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Abstract. In this paper, Shannon Wavelet Method (SWM) is proposed to approximate solutions for boundary

value problems for fractional order differential equations. Shannon wavelets operational matrices of integration

are utilized to approximate the solutions in the form of convergent series with easily computable terms. Numerical

examples are provided to demonstrate the accuracy, efficiency and simplicity of the proposed Shannon wavelet

method.
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1. Introduction

In the past several decades, the study of fractional calculus has turned to practical application

from pure mathematical theory. Compared to integer order differential equation, fractional dif-

ferential equation has the advantage that it can better describe some natural physical processes
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and dynamic system processes [2, 9] because the fractional order differential operators are non

- local operators. In general, it is not easy to derive the analytical solutions to most of the

fractional differential equations. Particularly, there is no known method for solving fractional

boundary value problems exactly. Therefore several methods for the approximate solutions to

classical differential equations are extended to solve differential equations of fractional order

numerically. These methods include, Adomian decomposition method [3], homotopy - pertur-

bation method [1], homotopy analysis method [6], variational iteration method [14], generalized

differential transform method [10], finite difference method [15], fractional linear multi - step

method [8], extrapolation method [4] and predictor - corrector method [5].

It should be noted that compare to the initial value problems, the numerical solutions of

boundary value problems for fractional differential equations have received much less atten-

tion. In this work, we focus on providing a numerical scheme based on Shannon wavelet op-

erational matrices of integration, to solve various types of boundary value problems for linear

fractional differential equations. The main characteristic of the method is that, it converts the

linear fractional boundary value problem into system of linear algebraic equations.

2. Preliminaries and Basic Definitions

Here, let us start with recalling the essentials of the fractional calculus. The fractional cal-

culus is a name for the theory of integrals and derivatives of arbitrary order, which unifies and

generalizes the notions of integer - order differentiation and n - fold integration.

2.1 Riemann-Liouville Fractional derivative and integral. Let α > 0,n−1 < α ≤ n,n ∈ N

and h : (0,∞)→ R be continuous, then the Riemann - Liouville fractional derivative of order

α > 0, is defined by Dα
RLh(t) =

(
d
dt

)n
In−αh(t), where

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

is the Riemann - Liouville fractional integral operator of order α > 0.

For α,β > 0, the Riemann - Liouville fractional order integral and derivative have following

important properties:
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(I) Iα

(
Iβ h(t)

)
= Iα+β h(t)

(II) Iαtβ = Γ(β+1)
Γ(α+β+1)t

α+β

(III) Dα
RL(I

α)h(t) = h(t)

One of the drawbacks of Riemann - Liouville approach is that it cannot incorporate the non-zero

initial condition at lower limit. For boundary value problems with non-zero initial conditions

the Caputo approach is suitable.

2.2 Caputo Fractional Derivative. The Caputo definition of fractional order derivative is de-

fined as,

Dα
C h(t) =

1
Γ(n+1−α)

∫ t

0

h(n+1)(s)
(t− s)α−n ds, n < α ≤ n+1, n ∈ N

where α > 0 is the order of the derivative and n is the smallest integer greater than α .

2.3 Theorem. For n = dαe

(I) Iα

(
Dα

RLh(t)
)
= h(t)−∑

n−1
k=0

tα−k−1

Γ(α−k) lims→0+D
n−k−1
RL In−αh(s)

(II) Iα

(
Dα

C h(t)
)
= h(t)−∑

n−1
k=0

tk

k!

[
Dk

RLh(t)
]

t=0

2.4 The Shannon Wavelet. The Shannon scaling function φ(t) defined on R is the sinc function

which is given as

φ(t) = sinc(t) =


sin(πt)

πt , t 6= 0

1, t = 0

The corresponding mother wavelet is defined as

ψ

(
t +

1
2

)
= 2φ(2t)−φ(t)

Shannon wavelet ψ j,k(t) is a family of the functions constructed from dilation and translation

of mother wavelet ψ(t), i. e.
{

ψ j,k(t) = 2 j/2ψ(2 jt − k)
}∞

j,k=0
where j,k are non - negative

integers which are called dilation and translation parameters respectively. The Shannon wavelet

system forms an orthonormal bases of L2(R).

