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1. Introduction  

Blow-up solutions for nonlinear parabolic equations are discussed by many authors. The 

Phenomena of the blow-up for nonlinear parabolic equations have been investigated extensively 

by many authors. Wu [7] et al, Wang and He [8] studied the blow-up of the solutions for a 

semilinear parabolic equation involving variable source and positive initial energy. Ding (cf.[9] 

and [11] ) and Zhang [10] studied the global existence and blow-up solutions for the parabolic 

problems. C. Enache [14], L.E. Payne, P.W. Schaefer [15] and L.E. Payne, J.C. Song [18] 

discussed the lower bounds for the blow-up time to parabolic problems under Neumann 

boundary conditions. L.E. Payne, P.W. Schaefer (cf.[16] and [17]) dealt with the bounds for the 

blow-up time of the solution. Many approaches have been developed in discussing the upper or 

lower bounds for the blow-up time of various nonlinear parabolic problems. However, the blow-

up rate of the solution to the problem with general nonlinearity is unknown. K. Baghaei, M.B. 
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Ghaemi and M. Hesaaraki [6] studied the following semilinear parabolic problem with a variable 

source: 

{
𝑢𝑡 = ∆𝑢 + 𝑢

𝑝(𝑥), 𝑥 ∈ Ω, 𝑡 > 0,

𝑢(𝑥, 𝑡) = 0      𝑥 ∈ 𝜕Ω , 𝑡 > 0,
𝑢(𝑥, 0) = 𝑢0(𝑥),           𝑥 ∈ Ω,

                                   

Where Ω ⊂ ℝ𝑁(𝑁 ≥ 3) is bounded domain with smooth boundary. They obtained the lower 

bound for the blow-up time in some appropriate measure. 

In this paper we intend to study the Blow-up Phenomenon of forward parabolic PDE. Through 

putting forward different assumptions, we obtain the lower bounds for the blow-up time of the 

solution. Furthermore, we got the corresponding blow-up rate estimates. This paper is organized 

as follows. In section 2 we established a model and in section three we will use two methods to 

obtain the lower bounds for the blow-up time and blow-up rate estimates of the solution to (2.5). 

 

2. The Model 

The risk adjusted Black-Scholes equation can be viewed as an equation with a variable volatility 

coefficient 

                             𝜕𝑡𝑉 +
𝜎2(𝑠,𝑡)

2
𝑆2 (1 − 𝜇(𝑆𝜕𝑆𝑉)

1

3) 𝜕𝑠
2𝑉 + 𝑟𝑠𝜕𝑆𝑉 − 𝑟𝑉 = 0,           (2.2) 

where 𝜎(𝑆, 𝑡) represents volatility part of the process depends on a solution 𝑉 = 𝑉(𝑠, 𝑡) and  𝜇 =

3 (
𝐶2𝑅

2𝜋
)

1

3
, 𝜇 represent a trend or drift of the process, c is the transaction cost and R the portfolio 

risk measure. If 𝜇 = 0 we recover the equation discussed in [18]. 

Taking    𝜎̂2(𝑠, 𝑡) = 𝜎2(1 − 𝜇(𝑆𝜕𝑆
2𝑉(𝑆, 𝑡))

1

3, equation (2.2) becomes  

                       𝜕𝑡𝑉 +
𝜎̂2

2
𝑆2𝜕𝑠

2𝑉 + 𝑟𝑆𝜕𝑆𝑉 − 𝑟𝑉 = 0.                    (2.3) 

By setting  𝑆 = 𝑒𝑥, 𝑢(𝑥, 𝑡) = 𝑉(𝑒𝑥, 𝑡)𝑎𝑛𝑑 ℎ(𝑒𝑥) = 𝑔(𝑥) , we obtain the following parabolic 

PDE . 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
− 𝛼

𝜕2𝑢

𝜕𝑥2
− (Λ − α)

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
+ Λ𝑢(𝑥, 𝑡) = 0 , 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ (Λ − α)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
− Λ𝑢(𝑥, 𝑡)            (2.4)   

where 𝑔(𝑥) is the pay-off function. , 𝛼 =
𝜎2(1−𝜇(𝑆𝜕𝑠

2𝑣(𝑠,𝑡))
1
3

2
 𝑎𝑛𝑑 𝛬 = 𝑟. 

