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Abstract:  The Best linear unbiased estimates (BLUE) of the parameters (slope and intercept) of a 

linear trend-cycle component based on Fixed Base Estimation (FBE) derived variables are discussed in 

this paper.    The FBE-derived variables were found to have constant mean, non-constant variance but 

with constant autocorrelation coefficient at all lags. The variance of the variables decreased with recent 

time points, indicating that estimates of the slope from recent periods are more precise. Best Linear 

unbiased estimates of the slope from FBE-derived variables also attach greater weights to the more 

recent observations but have the same minimum variance as those from Chain Base Estimation (CBE) 

derived variables. Simulated numerical examples were used to illustrate the methods. The simulation 

results show that BLUE from the FBE and CBE-derived variables outperform the Simple Average and 

Least Squares Methods in terms of Mean Percentage Error (MPE), Mean Square Error (MSE) and 

Mean Absolute Percentage Error (MAPE) of forecasts.  
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1.  Introduction 
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For short series in which the trend and cyclical components are jointly estimated, the 

two contending models are the additive and multiplicative models (Chatfield (2004), 

Kendall and Ord (1990)). 

Additive model:            

tttt eSMX                                                                                         (1.1) 

Multiplicative model: 

tttt eSMX                                                                                             (1.2) 

where tM  is the trend-cycle component ; tS  is the seasonal component with the 

property that   m,...,2,1i,SS jjs1i  , and te  is the irregular or random 

component.   

Appropriate assumptions on tt eandS  for the additive and multiplicative models can 

be found in Chatfield (2004), Kendall and Ord (1990) and Iwueze and Nwogu (2004). 

The linear trend-cycle 

component  tM  can be written as  

tbaM t                                                                                                      (1.3) 

For a series which do contain a substantial trend, the ttraditional practice is to (i) fit a 

trend curve by some method and de-trend the series (ii) use the de-trended series to 

estimate the seasonal indices. 

From the periodic averages ( .iX ) of the Buys-Ballot Table, Iwueze and Nwogu (2004) 

derived two sets of variables. On bases of these variables they developed two methods 

of estimating the parameters of a linear trend-cycle component for short period series. 

And the results obtained by Iwueze and Nwogu (2004) for the additive and 

multiplicative models are summarized in Iwueze, Nwogu and Ajaraogu (2010). 

The two sets of derived-variables are: (i) the Chain Base Estimation (CBE) derived 

variables defined as 

    1m,...,2,1i,
s

XX
b̂ .i.1ic

i 


                                                       (1.4) 

and  (ii) the Fixed Base Estimation (FBE) derived variables defined as 

      1m,...,2,1i,
si

XX
b̂ .1.1if

i 


                                                       (1.5)                                 
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It is important to note that each set of the derived variables gives (m-1) estimates of 

the slope of the trend-cycle component. Hence, Iwueze and Nwogu (2004) gave the 

estimate of the slope of the linear trend-cycle component as a simple average of the 

derived variables.  That is, 

     





1m

1i

)c(
i

c b̂
1m

1
b̂                                                                                     (1.6) 

for  the CBE and 

   





1m

1i

)f(
i

f b̂
1m

1
b̂                                                                                       (1.7) 

for  the FBE.  

Iwueze, Nwogu and Ajaraogu (2010) derived the means and variances of 

   fc b̂andb̂  to be 

  b)b̂(E c                                                                                                    (1.8) 

  
3

2
c

s

2
)b̂(var


                                                                                          (1.9) 

  b)b̂(E f                                                                                                  (1.10) 

   






 


3

2
f

s

2
)b̂(var                                                                                (1.11) 

where  

     
 





m

i

m

j

m

2i
2 1j1i

1

1i

1
                                                   (1.12) 

Iwueze, Nwogu and Ajaraogu (2011) investigated the covariance structures of the 

CBE and FBE derived variables.  For the CBE derived variables, if we let 

     
 
  c

.ki
c
.i

c b̂,b̂covkR   and          0RkR ccc
k  , then 

    














1k,0

1k,s

0k,s2

kR 32

32

c                                                                    (1.13) 

  