3. Function approximation and operational matrices of Shannon wavelet
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3.1 Function approximation. Suppose y(x) is of boundary variation on every bounded interval

y(x) ∈ L2(R)∩L1(R) then the wavelet series

y j(x) = ∑
k
〈y,ψ j,k〉ψ j,k(x)

converges to y(x) as j→∞, at every point of continuity of y(x). Hence, every square integrable

function y(x) can be expanded into Shannon wavelet series as

(3.1) y(x) =
∞

∑
j=0

∞

∑
k=0

a j,kψ j,k(x)

where the Shannon wavelet coefficients a j,k for j,k = 0,1,2,−−− are given by

a j,k = 〈y(x),ψ j,k(x)〉

If the infinite series in equation (3.1) is truncated then equation (1) can be written as,

(3.2) y(x)≈ ym(x) =
m−1

∑
j=0

m−1

∑
k=0

a j,kψ j,k(x)

In matrix form,

(3.3) y(x)≈ AT
m2×1Ψm2×1(x)

where AT
m2×1 and Ψm2×1(x) are m2×1 matrices given by

Am2×1 = [a0,0,a0,1, ...,a0,m−1,a1,0,a1,1, ...,a1,m−1, ...,am−1,0,am−1,1, ...,am−1,m−1]
T and

Ψm2×1 =
[
ψ0,0(x),ψ0,1(x), ...,ψ0,m−1(x), ...,ψm−1,0(x),ψm−1,1(x), ...,ψm−1,m−1(x)

]T

Now at collocation points xi =
i

m2−1 , i = m j+k where j,k = 0,1,−−−,m−1 we can define

m2×m2 Shannon matrix as

Ψm2×m2 =
[
Ψm2×1(0),Ψm2×1

(
1

m2−1

)
,Ψm2×1

(
2

m2−1

)
,−−−,Ψm2×1

(
m2−2
m2−1

)
,Ψm2×1(1)

]
For instance, when m = 2, the Shannon matrix is given by

Ψ4×4 =


1 0.826993 0.413497 0

−0.636620 0.699057 0.699057 −0.63662

0.212207 0.372702 −0.521783 −0.63662

−0.900316 0.988616 −0.737913 0.300105


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The Shannon wavelet coefficients a j,k, j,k = 0,1,−−−,m− 1 can be determined by matrix

inversion.

AT
1×m2 = Y1×m2(Ψm2×m2)−1(3.4)

where

Y1×m2 = [ym(x0),ym(x1),−−−,ym(xm2−1)]

3.2 Shannon wavelet operational matrix of integration. The integration of the Shannon

function vector Ψm2×1(x) is given by∫ x

0
Ψm2×1(z)dz = Sm2×m2Ψm2×1(x)

where Sm2×m2 is the Shannon wavelet operational matrix of integration. Now define the m2 - set

of block - pulse functions on [0,1] as follows

bi(x) =


1, i

m2 ≤ x≤ i+1
m2

0, otherwise

for i = 0,1,−−−,m2−1. Here the functions bi are disjoint and orthogonal.

∫ 1

0
bi(x)b j(x)dx =


0, i 6= j

1
m2 , i = j

The Shannon wavelet can be expanded into m2 - set of block - pulse functions as

Ψm2×1(x) = Ψm2×m2Bm2×1(x)(3.5)

where the block pulse function vector Bm2×1(x) is defined as

Bm2×1(x) = [b0(x),b1(x),−−−,bm2−1(x)]
T

Fractional integration of the block - pulse function vector is given as(
IαBm2×1

)
(x) = Fα

m2×m2Bm2×1(x)(3.6)
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where Fα

m2×m2 is the block - pulse operational matrix of the fractional order integration defined

as [7]

Fα

m2×m2 =
( 1

m2

)α 1
Γ(α +2)



1 ξ1 ξ2 · · · ξm2−1

0 1 ξ1 · · · ξm2−2

0 0 1 · · · ξm2−3
...

...
...

...
...

0 0 0 · · · 1


where ξk = (k+1)α+1−2kα+1 +(k−1)α+1, for k = 1,2,−−−,m2−1.

Now to find the Shannon wavelet operational matrix of the fractional integration, we suppose

Iα

(
Ψm2×1(x)

)
≈ Sα

m2×m2Ψm2×1(x)(3.7)

By using equation (3.5) and (3.6)

Sα

m2×m2Ψm2×1(x)≈ Iα
Ψm2×m2Bm2×1(x)

≈Ψm2×m2Fα

m2×m2Bm2×1(x)

So

Sα

m2×m2 ≈Ψm2×m2Fα

m2×m2

(
Ψm2×m2

)−1

For m = 2,α = 1.5 the Shannon wavelet operational matrix of integration is given by

S1.5
4×4 =


0.344784 0.029417 −0.648696 0.167481

−0.017471 −0.045238 −0.152993 0.003118

0.049062 0.062126 −0.048808 −0.009804

−0.125848 0.032364 0.105076 −0.100288



4 Proposed Method

In this section, the implementation of the proposed method has been explained for solving