In this paper we are concerned with the blow –up phenomenon of the following problem: 
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{
 
 

 
 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ (𝛬 − 𝛼)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
− 𝛬𝑢(𝑥, 𝑡)      𝑥 ∈ Ω, 𝑡 > 0.

𝑢(𝑥, 𝑡) = 0 𝑜𝑟 
𝜕𝑢

𝜕𝑛
= 0                                                      𝑥 ∈ 𝛺, 𝑡 > 0        

𝑢(𝑥, 0) = 𝑔(𝑥) ≥ 0,                                                  𝑥 ∈ 𝛺,

                 (2.5) 

Where  Ω ⊂ ℝ𝑁(𝑁 ≥ 3)  is a smooth bounded domain, 
𝜕

𝜕𝑛
 represents the outward normal 

derivative on 𝜕𝛺, 𝑔(𝑥),is the initial value, 1 < 𝑝 ≤ 2. Set ℛ+ = (0,∞).We assume throughout 

the work, that (𝐹1): 𝑓(𝑥, 𝑠)  is a nonnegative 𝐶1(Ω̅ × [0,∞))  function, and (𝐹2): ∫
𝑑𝜂

𝑓(.,𝜂)

+∞

𝑠
 is 

bounded for 𝑠 > 0, 𝑏 𝑖𝑠 𝑎 𝐶2(ℛ+) function satisfying 1 ≤ 𝑏𝑚
′ ≤ 𝑏′(𝑠) ≤ 𝑏𝑚

′ , 𝑏′′(𝑠) ≤

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 > 0. 

The following condition will be required in our results: 

(F3) There exist positive constants 𝐶1, 𝐶2, 𝑀, 𝑘,a nonnegative constant 𝑟 and a positive function 

𝑚(𝑥) ∈ 𝐶(Ω;ℝ+) 𝑠𝑎𝑡𝑖𝑠𝑓𝑦  0 ≤ 𝑟 ≤ 1 < 𝑚_: 𝑖𝑛𝑓𝑥∈Ω𝑚(𝑥) ≤ 𝑚(𝑥) ≤ 𝑚+ ≔ 𝑠𝑢𝑝𝑥∈Ω𝑚(𝑥) ≤

𝑘 + 1 such that 

𝑓(𝑥, 𝑠) ≤ 𝐶1 + 𝐶2𝑠
𝑟 (∫ 𝑠𝑚(𝑥)𝑑𝑥

Ω

)

𝑀

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ≥ 0; 

(F4) There exist positive constants 𝐶3, 𝐶4, 𝑘 and a positive function 𝑚(𝑥) ∈ 𝐶(Ω;ℝ+) satisfy 
3

4
<

𝑚 ≤ 𝑚(𝑥) ≤ 𝑚+ < ∞ , 𝑘 > 𝑚𝑎𝑥{(𝑛 − 1)(4𝑚+ − 3), 1} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

𝑓(𝑥, 𝑠) ≤ 𝐶3 + 𝐶4𝑠
𝑚(𝑥); 

(F5) There exist positive constant 𝛼 such that  

𝑠𝑓(𝑥, 𝑠) ≥ 2(1 + 𝛼)𝐹(𝑥, 𝑠), 

where 𝐹(𝑥, 𝑠) = ∫ 𝑓(𝑥, 𝜁)𝑑𝜁 ;
Ω

 

 (G1) 𝑓𝑜𝑟 1 < 𝑝 ≤ 2, 

∫ |∇𝑔|𝑝𝑑𝑥 ≤ 𝑝∫ 𝑓(𝑥, 𝑔)𝑑𝑥
ΩΩ

 

 

3. Lower bounds for the blow-up time of the solution to equation (2.5) 

In this section we will use two different methods to establish the lower bound for the blow-up 

time and blow-up rate of the solution to equation (2.5) under different assumptions. 

