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1. Introduction

The intersection (also the self-intersection) problem is a fundamental process needed in model-

ing complex shapes in CAD/CAM system. It is useful in the representation of the design of com-

plex objects, in computer animation and in NC machining for trimming off the region bounded

by the self-intersection curves of offset surfaces. It is also essential to Boolean operations nec-

essary in the creation of boundary representation in solid modeling [18]. Self-intersections
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of a rational polynomial parametric surface are defined by finding pairs of distinct parameter

values (u,v) 6= S(p,q) such that S(u,v) = S(p,q) [21]. Once the shape’s offset goes beyond

the local radius-of-curvature, a self-intersection is bound to occur in the offset. Other appli-

cations could benefit from proper self-intersection detection and elimination as well. Another

example, demonstrated herein, is the problem of creating a self-intersection-free metamorpho-

sis between freeform curves [31]. The numerical marching method is the most widely used

method for computing intersection curves in R3. The Marching method involves generation of

sequences of points of an intersection curve in the direction prescribed by the local differential

geometry [5, 9]. Kruppa [1] explained that the tangential direction of the intersection curve at

a tangential intersection point corresponds to the direction from the intersection point towards

the intersection of the Dupin indicatrices of the two surfaces. Willmore [2] described how to

obtain the unit tangent, the unit principal normal, the unit binormal, the curvature and the tor-

sion of the transversal intersection curve of two implicit surfaces. Barnhill et al. [3] compute

surface self-intersections by their procedural surface/surface intersection algorithm. Lasser [4]

introduces a method to compute all the self-intersection curves of a Bezier surface patch by

subdividing the Bezier control net instead of the surface patch itself. Finaly the self-intersection

curves are approximated by the polygons resulting from the plane/plane intersections of the

refined Bezier control net. Hoffmann [6] listed the intersection problem as one of the most

fundamental problems in the integration of geometric and solid modeling systems. The detec-

tion of self-intersections in freeform curves and surfaces and more so, the exact computation of

the self-intersection locations, are difficult problems that have been addressed by the geometric

modeling community, for several decades [6]. Aomura and Uehara [7] presented a approach

based on numerical integration starting from random initial points. Nevertheless, this method

does not guarantee the detection of all the components of self-intersections. Elber and Cohen

[8] detected local self-intersections of offset curves by checking whether the tangent field of

the curve and its offset, have opposite directions. It is a non-trivial task to detect and trim all

local and global self-intersections in offset curves and surfaces [8, 11]. Wang [12] proposed an

algorithm to compute the intersectioncurve between two offset surfaces. The method is based

on the concept of normal projection. The intersection is represented in the parameter spaces of
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the base surfaces and no offset surface approximation is needed. This algorithm can also deal

with global self-intersections, but not local self-intersections. Maekawa et al. [14] presented

a method for tracing self-intersection loops in the parameter domain. In their method, starting

points are computed by solving a system of nonlinear polynomial equations; nonetheless, they

are solving five equations in five variables and their algorithm requires special treatment for

trivial solutions. The tangent field approach [8] is limited to detecting local self-intersections

only. A similar approach was used in [15] to detect and eliminate self-intersections in sweep

surfaces. Andersson et al. [16] provide necessary and sufficient conditions to preclude self-

intersections of composite Bezier curves and patches. Samoilov and Elber [17] introduced two

new methods for eliminating self-intersections in freeform curve metamorphosis. Both their

algorithms exploit the matching algorithm of Cohen et al. [13]. Ye and Maekawa [18] pre-

sented algorithms for computing all the differential geometry properties of both transversal and

tangentially intersection curves of two parametric surfaces. They described how to obtain these

properties for two implicit surfaces or parametric-implicit surfaces. They also gave algorithms

to evaluate the higher-order derivative of the intersection curves. Ho and Cohen [19] developed

a divide-and-conquer algorithm for computing the self-intersection curves of a surface, which

is based on a necessary condition for self-intersection that can be tested using the normal and

tangent bounding cones of the surface. Wallner et al. [20] considered the problem of computing

the maximum offset distance that guarantees no local or global self-intersections. Patrikalakis

et al. [21], introduce a method to find all the self-intersection points of a planar rational polyno-

mial parametric curve. Unlike the curve self-intersection case, it is inefficient to solve surface

self-intersection problems with the IPP solver. Thomassen [23] discuss how approximate im-

plicit representations of parametric curves and surfaces may be used in algorithms for finding

self-intersections. It have also described how to find the implicit representation given a NURBS

curve or surface. Galligo and Pavone [24] presented two different contributions to the deter-

mination of a self-intersection locus for a B´ezier bicubic surface. The first one uses a specific

sparse resultant and produces an implicit equation of a plane projection of this locus. The sec-

ond one accurately computes the coordinates of critical points on this locus, by solving a system
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of four polynomial equations in four variables, derived from a previously computed plane pro-

jection of the self-intersection locus. Elber [22] and Seong et al. [25] presented a scheme to trim

both local and global self-intersections of offset curves and surfaces. The scheme is based on

the derivation of an analytic distance map between the original curve/surface and its offset. The

computation of self-intersection of a patch or intersection of two patches are important problems

in CAGD; they were the main topics of the European project GAIA II [26]. There are many

articles presenting methods and algorithms to compute self-intersections loci [4, 10, 14, 23, 27].

