is defined as

XT (s,v) = β (s)+ vt∗(s), (2.20)

where β is the position vector of the striction line of the original ruled surface, and v is areal pa-

rameter. The location of the striction curve of the central normal surface relative to the striction

curve of the ruled surface is given by

β
T
(s) = β (s)−µT t∗(s), (2.21)

where,

µT (s) =|
≺ β ′, t∗′ �
≺ t∗′, t∗′ �

| . (2.22)

From equation (2.11) and (2.13), we have

µT (s) =
R(−Γ+∆γ)

1− γ2 . (2.23)

The natural trihedron is defined by three orthogonal unit vector, namely; the central normal

vector t∗ (spacelike), the principal normal vector n∗ (spacelike) and the binormal vector b∗

(timelike) as following:

t∗ = R′, (2.24)

n∗ =
1

κ∗
t∗′, (2.25)

κ
∗ = |t∗′|, (2.26)

b∗ = n∗∧ t∗. (2.27)

The frenet frame for the central normal surface is defined as the tangent vector tT , the normal

vector nT , and the binormal vector bT , where .

tT = β
′, (2.28)

nT =
tT
′

|tT
′|
, (2.29)

bT = nT ∧ tT . (2.30)
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Let ρ be the rotation angle between spacelike vector r and timelike vector b∗, where

r∗ =−icoshρ b∗+ isinhρ n∗

tc = t∗∧r = icoshρ n∗− isinhρ b∗
, (2.31)

Equation (2.31) can be written in matrix form as
r

t∗

tc

=


0 isinhρ −icoshρ

1 0 0

0 icoshρ −isinhρ




t∗

n∗

b∗

 , (2.32)

by the inverse of the equation (2.32), then
t∗

n∗

b∗

=


0 1 0

isinhρ 0 −icoshρ

icoshρ 0 −isinhρ




r

t∗

tc

 . (2.33)

From equation (2.13),(2.21) and (2.26), we have

t∗′ =
1
R
(−r+ γtc) = κ

∗n∗ = κ
∗(isinhρ r− icoshρ tc), (2.34)

then, we have

sinhρ = i
Rκ∗ , coshρ = iγ

Rκ∗
, (2.35)

Then the geodesic curvature may also be written as

γ = cothρ (2.36)

substitute from equation (2.29) into equation (2.13), then

d
ds


r

t∗

tc

=
1
R


0 1 0

−1 0 cothρ

0 −cothρ 0




r

t∗

tc

=Ur∧


r

t∗

tc

 . (2.37)

The Darboux vector of the generator trihedron is

Ur =
−1
R

tc +
cothρ

R
r, (2.38)

From equation (2.19), we have

µT (s) =−R be sinh2
ρ (−Γ+∆cothρ), (2.39)
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also by equation (2.25), the curvature is defined by

κ
∗ =

√
1− γ2

R
=

i
R sinhρ

. (2.40)

The first-order angular variation of natural trihedron may be expressed in the matrix form as

d
ds


t∗

n∗

b∗

=


0 κ∗ 0

κ∗ 0 τ∗

0 −τ∗ 0




t∗

n∗

b∗

=Ut ∧


t∗

n∗

b∗

 . (2.41)

The Darboux vector of the natural trihedron is

Ut = τ
∗t∗. (2.42)

from equation (2.25) and (2.28), we have
r

t∗

tc

=
1

Rκ


0 −1 γ

Rκ∗ 0 0

0 −γ 1




t∗

n∗

b∗

 . (2.43)

By the inverse of the equation (2.36), then
t∗

n∗

b∗

=
1

Rκ∗


0 Rκ∗ 0

−1 0 γ

−γ 0 1




r

t∗

tc

 (2.44)

Substitute from Eq(2.36) into Eq(2.15), then we have

Ut =−κ
∗b∗. (2.45)

Differentiating Equation (2.17) and from equation (2.36), (2.33) and (2.19), then the first order

positional variation of the striction curve of central normal surface defined by

β
′
T
= ΓT t∗+∆T b+ΠT n∗, (2.46)

where

ΓT = µ ′T ,

∆T = γΓ−∆√
1−γ2

,

ΠT = −2∆γ√
1−γ2

.

(2.47)
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Also we can find that

κ
∗2 =

≺ (R′∧R′′),(R′∧R′′)�
(≺ R′,R′ �)3 , (2.48)

τ
∗ =

[R′′′,R′,R′′]
≺ (R′∧R′′),(R′∧R′′)�

. (2.49)

Observe that the Darboux vector of the generator trihedron, Eq(2.15) and the Darboux vector

of the natural trihedron, Eq(2.35), describe the angular motion of the timelike ruled surface and

the central normal surface, respectively. Therefor, the Darboux vector may be considered as the

angular velocity, where as the positional variation of the striction curve may be considered as

the linear velocity . We also note that the functions, ∆T , ΓT and ΠT in Eq.(2.39) and κ∗ and

τ∗ in Eq.(2.40)and (2.41), play the same role as the curvature function of the central normal

surface.