Defined 
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              𝐺(𝑠) = (𝑘 + 1) ∫ 𝜂𝑘𝑏′(𝜂)𝑑𝜂,   𝐴(𝑡) = ∫ 𝐺(𝑢(𝑥, 𝑡))𝑑𝑥
Ω

𝑠

0
                                      (3.1) 

Where 𝑘 is a positive constant? 

Theorem (3.1) Let 𝑢  be a nonnegative solution of (1.5) subject to Dirichlet (or Nenmann) 

boundary condition,𝐴(𝑡) be defined as (3.1).Assume that 𝑓 satisfies (F1),(F2) and (F3),then the 

blow-up time 𝑡∗ is bounded from below by 

𝑡∗ ≥ ∫
𝑑𝜂

𝐾1𝜂𝑟1 + 𝐾2𝜂𝑟2(1 + 𝜂𝑟3)𝑀

+∞

𝐴(0)

. 

Moreover, we have the following blow –up rate estimate 

‖𝑢(. , 𝑡)‖𝐿𝑘+1 ≥ 𝑆1

1
𝑘+1(𝑡∗ − 𝑡)

−
1

𝑟+𝑚+𝑀−1
,
 

Where 𝐾1, 𝐾2, 𝑟1, 𝑟2, 𝑟3𝑎𝑛𝑑 𝑆1 are positive constants which will be determined later. 

Proof. Applying the divergence theorem and taking into account assumption (F3), we obtain 

𝐴′ = ∫ 𝐺′(𝑢(𝑥, 𝑡))𝑢𝑡𝑑𝑥
Ω

 

= (𝑘 + 1)∫ 𝑢𝑘𝑏′(𝑢)𝑢𝑡𝑑𝑥
Ω

 

                                    = (𝑘 + 1) ∫ 𝑢𝑘[𝑑𝑖𝑣(|∇𝑢|𝑝−2∇𝑢) + 𝑓(𝑥, 𝑢)]𝑑𝑥
Ω

                                         

(3.2) 

= −𝑘(𝑘 + 1) ∫ 𝑢𝑘−1|𝛻𝑢|𝑝𝑑𝑥 + ∫ 𝑢𝑘

Ω

𝑓(𝑥, 𝑢)𝑑𝑥
Ω

 

                      ≤ 𝐶1(𝑘 + 1) ∫ 𝑢𝑘
𝛺

𝑑𝑥 + 𝐶2(𝑘 + 1) ∫ 𝑢𝑘+𝑟𝑑𝑥 (∫ 𝑢𝑚(𝑥)
𝛺

𝑑𝑥)
𝑀

Ω
.  

For each 𝑡 > 0,we divide Ω into two sets, 

Ω{<1} = {𝑥 ∈ Ω: 𝑢(𝑥, 𝑡) < 1}, 𝛺{≥1} = {𝑥 ∈ 𝛺: 𝑢(𝑥, 𝑡) ≥ 1} 

Now applying Holder inequality, we have 

∫ 𝑢𝑘+𝑟𝑑𝑥 ≤ |Ω|
1−𝑟
𝑘+1(𝑢𝑘+1𝑑𝑥)

𝑘+𝑟
𝑘+1

Ω

                                                      (3.3) 

and 

∫ 𝑢𝑚(𝑥)𝑑𝑥 ≤ ∫ 𝑢𝑚−𝑑𝑥 + ∫ 𝑢𝑚+𝑑𝑥

𝛺(≥1)Ω(<1)Ω
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≤ ∫ 𝑢𝑚−𝑑𝑥 +
Ω

∫ 𝑢𝑚+𝑑𝑥                     (3.4)
𝛺

 

≤ (∫ 𝑢𝑘+1𝑑𝑥

Ω

)

𝑚−
𝑘+1

|Ω|1−
𝑚−
𝑘+1 + (∫ 𝑢𝑘+1𝑑𝑥

Ω

)