1k,0

1k,21

0k,1
c

k                                                                                (1.14) 
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Similarly, for the FBE derived variables, if we let      
 
  f

.ki
f
.i

f b̂,b̂covkR   

and          0RkR fff
k  , then 

    
 










0k,s)ki(i

0k,si2
kR

32

322
f                                                        (1.15) 

  









0k,21

0k,1f
k                                                                                      (1.16) 

Using the covariance structures (1.13) and (1.14), Iwueze, Nwogu and Ajaraogu 

(2011) derived the BLUE for the slope based on the CBE derived variables because 

they exhibit stationarity while those of the FBE do not. The BLUE of the slope, based 

on the CBE derived variables, was defined as 

   





1m

1t

c
ii

c b̂T                                                                                        (1.17) 

where  

 1
1m

1t
i 





                                                                                                     (1.18) 

The mean and variance of  cT  were shown to be 

   b)T(E c                                                                                                 (1.19) 

   αS
s

2
)T(var

3

2
c








 
                                                                          (1.20) 

where  

    1m21
T

2m

1i
1ii

1m

1i

2
i ,...,,,S 










  αα                       (1.21) 

The main objective of this paper is to obtain the BLUE of the slope parameter for the 

additive model using the non-stationary FBE derived variables. Section 2 presents the 

preliminaries (the partial autocorrelation structure of FBE derived variables), while 

Section 3 discusses the main results (including the BLUE of the slope parameter 

based on the FBE derived variables, the BLUE for the intercept (a), the corresponding 

standard error and some numerical examples to illustrate the results). 

2  Preliminaries 

Partial Autocorrelation of the FBE-derived Variables for the Additive Model 
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The partial autocorrelation function (pacf) of the process Zt,Y t  , whose 

autocorrelation function is k , is given by (Box et al.1994)  
















1kfor/

1kfor,

k
*
k

1

kk

AA

                                                                     (2.1) 

where  

 

















































1...

.

.

.

...1

...1

...1

12k2k1k

3k4k12

2k3k11

1k2k21

kA                                                              (2.2) 

kA is the determinant of kA and *
kA   is composed of the first k-1 columns of kA  with 

the kth column replaced by  T... k1k21  ρ . Theorem 1 below is needed 

to define the partial autocorrelation function for FBE derived variables. 

Theorem 1:  If ,kallfor,k  then the partial autocorrelation function is given by  

 

   1kfor,
1k1kk 



                                                          (2.3) 

Proof 

By definition in (2.1), if kallfork   then 

 1kfor,kk   

 

1

1

1

22






   =  
2

2

1 


  =    

11

)1(
  =   


1

 =     2 k for  ,
121





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1

1

1

1

1

33








   =     2

2

121

)1(




  =    3kfor,
)13(121










 

In general, 

 

1...

......

...1

...1

...

.........

...1

...1

kk










   =     1k

1k

1)1k(1

)1(







 =  1kfor,
)1k(1





  

In particular, if 
2

1
 , as in FBE ( Equation (1.16) then Equation (2.3) reduces to 

 
)1k(

1

2
1)1k(1

2
1

)1k(1kk 








                                           (2.4) 

3.  Main results 

3.1  Best Linear Unbiased Estimates of Slope Using the FBE Derived Variables. 

The sequence of FBE derived random variables,   1m,...,3,2,1i,b̂ f
i  , have been 

found to have the covariance structure of a non-stationary series with the 

autocorrelation function and partial autocorrelation function given by (1.16) and (2.4). 

Thus, the use of their simple average given in Equation (1.7) as an estimate of the 

slope (b), as recommended by Iwueze and Nwogu (2004), may  

not give a reliable estimate. This calls for an alternative method which takes 

cognisance of the correlation among the variables to produce more reliable estimate of 

the slope (b) of a linear trend-cycle component.  