Riemann - Liouville and Caputo fractional differential equations.
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4.1 Riemann - Liouville Fractional differential equations. Consider the Riemann - Liouville

fractional differential equation with boundary value problem given by,

Dα
RLy(x) = f

(
x,y(x),Dβ

RLy(x)
)
,0≤ x≤ 1(4.1)

with

y(0) = y0,y(1) = y1

where 1 < α ≤ 2,0 ≤ β ≤ 1. Now on applying the integral operator Iα to both sides of (4.1)

and on using the theorem 2.3, we have

y(x) = Iα f
(

x,y(x),Dβ

RLy(x)
)
+ c0xα−1 + c1xα−2(4.2)

For α = 2, we have

c1 = y0,c0 = y1− y0− Iα f
(

1,y(1),Dβ

RLy(1)
)

(4.3)

For 1 < α < 2, we have (4.3) with y0 = 0. Now on substituting c0 and c1 in (4.2) and on

using the relations (3.3) and (3.7), the fractional differential equation of Riemann - Liouville

type reduces to system of algebraic equations. Then solve this system to obtain the numerical

solution of boundary value problem for Riemann - Liouville fractional differential equation.

4.2 Caputo fractional differential equation. Consider the Caputo fractional differential equa-

tion with boundary value problem given by

Dα
C y(x) = f

(
x,y(x),Dβ

Cy(x)
)
, 0≤ x≤ 1(4.4)

with

y(0) = y0, y(1) = y1(4.5)

where 1 < α ≤ 2,0 ≤ β ≤ 1. Now on applying the integral operator Iα to both sides of (4.4)

and on using theorem 2.3, we have

y(x) = Iα f
(

x,y(x),Dβ

Cy(x)
)
+ c0 + c1x(4.6)
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Using the boundary condition (4.5), find c0 and c1. On substituting c0 and c1 into equation

(4.6), we have

y(x) = Iα f
(

x,y(x),Dβ

Cy(x)
)
− xIα f

(
1,y(1),Dβ

Cy(1)
)
+ x(y1− y0)+ y0(4.7)

On using the relations (3.3) and (3.7), the solution of (4.7) can be approximated. By this pro-

cess, the boundary value problem for fractional differential equation of Caputo type reduces

to a system of algebraic equations. Then solve this system to obtain the numerical solution of

boundary value problem.

5. Numerical Examples

In order to show the efficiency of the proposed method, for solving boundary value problems

for fractional order differential equations, we apply it to solve different types of linear fractional

differential equations where exact solutions are known.

Example 5.1. Consider the boundary value problem for inhomogeneous linear fractional dif-

ferential equation

Dα
RLy(x)+ay(x) = g(x)(5.1)

with y(0) = 0,y(1) = y0 where 1 < α ≤ 2,a ∈ R,x ∈ [0,1]. For g(x) = x+ axα+1

Γ(α+2) and y0 =

1
Γ(α+2) , the exact solution of boundary value problem is y(x) = xα+1

Γ(α+2) . The integral represen-

tation of (5.1) is given by

y(x) =−aIαy(x)+axα−1Iαy(1)+ f (x)(5.2)

where

f (x) = Iαg(x)− xα−1Iαg(1)+
xα−1

Γ(α +2)

We approximate the solution y(x) as

y(x) = AT
m2×1Ψm2×1(x)(5.3)
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then

Iαy(x) = AT
m2×1Iα

Ψm2×1(x)

= AT
m2×1Sα

m2×m2Ψm2×1(x)(5.4)

On using (5.3) and (5.4) in (5.2), we have

AT
m2×1Ψm2×1(x) =−aAT

m2×1Sα

m2×m2Ψm2×1(x)+axα−1AT
m2×1Sα

m2×m2Ψm2×1(1)

+ f (x)(5.5)

We solve (5.5) for Shannon coefficient vector, for a = 3
57 ,m = 5 and α = 1.2,1.4,1.6,1.8,2.

The numerical solutions for different values of α are shown in figure 1. The absolute error is

given in the table 1.

Table 1. Absolute error for m = 5 and α = 1.2,1.4,1.6,1.8,2.

Figure 1. The numerical solutions for different values of α(α = 1.2 —, α = 1.4 —,

α = 1.6 —, α = 1.8 —, α = 2 —)
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Example 5.2. Consider the boundary value problem

Dα
C y(x) =D

β

Cy(x)− ex−1−1, 1 < α ≤ 2, 0 < β ≤ 1

with

y(0) = 0,y(1) = 0

In general, the exact solution of the problem is not known. However, for α = 2,β = 1, the

problem has exact solution y(x) = x(1− ex−1). For integer order case the above problem of

example 5.2, is solved numerically in [13] using combined homotopy perturbation method and

Greens function method. We solve this problem by the proposed method. The numerical results

are presented in Table 2. Computer plots for β = 1 and different values of α given in Fig.