𝑚+
𝑘+1

|𝛺|1−
𝑚+
𝑘+1 

Substituting (3.3),(3.4) into (3.2),we obtain 

𝐴′(𝑡) ≤ 𝐶1(𝑘 + 1)|Ω|
1
𝑘+1(∫ 𝑢𝑘+1𝑑𝑥

Ω

)

𝑘
𝑘+1

+ 𝐶2(𝑘 + 1)|𝛺|
1−𝑟
𝑘+1 (∫ 𝑢𝑘+1𝑑𝑥

𝛺

)

𝑘+𝑟
𝑘+1

 

[
 
 
 

(∫ 𝑢𝑘+1𝑑𝑥

𝛺

)

𝑚−
𝑘+1

|𝛺|1−
𝑚−
𝑘+1 + (∫ 𝑢𝑘+1𝑑𝑥

𝛺

)

𝑚+
𝑘+1

|𝛺|1−
𝑚+
𝑘+1

]
 
 
 
𝑀

                      (3.5) 

≤ 𝐾1(∫ 𝑢𝑘+1𝑑𝑥

𝛺

)

𝑘
𝑘+1

+ 𝐾2 (∫ 𝑢𝑘+1𝑑𝑥

𝛺

)

𝑘+𝑟+𝑚−𝑀
𝑘+1

[
 
 
 

1 + (∫ 𝑢𝑘+1𝑑𝑥

𝛺

)

𝑚+−𝑚−
𝑘+1

]
 
 
 
𝑀

, 

where 𝐾1 = 𝐶1(𝑘 + 1)|Ω|
1

𝑘+1 (∫ 𝑢𝑘+1𝑑𝑥
𝛺

)

𝑘

𝑘+1
, 𝐾2 = 𝐶2(𝑘 +

1)|𝛺|
1−𝑟

𝑘+1𝑚𝑎𝑥 {|Ω|
𝑀(𝑘+1−𝑚−)

𝑘+1 , |𝛺|
𝑀(𝑘+1−𝑚+)

𝑘+1 }. 

On the other hand. 

𝐴(𝑡) = ∫ 𝐺(𝑢(𝑥, 𝑡))𝑑𝑥 ≥
Ω

∫ 𝑢𝑘+1𝑑𝑥

𝛺

,                      (3.6) 

Combing with (3.5),we have 

𝐴′(𝑡) ≤ 𝐾1(𝐴(𝑡))
𝑘
𝑘+1 + 𝐾2(𝐴(𝑡))

𝑘+𝑟+𝑚−𝑀
𝑘+1 [1 + (𝐴(𝑡))

𝑚+−𝑚−
𝑘+1 ]

𝑀

.                          (3.7) 

Integrating (3.7) from 0 to 𝑡(𝑡 < 𝑡∗), 𝑖𝑓 limt
𝑡→𝑡∗

𝐴(𝑡) = +∞,𝑤𝑒 𝑔𝑒𝑡 

𝑡∗ ≥ ∫
𝑑𝜂

𝐾1𝜂𝑟1 + 𝐾2𝜂𝑟2(1 + 𝜂3)𝑀

+∞

𝐴(0)

,                                      (3.8) 

Where 𝑟1 =
𝑘

𝑘+1
, 𝑟2 =

𝑘+𝑟+𝑚−𝑀

𝑘+1
, 𝑟3 =

𝑚+−𝑚−

𝑘+1
. 

Integrating (3.7) from 𝑡 𝑡𝑜 𝑡∗,we obtain 
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𝑡∗ − 𝑡 ≥ ∫ ∫
𝑑𝜂

𝐾1𝜂𝑟1 + 𝐾2𝜂𝑟2(1 + 𝜂3)𝑀

+∞

𝐴(0)

= ∅(𝐴)(𝑡),            (3.9)
∞

𝐴(𝑡)

 

Obviously, ∅(𝐴)(𝑡) is a decreasing function of 𝐴 which means its inverse function ∅−1 exists 

and it is also a decreasing one .Therefore, we have 

𝐴(𝑡) ≥  ∅−1(𝑡∗ − 𝑡),                                                 (3.10) 

which gives the lower estimate of blow-up rate. In fact, if 𝑡 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑡∗ enough, such that 

𝐾2𝜂
𝑘+𝑟+𝑚+𝑀

𝑘+1
, > 𝐾1𝜂

𝑟1 

using (3.9),we have 

𝑡∗ − 𝑡 ≥
𝑘+1

2𝐾2(𝑟+𝑚+𝑀−1)
 (𝐴(𝑡))

𝑚+−𝑚+𝑀

𝑘+1 ,                                             (3.11) 

which means that  

𝐴(𝑡) ≥ (
𝑘 + 1

2𝐾2(𝑟 + 𝑚+𝑀− 1)
)

𝑘+1
𝑟+𝑚+𝑀−1

(𝑡∗ − 𝑡)
−

𝑘+1
𝑟+𝑚+𝑀−1      .           (3.12) 

Since 𝐴(𝑡) ≤ 𝑏𝑀
′ ∫ 𝑢𝑘+1𝑑𝑥,

Ω
 combing with (3.12),we have 

‖𝑢(. , 𝑡)‖𝐿𝑘+1 ≥ 𝑆1

1
𝑘+1(𝑡∗ − 𝑡)

−
𝑘+1

𝑟+𝑚+𝑀−1 .                                                       (3.13) 

where 𝑆1 =
1

𝑏𝑀
′ [

𝑘+1

2𝐾2(𝑟+𝑚+𝑀−1)
]

𝑘+1

𝑟+𝑚+𝑀−1  

Remark. This method is valid for 1 < 𝑝 < ∞ and not to restrict the space dimension. 

Theorem (3.2) .Let 𝑢  be a non negative solution of (1.5) subject to dirichlet boundary 

condition,𝐴(𝑡) be defined as (3.1) .Assume that f satisfies the condition (F1),(F2) and (F4), then 

the blow –up time 𝑡∗ is bounded from below .We have  

∫
𝑑𝜂

𝐾3 + 𝑘4𝜂
𝑘
𝑘+1 + 𝑘5𝜂

3(𝑛−𝑝)
3𝑛−4𝑝

,   
+∞

𝑎(0)

 

And blow-up rate estimate 

‖𝑢(. , 𝑡)‖𝐿𝑘+1 ≥ 𝑆2

1
𝑘+1(𝑡∗ − 𝑡)

−
3𝑛−4𝑝
𝑝(𝑘+1)

    ,
 

where 𝐾3, 𝐾4, 𝐾5 𝑎𝑛𝑑 𝑆2 are positive constant which will defined later. 

Proof. From (3.2) and (F4).we know that  

𝐴(𝑡)′ = −𝑘(𝑘 + 1)∫ 𝑢𝑘−1

Ω

|∇𝑢|𝑝𝑑𝑥 + (𝑘 + 1)∫ 𝑢𝑘𝑓(𝑥, 𝑢)𝑑𝑥
Ω
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≤ −𝑘(𝑘 + 1) (
𝑝

𝑘 − 1 + 𝑝
)
𝑝

∫ |∇𝑢
𝑘−1+𝑝
𝑝 |

𝑝

𝑑𝑥 + 𝐶3(𝑘 + 1)∫ 𝑢𝑘𝑑𝑥 
ΩΩ

               (3.14) 

+𝐶4(𝑘 + 1)∫ 𝑢𝑘+𝑚(𝑥)𝑑𝑥.
Ω

 

Like (3.4). 

∫ 𝑢𝑘+𝑚(𝑥)𝑑𝑥 ≤ ∫ 𝑢𝑘+𝑚−𝑑𝑥
Ω

+∫ 𝑢𝑘+𝑚+𝑑𝑥,
ΩΩ

                                              (3.15) 

By applying Holder inequality, we have 

∫ 𝑢𝑘+𝑚−𝑑𝑥
𝛺

≤ |Ω|𝑀1 (∫ 𝑢
𝑘(4𝑛−3𝑝)+𝑝(𝑛−3)+2𝑛

4(𝑛−𝑝)

Ω

𝑑𝑥)