A linear combination of variables which is an unbiased estimate of a parameter that 

has minimum variance (among all linear unbiased estimates) is called “best linear 

unbiased estimate (BLUE)”. If let 1m21 ,,,   be any set of real numbers.  A 

linear estimate of the slope b   bb̂E )f(
i   is given by 
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    





1m

1i

f
ii

f b̂T                                                                                          (3.1) 

The expected value of  fT  is  

       









1m

1i
i

1m

1i

f
ii

f bb̂ETE  = 





1m

1i
ib                              (3.2) 

  fT  is unbiased if and only if 







1m

1i
i 1                                                                                                       (3.3) 

The variance of  fT   is given by 

            







i j

f
j

f
iji

1m

1i

f
i

2
i

f b̂,b̂cov2b̂varTvar                (3.4) 

For the sequence of random variables,   1m,...,3,2,1i,b̂ f
i  , with autocovariance 

structure given in (1.15) and autocorrelation structure given in (1.16),   fTvar  can 

be written as 

             














1m

i

1m

j

ji
1m

1i
2

2
if

ji
kR2

i
0RTvar                                     (3.5) 

                          =        








 




 








1m

i

1m

j

ji
1m

1i
2

2
i

jii
0R                                      

                                βS
s

2

jiis

2
3

21m

i

1m

j

ji
1m

1i
2

2
i

3

2 












 




  








                    (3.6) 

where   

       














1m

i

1m

j

ji
1m

1i
2

2
i

jii
S β                                                                     (3.7) 

 

Then a linear unbiased estimate of b  will have minimum variance (among all linear 

unbiased estimates) if )(S β  is minimum. Hence, the BLUE of b  is obtained if we 

choose 1m21 ,...,,   that minimize  βS  with respect to the constraint 1
1m

1i
i 





. 

Note that the expression in (3.7) can be rewritten as  
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       














1m

i

1m

j

ji
1m

1i
2

2
i

ji2

1

i
S β                                

         =     








 




 








1m

i

1m

j

ji
1m

1i
2

2
i

jii

2

2

1
                                                         (3.8) 

In matrix form the constraint in Equation (3.3) is equivalent to 

     1' 1β .                                                                                                       (3.9)  

where  1m21 ...,,' β   and  1.,..,1,1' 1  is a m-1 component vector. 

The  βS  in (3.8) can be re-written as  

   βVβ'β S                                                                                                 (3.10) 

where
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where  n = m-1 
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Therefore, the problem of finding the minimum variance is equivalent to minimizing 

  βVβ'β S , subject to 1' 1β . Using Lagrange’s multiplier, this is equivalent to 

    1',S  1ββVβ'β                                                                      (3.12) 

Taking partial derivatives of (3.12) with respect to andβ and equating each to zero 

give the following Equations 

 
 

02
,S





1βV

β

β
                                                                           (3.13) 

 
    01'

,S
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


1β
β

                                                                          (3.14) 

From (3.13) 

 1Vβ 1

2


                                                                                                   (3.15) 

Substituting (3.15) into (3.14) gives 

 
1V1 1'

1

2 



                                                                                                 (3.16) 

Hence, 
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1Vβ
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
                                                                                 (3.17) 

and  
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'
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'
'S = 

1V1 1'

1
                                     (3.18) 

As an example of the minimization of (3.10) subject to the constraint in (3.9), we 

let 5m41m  .   
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Hence, Equation (3.17) reduces to 
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  and    05.0'S 4444  βVββ  

The weights for  20,...,3,21m21,...,4,3m   are given in Table 1. As Table 

1 shows, the weights increased as period ( i ) increased. This indicates that the FBE 

attaches greater weights to the derived variables (  f
ib )’s of the more recent 

years/periods in computing the BLUE for the slope. This is, in agreement with the 

views expressed by Equation (1.15), which indicates that the variance of  f
ib   

decreases (i.e.  f
ib  becomes more precise) as the period ( i ) in creases.  
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Table 1:  Sample sizes (m) and their corresponding FBE weights 

( 1m,...,2,1i,i  ) 

Sample size m  
i  3 4 5 6 7 8 9 10 11 12 
1 0.000 -0.100 -0.100 -0.086 -0.071 -0.060 -0.050 -0.042 -0.036 -0.032
2 1.000 0.200 0.000 -0.057 -0.071 -0.071 -0.067 -0.061 -0.055 -0.049
3  0.900 0.300 0.086 0.000 -0.036 -0.050 -0.055 -0.055 -0.052
4   0.800 0.343 0.143 0.048 0.000 -0.024 -0.036 -0.042
5    0.714 0.357 0.179 0.083 0.030 0.000 -0.018
6    0.643 0.357 0.200 0.109 0.054 0.021
7    0.583 0.350 0.212 0.127 0.073
8    0.533 0.339 0.218 0.140
9    0.492 0.328 0.221
10     0.454 0.315
11     0.423
 βS