2 show that as α approaches to 2, the corresponding solutions of fractional order differential

equation approach to the solutions of integer order differential equation. Results in Table 2 show

that the Shannon wavelet method agrees with the results obtained in [13] by using combination

of Greens function and Homotopy perturbation method.

Figure 2. Shannon Wavelet solutions for β = 1 and different values of α
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Table 2. Comparison of the Shannon wavelet method with HPM [13] for m = 5,α = 2,β = 1

Example 5.3. Consider the fractionally damped mechanical oscillator equation with boundary

conditions

Dα
RLy(x)+λD

β

RLy(x)+ vy(x) = g(x), x ∈ [0,1]

with

y(0) = 0,y(1) = 0

where 1 < α ≤ 2,0 < β ≤ 1,α −β > 1,λ ,v are prescribed constants and g(x) is the forcing

function. If α = 2,β = 1 then above problem of example 5.3, reduces to the usual differential

equation of harmonic oscillator. In [11] Attila Palfalvi have applied the Adomian decomposition

method on a fractionally damped mechanical oscillator for a sine excitation. We solve this

equation with two - point boundary conditions using the proposed method of Shannon wavelets.

For α = 7
4 ,β = 1

2 and λ = 1,v = −1√
π

.

Here

g(x) =
1√
π

(
16x3/2 p(x)

45045
+

24x1/4q(x)
9945Γ(5/4)

− x2(5x−3)2r(x)

)
where p(x),q(x) and r(x) are polynomials given by,

p(x) = 28028000x3−14620320x2−21527571x−270270,

q(x) = 6400000x5−15360000x4 +13328000x3−5021120x2 +757809x−29835

r(x) = 25x3−50x2 +29x−4
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One can easily verify that the exact solution is y(x) = 625x7− 2000x6 + 2450x5− 1420x4 +

381x3−36x2. The numerical and exact solutions for m = 6 are shown in Fig. 3. The absolute

error for different values of m is shown in the Table 3.

Table 3. For Example 5.3, absolute error for different values of m.

Figure 3. The numerical and exact solutions for m = 6 (Exact — Shannon ...)

Example 5.4. Consider the Bagley - Torvik equation [12] with boundary conditions,

ay”(x)+bDα
RLy(x)+ cy(x) = g(x), x ∈ [0,1]

with

y(0) = 0,y(1) = y0

where a,b,c ∈ R and a 6= 0. The differential equation in this example is a prototype fractional

differential equation with two derivatives. Bagley - Torvik equation involving fractional deriv-

ative of order 1
2 or 3

2 arises in the modeling of the motion of a rigid plate in a Newtonian fluid



A NUMERICAL APPROACH FOR SOLVING BOUNDARY VALUE PROBLEMS 1097

and a gas in a fluid. We solve this equation with two - point boundary conditions by using the

proposed method of Shannon wavelets.

Choosing α = 3
2 ,a = 1,b = 8

17 ,c =
13
51 and y0 = 0,g(x) = x(−1/2)

89250
√

π

(
48p(x)+7

√
xq(x)

)
where

p(x) = 16000x4−32480x3 +21280x2−4746x+189

q(x) = 3250x5−9425x4 +264880x3−448107x2 +233262x−34578.

It can be easily verified that the exact solution is

y(x) = x5− 29x4

10
+

76x3

25
− 339x2

250
+

27x
125

The numerical and exact solutions for different values of m are shown in Fig. 4. The absolute

error for different values of m is shown in the Table 4.

Table 4. For Example 5.4, absolute error for different values of m.

Figure 4. The numerical and exact solutions for different values of m and

α = 3
2(m = 3−−− m = 4−−− m = 5−−− exact = ...)
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6. Conclusion

In this paper, a numerical scheme based on operational matrices of integration for Shannon

wavelets, is proposed to obtain approximate solutions of two - point boundary value problems

for linear fractional differential equations with constant coefficients. The problem has been

reduced to system of algebraic equations. The results obtained are compared with exact solu-

tions and also with the solutions obtained by some other numerical methods in literature. It is

worth mentioning that results obtained agree well with exact solutions and therefore the pro-

posed method is very convenient, effective and reliable for obtaining approximate solutions of

fractional boundary value problems.
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