𝑚2

                                  (3.16) 

and 

∫ 𝑢𝑘+𝑚+𝑑𝑥
𝛺

≤ |Ω|𝑀3 (∫ 𝑢
𝑘(4𝑛−3𝑝)+𝑝(𝑛−3)+2𝑛

4(𝑛−𝑝)

Ω

𝑑𝑥)

𝑚4

,                  (3.17)   

where 

               𝑚1 = 1 −
4(𝑛−𝑝)(𝑘+𝑚−)

𝑘(4𝑛−3𝑝)+𝑝(𝑛−3)+2𝑛
 , 𝑚2 =

4(𝑛−𝑝)(𝑘+𝑚−)

𝑘(4𝑛−3𝑝)+𝑝(𝑛−3)+2𝑛
,  

    𝑚3 = 1 −
4(𝑛 − 𝑝)(𝑘 + 𝑚+)

𝑘(4𝑛 − 3𝑝) + 𝑝(𝑛 − 3) + 2𝑛
 ,𝑚4 =

4(𝑛 − 𝑝)(𝑘 + 𝑚+)

𝑘(4𝑛 − 3𝑝) + 𝑝(𝑛 − 3) + 2𝑛
. 

Substituting (3.16),(3.17) into (3.15) and using Young inequality, we get 

∫ 𝑢𝑘+𝑚(𝑥)𝑑𝑥
𝛺

≤ 𝑙1 + 𝑙2∫ 𝑢
𝑘(4𝑛−3𝑝)+𝑝(𝑛−3)+2𝑛

4(𝑛−𝑝)

𝛺

𝑑𝑥 ,          (3.18) 

where 𝑙1 = (𝑚1 +𝑚2)|Ω|, 𝑙2 = 𝑚2 +𝑚4. Substituting (3.18) into (3.14),we have  

𝐴′(𝑡) ≤ −𝑘(𝑘 + 1) (
𝑝

𝑘 − 1 + 𝑝
)
𝑝

∫ |∇𝑢
𝑝

𝑘−1+𝑝|
𝑝

Ω

𝑑𝑥 + 𝐶3(𝑘 + 1)|Ω|
1
𝑘+1 (∫ 𝑢𝑘+1

Ω

𝑑𝑥)

𝑘
𝑘+1

+ 𝐶4𝑙1(𝑘 + 1) + 𝐶4𝑙2(𝑘 + 1)∫ 𝑢
𝑘(4𝑛−3𝑝)+𝑝(𝑛−3)+2𝑛

4(𝑛−𝑝)

Ω

𝑑𝑥.                 (3.19) 

We now make use of Holder inequality to last term on right side of (3.19) to get  

∫ 𝑢
𝑘(4𝑛−3𝑝)+𝑝(𝑛−3)+2𝑛

4(𝑛−𝑝)

𝛺

𝑑𝑥 ≤ (∫ 𝑢𝑘+1

Ω

𝑑𝑥)

3
4

(∫ (𝑢
𝑘−1+𝑝
𝑝 )

𝑛𝑝
𝑛−𝑝

Ω

)

1
4

𝑑𝑥   .         (3.20) 

Note that 
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∫ (𝑢
𝑘−1+𝑝
𝑝 )

𝑛𝑝
𝑛−𝑝

Ω

≤ (𝐶𝑆)
𝑛𝑝
𝑛−𝑝 (∫ |∇𝑢

𝑘−1+𝑝
𝑝 |

𝑝

𝑑𝑥
Ω

)

𝑛
𝑛−𝑝

,                    (3.21) 

here 𝐶𝑠 is the best Sobolev constant. By inserting (3.21) in (3.20) and using the Young inequality, 

we have 

 ∫ 𝑢
𝑘(4𝑛−3𝑝)+𝑝(𝑛−3)+2𝑛

4(𝑛−𝑝)
𝛺

𝑑𝑥 ≤
(3𝑛−4𝑝)(𝐶𝑆)

