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1. Introduction

Let E and F be metric spaces. A mapping f : E — F is called an isometry if f satisfies

dF(f(x)7f(y)) = dE(x7y)

for all x,y € E, where dg/(,) and dr(, ) denote the metric in the space E and F, respectively. For
some fixed number r > 0, suppose that f preserves distance r; ie, for all x,y € E with dg(x,y) =
r, we have dp(f(x), f(y)) = r. Then r is called a conservative distance for the mapping f. The
classical Mazur-Ulam theorem states that every surjective isometry between normed spaces is

*Corresponding author

Received May 30, 2016

783



784 XINKUN WANG, MEIMEI SONG

a linear mapping up to translation. In 1970, Aleksandrov [1] posed the following question :
”Whether or not a mapping with distance one preserving property is an isometry? ” It is called
the Aleksandrov problem. The Aleksandrov problem has been investigated in several papers
[4]-[5]. Misiak [8]-[9] defined n-normed spaces and investigeted the properties of these spaces.
The concept of an n-normed spaces is a generlization of the concept of a normed spaces and a
2-normed space.

Chu et al. [3] defined the concept of n-isometry which is suitable for representing the no-
tion of n-distance preserving mappings in linear n-normed spaces and studied the Aleksandrov
problem in linear n-normed spaces. and proved also that the Rassias and Semrl theorem holds
under some conditions in linear 2-normed spaces as follows:

Theorem 1.1.[3] Let f be a n-Lipschitz mapping with the n-Lipschitz constant K < 1. Assume
that if x,y and z are m-colinear, then f(x), f(y) and f(z) are m-colinear, m = 2, n, and that f
satisfies (nDOPP). Then f is a n-isometry.

Zheng and Ren [14] defined the quasi convex linear space and studied the Aleksandrov prob-
lem.

In this paper, We prove that the Aleksandrov problem holds without the condition ’n-Lipschitz
mapping” in quasi convex n-normed linear spaces and also we show that the Mazur-Ulam the-

orem holds in quasi convex n-normed linear space.
2. Preliminaries

In the remainder of this introduction, we will recall some definitions and give some Lemmas

about them in quasi convex n-normed linear space.

Definition 2.1. Let E be a real linear space that has dimension greater than one and || -,...,- ||

be a function from E” into R. Then ( E,|| -,...,- || ) is called a quasi convex n-normed linear
space if

@) || x1,---,%n [|[=0< x1,...,x, are linearly dependent.

(®) || x1,...,%0 [|=]| xj,5--.,x;j, || for every permutation (ji,..., ja) of (1,...,n).

©) || axiy....xn [|=] @ |l X1, 5% |-
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@ [[tx4+ (1 =1)y,x2,..., x5 |[< max{|| x,x2, ..., %0 ||, || Y, %25+ - xn || }-
forany a € R,t € [0,1] and x,y,x1,...,x, € E. The function || -,...,- || is called the quasi convex
n-norm on E.
Definition 2.2.[3] A mapping f : E — F satisfies the distance one preserving property (briefly
nDOPP), if forallx; € E,i=0,1,2,...,n,
f(xo) |=1.

Definition 2.3.[3] A mapping f : E — F is said to be an n-isometry if for all x1,...,x,,x0 € E,

X1 —=X05--3Xn —X0 ||: 1 lmphes H f(x1>_f(x0)?~ .,7f(xn)_

it satifies

X1 =x0, -, = xo0 || =] f(¥1) = f(x0)5 -, f () = f(x0) |-

Definition 2.4.[3] The points xg,xy,...,x, of E are said to be n-collinear, if every 7, {x; —x; |
0 <i# j<n}is linearly dependent.

Definition 2.5.[4] We say that a mapping f : E — F preserves 2-collinearity, if x,y,z € E are
collinear, then f(x), f(y), f(z) are collinear.