 
0.25 0.100 0.05 0.029 0.018 0.012 0.008 0.006 0.005 0.004

 

Table 1 continued 

Sample size m i  
13 14 15 16 17 18 19 20 21 

1 -0.028 -0.024 -0.021 -0.019 -0.017 -0.016 -0.014 -0.013 -0.012
2 -0.044 -0.04 -0.036 -0.032 -0.029 -0.027 -0.025 -0.023 -0.021
3 -0.049 -0.046 -0.043 -0.040 -0.037 -0.034 -0.032 -0.029 -0.027
4 -0.044 -0.044 -0.043 -0.041 -0.039 -0.037 -0.035 -0.033 -0.031
5 -0.028 -0.033 -0.036 -0.037 -0.037 -0.036 -0.035 -0.034 -0.033
6 0.000 -0.013 -0.022 -0.027 -0.029 -0.031 -0.032 -0.032 -0.031
7 0.038 0.015 0.000 -0.010 -0.017 -0.022 -0.025 -0.026 -0.027
8 0.088 0.053 0.029 0.012 0.000 -0.008 -0.014 -0.018 -0.021
9 0.149 0.099 0.064 0.040 0.022 0.009 0.000 -0.007 -0.012
10 0.220 0.154 0.107 0.074 0.049 0.031 0.018 0.008 0.000
11 0.302 0.218 0.157 0.113 0.081 0.057 0.039 0.025 0.014
12 0.396 0.29 0.214 0.159 0.118 0.087 0.064 0.045 0.031
13  0.372 0.279 0.210 0.159 0.121 0.092 0.069 0.051
14   0.350 0.268 0.206 0.159 0.124 0.095 0.073
15    0.330 0.257 0.201 0.159 0.124 0.097
16     0.314 0.248 0.198 0.156 0.125
17      0.299 0.240 0.192 0.155
18       0.280 0.230 0.187
19        0.272 0.223
20         0.260
 βS  0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 

 

For the CBE, Iwueze, Nwogu and Ajaraogu (2010) showed that the BLUE for the 

slope assigns weights to the  c
ib̂ s in a symmetrical form such that the  c

ib̂ s within 
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the central periods have greater weights than those at the beginning and end of the 

period. The distribution of weights among the CBE and FBE derived variables for m 

= 10 is further illustrated in Figure 1. 

For the same m, the two sets of weights (CBE and FBE), lead to the same sum of 

squares, ie )S(α )S(β . In other words, the BLUE for both the FBE and CBE 

derived variables have the same minimum variance for any given set of data. 

          i  

 

  

                                                            

 

 

                                                       FBE                                   

 

 

                                                                                                        CBE  

 

                                                                                                        Period (i) 

                                                                                                          

 

 Figure 1: CBE and FBE weights for m = 10. 

 

3.2. Best Linear Unbiased Estimates of the Intercept Using the FBE Derived 

Variables. 

The estimate of the intercept (a) is given by Iwueze and Nwogu (2004) in terms of 

 fb̂  as  

  1n
2

b̂
Xâ ..                                                                                      (4.1) 

where   fb̂b̂   for the FBE method.  Hence, the BLUE for the intercept (a) can be 

obtained by substituting the BLUE for the slope into (4.1).  

The variance of  â   was given by Iwueze, Nwogu and Ajaraogu (2010) as 

      b̂var
2

1n

n
âvar

22







 




                                                               (4.2) 
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Hence, the variance of the BLUE for the intercept (a) can be derived by substituting 

the variance of the BLUE for the slope given in Equation (3.6) into (4.2).  