𝑛𝑝
𝑛−𝑝

4(𝑛−𝑝)𝜖
𝑛

3𝑛−4𝑝

(∫ 𝑢𝑘+1𝑑𝑥
Ω

)

3(𝑛−𝑝)

3𝑛−4𝑝
+

𝑛𝜖(𝐶𝑆)
𝑛𝑝

4(𝑛−𝑝)

4(𝑛−𝑝)
∫ |𝛻𝑢

𝑘−1+𝑝

𝑝 |
𝑝

𝑑𝑥
𝛺

.   (3.22) 

Where 𝜖 is a positive constant to be determined later. Combing with (3.22) and (3.19). we obtain 

𝐴′(𝑡) ≤ 𝐾3 + 𝐾4 (∫ 𝑢𝑘+1𝑑𝑥
𝛺

)

𝑘
𝑘+1

+ 𝐾5 (∫ 𝑢𝑘+1𝑑𝑥
𝛺

)

3(𝑛−𝑝)
3𝑛−4𝑝

+ 𝐾6∫ |𝛻𝑢
𝑘−1+𝑝
𝑝 |

𝑝

𝑑𝑥
𝛺

≤ 𝐾3 + 𝐾4 (𝐴(𝑡)
𝑘
𝑘+1 + 𝐾5𝐴(𝑡))

3(𝑛−𝑝)
3𝑛−4𝑝

+ 𝐾6∫ |𝛻𝑢
𝑘−1+𝑝
𝑝 |

𝑝

𝑑𝑥
𝛺

        ,                                                         (3.23) 

where 

𝐾3 = 𝐶4𝑙1(𝑘 + 1), 𝐾4 = 𝐶3(𝑘 + 1)|Ω|
1
𝑘+1, 𝐾5 = 𝐶4𝑙2(𝑘 + 1)

(3𝑛 − 4𝑝)(𝐶𝑆)
𝑛𝑝
𝑛−𝑝

4(𝑛 − 𝑝)𝜖
𝑛

3𝑛−4𝑝

, 

𝐾6 = 𝐶4𝑙2(𝑘 + 1)
𝑛𝜖(𝐶𝑠)

𝑛𝑝
4(𝑛−𝑝)

4(𝑛 − 𝑝)
− 𝑘(𝑘 + 1) (

𝑝

𝑘 − 1 + 𝑝
)
𝑝

. 

If we choose 𝜖 > 0 such that 

𝜖 =
4𝑘(𝑛 − 𝑝) (

𝑝
𝑘 − 1 + 𝑝

)
𝑝

𝐶4𝑙2𝑛(𝐶𝑠)
𝑛𝑝

4(𝑛−𝑝)

, 

then,we obtain the differential inequality 

𝐴′(𝑡) ≤ 𝐾3 + 𝐾4(𝐴(𝑡))
𝑘

𝑘+1 + 𝐾5(𝐴(𝑡))
3(𝑛−𝑝)

3𝑛−4𝑝 .                                                                       (3.24)  

An integrating of the differential inequality (3.24) from 0 to t (𝑡 < 𝑡∗) leads to  

𝑡∗ ≥ ∫
𝑑𝜂

𝐾3 + 𝐾4𝜂
𝑘
𝑘+1 + 𝐾5𝜂

3(𝑛−𝑝)
3𝑛−4𝑝

,                                                  (3.25)

∞

𝐴(0)
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If lim
𝑡→𝑡∗

𝐴(𝑡) = +∞.Similar to (3.13),we get the lower estimate of the blow-up rate  

‖𝑢(. , 𝑡)‖𝐿𝑘+1 ≥ 𝑆2

1
𝑘+1(𝑡∗ − 𝑡)

3𝑛−3𝑝
𝑝(𝑘+1),                                                         (3.26)    

where 𝑆2 =
3𝑛−4𝑝

2𝑏𝑀
′ 𝐾5𝑃

.  

Conclusion 

The Blow-up Phenomenon of Black-Scholes PDE was studied. We did these by putting forward 

different assumptions. We also obtain the lower bounds for the blow-up time of the solution and 

the corresponding blow-up rate estimates.  
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