Definition 2.6.[14] A mapping f : E — F on two real linear spaces E and F is called an affine
mapping, if for all x,y € E and A € [0, 1] satifies

FAx+(1=2)y) =Af(x)+(1=A)f(y).
Definition 2.7.[3] We call f is a n-Lipschitz mapping if there is a k > 0 such that
1 f(x1) = fx0), -, f (o) = f(x0) IS K[| X1 = X0, 0 — X0 ||

for all x,y, p,q € E. In this case, the constant k is called the n-Lipschitz constant.
Lemma 2.8. Let E be a quasi convex n-nomed linear space with dimE > n, for y;,x; € E,t; >

0,Y" ;=1(i=1,2,---,n), we have

n
|| Ztiyia-XZa <y Xn ||§ mCl)C{H Y1,X2,...,Xn ||’ || Y2,X2,...,Xp ||>
i=1

I S & S | | A YO v

The next result follows easily from [6][Lemma 8].
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Lemma 2.9. Let E be a n-normed linear space with dimE > n, suppose 0 <|| x; —y1,...,x, —
yn |[|[< 2r, for any r > 0, and x;,y; € E, i = 1,2,...,n, then there exists z € E, such that ||

2= Y1 Xn— Yo [[=rand|| x; —z,... . x0 =y [|[= 7
3. Main results

In this section, let E and F be quasi convex n-normed linear spaces with dimension greater

than n.

Lemma 3.1. Let E and F be two quasi convex n-normed linear spaces , if f : E — F satisfies

(nDOPP) and preserves 2-collinearity, then f is injective and for all x,y € E, we have

y+x):f(y)+f(X)
2 2

A

Proof. we prove that f is injective. Since dimE > n, for any x,y € E with x # y, there exists
xi€E, i=1,2,....,n—1suchthat || x—y,x; —y,-- ,xo—1 —y ||= 1.
Since f satisfies (nDOPP), thus

1 f0) = f ), f 1) = F ()5 f 1) = F ) 1= 1

Hence f(x) # f(y), So we prove f is injective.
On the other hand, let 7 = y% for distinct y,x € E, then z —y = x —z. Since f preserves 2-
collinearity, there exists a real numble t # 0 such that f(z) — f(y) =t(f(z) — f(x)).

Since dimE > n, there exists x; € E, i =1,2,...,n— 1 with

H Z_yvle _2y7 yXn—1—Y H: L.

Then
() 1f(2) = f (), f(2x1) = f(2p), -+ fxna1) = f(¥) [ = 1.
Because f is injective, and it follows from the above equation(1) we conclude that t = —1.
Thus f(z) = f(y) = f(x) = f(z) and
Xty fO)+fB)
) =2,

This completes the proof.
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Theorem 3.2. Let E and F be two quasi convex n-normed linear spaces , if f 1 E — F is a

n-isometry, then f is affine.

Proof. Assume that x,y and 7 are 2-colinear, then f preserves collinearity by the condition that
lx =2,y —zl| = 0 implies || f(x) — f(2), f(v) = f(2) | = 0. Let g(x) = f(x) = f(0). It suffices to
prove that the mapping g is linear. Since g satisfies (DOPP) and g(0) = 0. From Lemma 2.1,
the mapping g is Q-linear. Let & € R with & # 1 and x € E. Since 0,x,&x are collinear, g
preserves collinearity and also g(0) = 0, so there exists a real number N such that
8(&x) =ng(x).
For any x € E with x # 0, there exists x; € E, i = 1,2,...,n— 1 such that ||x,xy,--- ,x,—1| = 1.
Hence we obtain
g = Héxaxlf © oy Xn—1 H = Hg(éx)ng(xl)a T ag(xxn_l)H = ”ng(x)ag(xl)v T 7g(xxn_1)”
= nlllg(x),8(x1), -, x| = [n].

Thus 1 = +&. While n = —&, that is to say g(Ex) = —Eg(x), it deduces that

[1=¢] = [x=8&xxp, X
= llg(x) —8(8x),8(x1), -+ 8(xx, )|
= lle(x) +8g(x),8(x1), -+, 8(xs, )
= (1+6)llglx),&(x1), -+, 8, )
= 1+&.
So & = 0, while it conflict with & € R*. Hence we get & =1, that is to say g(Ex) = Eg(x). This
completes the proof.