3.3.  Empirical Examples 

The computation of BLUE from FBE derived variables is illustrated here with 

simulations of n = sm ( 9and8m  ) observations from ttt eStbaX   with  

,65.5S,2.0b,0.1a,12s 1  59.1S,60.4S 32  , 38.2S 4  , 

32.1S,38.0S 65  , 98.1S,23.1S 87  , 05.2S,21.1S 109  , 

32.1S,73.0S 1211    and  1,0N~e t .  The first 1)s-(m  n 0  observations were 

used to determined and compare the properties of the BLUE for the FBE with those 

from the Least Squares Estimation (LSE) method, Simple Average Estimation (SAE) 

method of the FBE and CBE derived variables and BLUE for CBE derived variables 

as shown in Table 2. The last 12s   observations were used to assess the forecasting 

performances of five methods of estimation as shown in Table 3.  

As Table 2 shows, the BLUE of the slope (b) and the estimate of standard error from 

the FBE method are the same as those from the CBE method. This is expected, since 

the multipliers, )(Sand)(S βα , for FBE and CBE respectively are the same. The 

BLUE for the slope are more precise than the estimates from simple average method 

which ignored the serial correlation among derived variables. The BLUE for the 

intercept is also the same for the FBE and CBE. This is expected, since estimate of the 

intercept depends on the estimate of the slope. The BLUE for the intercept is also 

more precise than those from the other estimation methods.  

 

The adequacy of the FBE fitted model and its forecasting performance are examined, 

while comparing it with those of the other methods of estimation as shown in Table 3. 

The adequacy of the fitted model was assessed using the JB statistic defined by Bera 

and Jarque (1980) as 

    2
2

2
1 24

n

6

n
JB                                                                                   (5.1) 

where 1 is a measure of skewness and 324  is a measure of kurtosis. The JB 

statistic is used in residual analysis to test for normality, homoscedasticity and serial 

independence of regression residuals. When regression residuals are independent and 
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normally distributed with constant mean and variance the statistic follows the Chi-

square distribution with 2 degrees of freedom.  

When compared with the tabulated values of Chi-square (  05.02
2 ), the values of 

the JB statistic in Table 3 indicate that the fitted models are adequate for the series. 

Table 3 also shows that BLUE from both CBE and FBE methods recover the error 

mean and standard deviation equally well. In terms of MPE, MSE and MAPE of 

forecasts, BLUE from CBE and FBE performed equally well and outperformed the 

Simple Average Estimation (SAE) and Least Squares Estimation (LSE) methods. 

Remarks 

This study has examined the Best Linear Unbiased Estimator (BLUE) of the slope (b) 

of a linear trend-cycle component of time series computed from FBE derived 

variables defined by Iwueze and Nwogu (2004). Since the estimates of the intercept 

and seasonal indices depend on it, the emphasis in this study is therefore, on the slope. 

The properties of the BLUE from the FBE derived variables were determined and 

compared with those from the Least Squares Estimation (LSE) method, Simple 

Average Estimation (SAE) method from the FBE and CBE derived variables and 

BLUE for CBE derived variables. The results show that BLUE from both CBE and 

FBE methods performed equally well in terms of  estimating the slope and intercept 

as well as their corresponding standard errors, recovering the error mean and standard 

deviation and MPE, MSE and MAPE of forecasts. This is expected since the 

variances of the BLUE of the slope (the CBE and FBE) are constant multiples of
3

2

s

2
, 

with the multipliers, )(Sand)(S βα  for FBE and CBE respectively, which have been 

shown to be the same. The BLUE from CBE and FBE outperformed the Simple 

Average Estimation (SAE) of both CBE and FBE and Least Squares Estimation (LSE) 

methods. This is because BLUE took serial correlation among the derived variables 

into consideration which the simple averages ignored.  

Therefore, when using Buys-Ballot procedure for time series decomposition of a 

series with linear trend-cycle component, the BLUE for the slope computed from the 

FBE or CBE-derived variables should be used. This leads to more precise estimates of 

time series components. This can also be extended to estimation of the slope in any 

regression problem. in which variables are serially correlated.  
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Table 2:  Parameter Estimates for 84n,96n,12s,8m 0   and 96n,108n,12s,9m 0  . 