3. Relationship between the Frames of Reference

The orientation of the surface frame relative to the tool frame and the generator trihedron is

shown in Figure 2. Let φ be the hyperbolic angle between the timelike vectors Sb and A, then

we have

≺ Sb,A�= coshφ . (3.1)

A = coshφ Sb + sinhφ Sn, O = A∧N = coshφ Sn + sinhφ Sb. (3.2)

These vectors can be written in matrix form as follows
N

A

O

=


1 0 0

0 sinhφ coshφ

0 coshφ sinhφ




N

Sn

Sb

 . (3.3)

The inverse of this matrix is
N

Sn

Sb

=


1 0 0

0 −sinhφ coshφ

0 coshφ −sinhφ




N

A

O

 . (3.4)
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Let ψ be the hyperbolic angle between the timelike vectors Sb and tc then, we have

tc = coshψ Sb + sinhψ Snt∗ = tc∧ r = coshψ Sn + sinhψ Sb (3.5)

or, 
r

t∗

tc

=


1 0 0

0 coshψ sinhψ

0 sinhψ coshψ




N

Sn

Sb

 . (3.6)

The inverse of this matrix is
N

Sn

Sb

=


1 0 0

0 coshψ −sinhψ

0 −sinhψ coshψ




r

t∗

tc

 . (3.7)

From Eq.(3.5) and Eq.(3.2), then
N

A

O

=


1 0 0

0 sinhθ coshθ

0 coshθ sinhθ




r

t∗

tc

 , (3.8)

where θ = φ −ψ , the inverse of this matrix is
r

t∗

tc

=


1 0 0

0 −sinhθ coshθ

0 coshθ −sinhθ




N

A

O

 , (3.9)

where, θ referred to spin angle that describes the orientation of the end-effector. Substituting

the partial derivatives of Equation (2.1) into (2.4) then we have

Sn =
µk+∆t√
∆2−µ2

, (3.10)

and

Sb = N∧Sn =
µt∗+∆tc√

∆2−µ2
. (3.11)

From equation (3.6), (3.9), (3.10) we have

coshψ = ∆√
∆2−µ2

, sinhψ = −µ√
∆2−µ2

. (3.12)

4. Differential properties of the robot end effector motion
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The motion of the robot end effector is described by the angular motion of the tool frame and

the linear motion of the TCP. In this section, the differential motion properties of the tool frame

and TCP are studied

4.1. First order properties

Since the directrix α is the locus of the TCP, by taking the derivative of equation (2.9), we

have

α
′(s) = β

′+µ
′R+µt∗. (4.1)

From Eq.(2.11), we have

α
′(s) = (Γ+µ

′R)r+µt∗+∆tc. (4.2)

From Eq.(3.7), we have

α
′(s) = (Γ+µ

′R)N +(∆coshθ −µ sinhθ)A+(µ coshθ −∆sinhθ)O. (4.3)

To determined the first order angular variation of the tool frame, we taking the derivative

Eq,(3.6), we have

d
ds


N

A

O

=
1
R


0 1 0

−sinhθ (Ω− γ)coshθ (Ω+ γ)sinhθ

−coshθ (Ω− γ)sinhθ (Ω+ γ)coshθ




r

t∗

tc

 . (4.4)

where Ω = θ ′R, substitute from Eq.(3.7) into Eq.(4.4) then, we have

d
ds


N

A

O

=
1
R


0 −sinhθ coshθ

−sinhθ γ sinh2θ Ω− γ cosh2θ

−coshθ Ω+ cosh2θ −γ sinh2θ




N

A

O

 . (4.5)

Eq.(4.5) can be writhen as

d
ds


N

A

O

=Uo∧


N

A

O

 , (4.6)

where

Uo =
−1
R

cosh2θ N, (4.7)
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is referred to as the Darboux vector of the tool frame, from Eq.(3.6) we have

Uo =
−1
R

cosh2θ r, (4.8)

also from Eq(2.15), we have

Uo = cosh2θ [
1

Rγ
tc−

1
γ

Ur]. (4.9)

4.2. Second order properties

Differentiating Eq.(4.2), we have

α
′′(s) = (Γ′+µ

′′R− µ

R
)r+(

Γ

R
+2µ

′+
∆γ

R
)t∗+(∆′+

µγ

R
)tc. (4.10)

This can be expressed by the tool frame, from Eq.(3.7), we have

α ′′(s) = (Γ′+µ ′′R− µ

R )N +[(∆′+ µγ

R )coshθ − (Γ

R +2µ ′− ∆γ

R )sinhθ ]A+

[(Γ

R +2µ ′− ∆γ

R )coshθ − (∆′+ µγ

R )sinhθ ]O
(4.11)

Take the derivative of Eq.(4.8)

U ′o =
1

R2 (−2Rsinh2θr− cosh2θ)t∗. (4.12)

Also by differentiating Eq(2.38) and (2.45), we have

U ′r = κ
∗
τ
∗n∗−κ

∗′b∗, (4.12)

U ′t = τ
∗′t∗+ τ

∗
κ
∗n∗. (4.13)

By continuing the differentiation, we also can obtain higher order properties of the end effector

motion. However, we may use only up to second order properties of motion in current robot

control technology.