Theorem 3.3. Let E and F be two quasi convex n-normed linear spaces. If f : E — F satisfies

(nDOPP) and preserves 2-collinearity , then f is an affine n-isometry.

Proof.(1) we prove f preserves distance 7. Let || x; — Xo,X2 — X0, -+ ,Xp — X0 || = % with x; € E,

i=0,1,2,...,n, we define

®; = x1 +i(xo —x1)
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Then

Wi+ Oy

w; = S Vislee kL

According to Lemma 2.1, we have

Flan) = f(wi—l);f(wi+l)’ Vie 1o k—1.

That is

Hence

flo) = f(x) = flox)—flor—1)+ flan—1) = fl@2)+- -+ flor) — f(an)
= k(f(o)—f(an)) =k(f(y)—f(x)).

Since ||@g —x1,X3 — X0, ,Xn —Xx0|| = 1,

K[| f(x1) = f(x0), f(x2) = f(x0), -+, f () = f(x0) |
= Hf(wk) _f(xl)af(xZ) _f(XO)a"' af(xn) _f(xO)H =1L

Therefore || f(x1) — f(x0), f(x2) = f(x0),-++ , f(xa) — f(x0) || = -
Next, we shall show that f preserves distance % for integers m,k. Let ||x; —xq,X2 — X0, ,Xp —

xol| = F withx; € E, i=0,1,2,...,n. We define
Z :=x+i(x1 —x0), Vi=0,1,--- k.
m

Then

Zi—1+Zit1
3= D) )

Vi=1,---,k—1.

By the same method as above,

fx1) = f(xo) = f(zm) — f(20) = m(f(21) = f(20))-
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Note that ||z1 — 2o, %2 — X0, ,Xn — Xo|| = % and f preserves distance %
1f(x1) = f(x0), f(x2) = f(x0), -+ 5 f (xn) — f(x0)]
= [m(f(z1) — f(20)), f(x2) = f(x0), -+, f(xn) — f(x0) |

_om
= =

(2) we prove that || f(x1) — f(x0), f(x2) = f(x0), -+, f(xn) — f(x0) [| <[] X1 —X0,%2 — %0, + ;X0 —

xo || for any x; € E, i =0,1,2,....n. when || x| — x0,X2 — X0, ,X, — X0 ||= 0, the theorem is

successful obviously.

Suppose x; € E, i =0,1,2,...,nwith || x; —x0,X2 — X0, , Xy — X0 ||> 0 and k,m € N, such that

m—1 m
— <|| x1 —x0,%2 — X0, -+ ;X — X0 || < %
Set
I Xg—X
W, =x1+— 0 !
k|| x1 —x0,Xx2 — X0, ,Xn — Xo ||

and also define w,, = xo. Then
o
||wi_wi717x2_x07"'7xn_x0||:%7 l:17"'7m_2'
Moreover,

0 < ||wm_wm72ax2_x07"'7xn_x0||

m—2 X0 — X
= | + (x0 — X1),X2 — X0, -+ ,Xp — Xo|
k ||xo —x1,%2 — X0, ;X — Xo|
m—72
= on—xl,xz—xo,“',Xn—on—T
m m-—2 2
< Z_T ~_Z
-k k k
From Lemma 2.9, we can choose W,,_1 € E, such that
1
m—1 — Wm—2,X2 — X0, , Xpn —XO|| = m—1 — W, X2 — X0, ,Xn —X0|| = 7
| 0 |=llo 0 =+

Therefore, fori =0,1,--- ,m, we have

1 (@) = f(@i-1), f(x2) = f(x0), -+ f(xn) = flx0) || = %
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From Lemma 2.8, we can obtain