Estimates for 84n,96n,12s,8m 0   Estimates for 96n,108n,12s,9m 0  True 
Value LSE SCBE BCBE SFBE BFBE LSE SCBE BCBE SFBE BFBE 

â  1.00 0.9748 1.0578 0.9539 1.0580 0.9488 1.2297 1.2978 1.1830 1.4250 1.1835 

b̂  0.20 0.2000 0.1981 0.2005 0.1977 0.2006 0.1951 0.1937 0.1961 0.1911 0.1961 

a̂  - 0.6074 0.2598 0.2185 0.4715 0.6684 0.5959 0.2534 0.2046 0.4841 0.2046 

b̂  - 0.0124 0.0056 0.0045 0.0108 0.0155 0.0107 0.0048 0.0037 0.0098 0.0037 

1S  5.65 5.0027 4.9920 5.0054 4.9901 5.0060 5.9638 5.9565 5.9695 5.9422 5.9695 

2S  -4.60 -5.0477 -5.0565 -5.0455 -5.0580 -5.0449 -4.7425 -4.7483 -4.7376 -4.7601 4.7377 

3S  1.59 1.1731 1.1662 1.1748 1.1651 1.1752 1.4763 1.4659 1.4743 1.4567 1.4742 

4S  -2.38 -2.4377 -2.4425 -2.4364 -2.4433 -2.4361 -3.0647 -3.0677 -3.0618 -3.0743 -3.0618

5S  0.38 0.8622 0.8592 0.8629 0.8588 0.8631 0.4346 0.4331 0.4365 0.4291 0.4365 

6S  1.32 1.3420 1.3410 1.3422 1.3408 1.3423 1.2407 1.2405 1.2416 1.2392 1.2416 

7S  1.23 1.6843 1.6852 1.6840 1.6854 1.6840 1.3911 1.3923 1.3912 1.3936 1.3912 

8S  -1.98 -2.1927 -2.1897 -2.1934 -2.1892 -2.1936 -2.5809 -2.5783 -2.5818 -2.5743 -2.5818

9S  -1.21 -1.1516 -1.1467 -1.1528 -1.1458 -1.1531 -0.9832 -0.9793 -0.9852 -0.9727 -0.9852

10S  -2.05 -2.0612 -2.0544 -2.0630 -2.0533 -2.0634 -1.7089 -1.7035 -1.7118 -1.6943 -1.7117

11S  0.73 1.1697 1.1785 1.1675 1.1800 1.1670 0.9399 0.9467 0.9361 0.9585 0.9362 

12S  1.32 1.6569 1.6677 1.6543 1.6694 1.6535 1.6338 1.6421 1.6290 1.6564 1.6290 
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Table 4:  Residual and Forecasting Analysis for 84n,96n,12s,8m 0   and 96n,108n,12s,9m 0  . 

96n,12s,8m   108n,12s,9m    

LSE SCBE BCBE SFBE BFBE LSE SCBE BCBE SFBE BFBE 

Mean 0.0003 -0.0019 0.0000 0.0149 0.0008 0.0008 0.0006 -0.0009 -0.0005 -0.0015

̂  0.9820 0.9836 0.9819 0.9842 0.9819 0.9703 0.9722 0.9700 0.9796 0.9700 

1  -0.016 -0.043 -0.008 -0.049 -0.007 -0.18 -0.16 -0.19 -0.13 -0.19 

2  -0.670 -0.670 -0.670 -0.670 -0.670 0.193 0.201 0.187 0.203 0.186 

JB 1.57 1.59 1.57 1.60 1.57 0.67 0.57 0.72 0.44 0.72 

 05.02
2 5.99 5.99 5.99 5.99 5.99 5.99 5.99 5.99 5.99 5.99 

MPE 0.0105 0.0152 0.0092 0.0171 0.0090 0.0153 0.0188 0.0126 0.0259 0.0126 

MSE 0.5420 0.5855 0.5329 0.6074 0.5315 0.0013 0.0014 0.0012 0.0017 0.0012 

MAE 0.5096 0.5333 0.5114 0.5513 0.5121 0.7042 0.7412 0.6756 0.8160 0.6753 

MAPE 2.62% 2.76% 2.63% 2.86% 2.64% 3.26% 3.44% 3.12% 3.80% 3.12% 
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