4.3. Linear and angular velocity and acceleration of a robot end effector

Since the robot trajectory planning is based on time-dependent properties, eg., velocity, ac-

celeration, angular velocity, and angular acceleration, of robot end effector motion. The time-

dependent motion properties of the end effector can be determined by applying the chain role

to the differential motion properties that determined in section (4.2).
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The velocity and acceleration of TCP, angular velocity, and acceleration of the end effector are

determined, respectively as

V = α ′ṡ, a = α ′s̈+α ′′ṡ2,

w =Uoṡ, ϑ = ẇ =Uos̈+U ′oṡ2,
(4.14)

where .= d
dt (differentiation with respect to time).

5. Example

For a ruled surface

X(s,v) = (
√

2sins,−
√

2coss,−s)+ v(coss,sins,

√
2

2
) (5.1)

The striction curve is α(s) = (
√

2sins,−
√

2coss,−s) where ≺ α ′,α ′ �= 1 > 0 so α(s) is

spacelike vector and the generator is R(s) = (coss,sins,
√

2
2 ) where ≺ R,R�= 1√

2
> 0 so R(s)

is spacelike vector

The vectors of generator trihedron are the following

r = R
R = (

√
2coss,

√
2sins,1) (spacelike vector)

t∗ = R′ = (−sins,coss,0) (spacelike vector)

tc = (−coss,−sins,
√

2) (timelike vector)

(5.2)

from Eq(2.10), (2.12), (2.14), (2.40) and (2.41), we have

Γ = 1,∆ =−2
√

2,

γ = 1√
2
,µ = 0,

κ∗ = 1.

(5.3)

The three vectors of the natural trihedron are

t∗ = (−sins,coss,0) (spacelike vector)

n∗ = (−coss,−sins,0) (spacelike vector)

b∗ = (0,0,1) (timelike vector)

(5.4)

The Darboux vector of the generator trihedron is

U r = (2
√

2coss,2
√

2sins,2). (5.6)
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The Darboux vector of the natural trihedron is

U t = (0,0,1). (5.7)

From Eq.(2.59), we have

coshψ = −2
√

2√
8−µ2

, sinhψ = −µ√
8−µ2

. (5.8)

Then we have

tanhψ = 2
√

2
µ

. (5.9)

So the first derivative of ψ is

ψ
′ =

2
√

2µ ′

µ2−8
. (5.10)

Since the spin angle between the tool frame and the surface is zero ψ = 0→ ψ ′ = 0, then

θ = φ ,θ ′ = φ ′. Then

Ω =
1√
2

ψ
′. (5.11)

The approach vector and the normal vector are

A =
1√

8−µ2
(32
√

2sins+2
√

2µ coss,32
√

2coss+2
√

2µ sins,−4µ). (5.12)

O =
1√

8−µ2
(−2
√

2µ sins−32
√

2coss,−2
√

2µ coss−32
√

2sins,64). (5.13)

The first and second order positional variation of the TCP can expressed in the tool frame as

α
′ = (1−2µ

′)N +
32√

8−µ2
A+
−8−µ2√

8−µ2
O, (5.14)

and

α
′′=(2µ

′′− µ

2
)N+

−8√
8−µ2

(µ2+2µ
′+197)A+

−µ√
8−µ2

(2µ
2+315)O.

(5.15)

The Darboux vector of the tool frame is

Uo =
−8−µ2

8−µ2 N. (5.16)

The first order derivative of the Darboux vector of the tool frame is

U ′o =
1

4
√

8−µ2
(4r− (8+µ

2)t∗. (5.17)
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Conclusions

From the previous investigation, one can see that the motion of the robot end-effector can be

represented by the union of ruled surface X and its associated central normal surface XT . The

configuration space consists of X∪XT and the different frames with the orientation of the motion

through the darboux frames, especially, U0. The configuration space is given in Figure 1,2,3.

The analytical representation is given through the frames attached to the ruled surfaces X and

XT which as described by the vector valued vectors r, t∗, tc,n∗,b∗,Ur,Ut ,U0;A,O,N and the spin

angle.

FIGURE 1. A ruled surface and frams of reference

FIGURE 2. The central normal surface and frams of reference
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FIGURE 3. The configuration space of the motion X ∪XT
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