£ (1) — f(x0), f(x2) — f(x0), -+, f (xn) — f(x0) ]|
= |If(@0) = f(@m), f(x2) = f(x0), -+, f(xn) = f(x0) ]
m—1
= |l ;)(f(wi)_f(wi+l))af(x2)_f(xO)a"'7f(xn)_f(x0)||

m—1
= T (00 (@), ) = £50) - o) = )|
mmax{ | £(@) ~ £(01:1),£(2) — Fx0), ) — F)]| 1= 0.1, m— 1}

m

o

IN

IN

Hence ||f(x1) = f(x0), f(x2) = f(x0), -+, f(xn) = f(x0) || < Ilx1 —x0,%2 = X0, .20 — Xo.
(3) we will show that f is a generalized n-isometry. Otherwise, there exists x; € E, i =

0,1,2,...,nand m € N such that 0 < ||x; — x0,X2 — X0, + ,Xn — Xo|| < m and

£ (1) = f(x0), f(x2) = f(x0), -+, f () — £ (x0) || < [Jx1 —x0,%2 — X0, ;X0 — o[-

m(xg—x1)
X2 —X0," 7Xn—.X0H )

Set7:=x1+ Then we obtain that
[lx1 —x0

||Z—X1,X2—X0,"' ,Xn—)C()” = m

”Z—XOaXZ—XOf" »Xn _xOH = m-— Hxl —X0,X2 — X0, " 7xn_x0H-

Since f preserves 2-collinearity, there exists a real number t such that

f(2) = f(xr) = 1(f (x0) = f(x1))-
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Then £(2) — f(x0) = (t — 1)(f(x0) — f(x1)). By (1), f preserves distance m. So we have
m = |[f(z) = f(x1), f(x2) = f(x0), -, f (on) = F (x0)

= [tlllf(x1) = f(x0), f(x2) = f(x0), -+, £ (xn) = f(x0) |

< Jr=1l1f (1) = f(x0), £ (x2) = f(x0), -+, f () = f (x0)]

+ 1fG2) = fO), f(x2) = f(x0), -+, f () = f(x0)

= [If(z) = f(x0), f(x2) = f(x0), -, f(xn) = f (x0) |

+ (1) = f(x0), f(x2) = fx0), -+, f (n) — f (x0) |

< m—||x; —x0,%2 — X0, ,Xn — Xol|| + [|X1 —X0,%2 — X0, , X0 — X0|| = m,
which is a contraction. By Theorem 3.2, the proof of the theorem is finished.

Theorem 3.4. Let X and Y be two quasi convex n-normed linear spaces. If f : X — Y is an

affine such that it preserves all areas m < 1. Then f is an n-isometry.

Proof. Since dimX > n, there exist xo,x1,X2,- -+ , X, € X such that ||x; — xg,X) — X0, ,Xp —
xo|| #0, also Ax; + (1 —A)xg € X, forall A € [0, 1]. we can choose A; € [0, 1] such that 0 = Ay <
M < <A1 <Ay=1land ||pr—pr—1,%2—X0, " ,Xn—xXo|| < 1, while p; = hx1 + (1 — A4)xo.
Since f preserves all areas m < 1, so we have

1/ (P) = f(pr—1), f (52) = f(x0), -+, f () = f(x0) [| = || Pk = =152 — X0, -+ ;260 — 0|
By the condition f is an dffine, we can get f(py) = Af(x1) + (1 — Ax) f(x0). According to

Remark, we obtain

1F Ger) = f (x0), f (x2) = S (x0), -+, f (xn) — f (x0) |
(f(p) = f(pr=1)), f(x2) = f(x0), -+, f (%) — £ (x0) ]|

I
=

—_

I
1= T

17 (Pe) = f(Pr—1): f (x2) = f(x0), -+ 5 f (3n) = f (x0) |

~

I
D=

n
Pk — Pr—1,%2 — X0, + ,%n — Xo| = | Z(Pk_l’k—l)axz — X0, % — Xo|
=1

1=

~
—_

— X0,X2 — X0, ,Xp — Xp|

|
E]

This proves that f is n-isometry.
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