Galligo and Pavone [24] presented two algebraic methods for computing a self-intersection lo-

cus for a Bézier bicubic surface. Using a specific sparse resultant, the first method produces an

implicit equation of a plane projection of this locus. The second one accurately computes the

coordinates of critical points on this locus, by solving a system of four polynomial equations

in four variables, derived from a previously computed plane projection of the self-intersection

locus. Attempts were similarly made to divide a potentially self-intersecting surface into injec-

tive maps [27]. Diana Pekerman et al. [28] present an algorithm for global self-intersection

detection and elimination in freeform curves and surfaces. Skytt [29] reported an approach that

delineates the topology of the self-intersections; however, in many cases, the topology can be

quite complex. L. Buse et al. [30] presented a re-formulation of computer algebra problems

related to the determination of the self-intersection and intersection loci of polynomial surfaces

patch and in the more general case of rational patches used for NURBS. Diana et al. [31] present

several algorithms for self-intersection detection, and possible elimination, in freeform planar

curves and surfaces. Both local and global self-intersections are eliminated using a binormal-

line criterion and a simple direct algebraic elimination procedure that enables the direct solution

of the algebraic (self-)intersection constraints. Gershon Elbera et al. [32] presented an algebraic

decomposition that reformulates the surface self-intersection problem using an alternative set of

constraints, while removing the redundant components. Xiaohong Jia et al. [33] presented an

algorithm to compute the self-intersection curves of a rational ruled surface based on the theory

of µ-bases. Soliman et al. [34] provide an algorithm for the evaluation of geometry properties

for tangential intersections of two surfaces (implicit-parametric) in R3. Abdel-All et al. [35]
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provide an algorithm for the evaluation of geometry properties for tangential intersections of

two implicit surfaces in R3.

In this paper, we study the differential geometry properties of the intersection curves of two

parametric surfaces and the Self-intersection curves of a parametric surface in R3. The intersec-

tion can be transversally or tangentially. The type of intersection may vary point to point along

the intersection curve. Finally some examples are given and plotted.

2. Geometric preliminaries

Let us first introduce some notations and definitions. Bold letters such as a, R will be used for

vectors and vector functions, respectively. The scalar product and cross product of two vectors a

and c are expressed as 〈a,c〉 and a×c, respectively. The length of the vector a is ‖a‖=
√
〈a,a〉.

2.1. Differential geometry of the curves in R3. Let α : I ⊂ R −→ R3 be a regular curve in

R3 with arc-length parametrization,

(2.1) α(s) = (x1(s),x2(s),x3(s))

The notations for differentiation of the curve α with respect to the arc length s are α ′(s) = dα

ds ,

α ′′(s) = d2α

ds2 , α ′′′(s) = d3α

ds3 . From the elementary differential geometry, we have

(2.2) α
′(s) = t

(2.3) α
′′(s) = κn

(2.4) κ
2(s) =

〈
α
′′,α ′′

〉
where t is the unit tangent vector and α ′′ is the curvature vector. The factor κ is the curvature

and n is the unit principal normal vector. The unit binormal vector b is defined as

(2.5) b(s) = t×n

The Frenet-Serret formulas along α are given by

(2.6) t ′(s) = κn, n′(s) =−κt + τb, b′(s) =−τn
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where τ is the torsion which is given by

(2.7) τ =
〈b,α ′′′〉

κ

provided that the curvature does not vanish.

2.2. Differential geometry of the parametric surfaces in R3. Assume that R(u1,u2) is a reg-

ular parametric surface with R1×R2 6= 0, where Rr =
∂R
∂ur

(r = 1,2) denote to the partial deriva-

tives of the surface R. The unit normal vector field on the surface R is given by

(2.8) N =
R1×R2

‖R1×R2‖

The coefficients of first fundamental form are given by

(2.9) gpq =
〈
Rp,Rq

〉
; p,q = 1,2

The coefficients of second fundamental form are given by

(2.10) L11 = 〈R11,N〉 , L12 = 〈R12,N〉 , L22 = 〈R22,N〉

Let ur = ur(s), r = 1,2 be functions in the u1u2-plane which defines a curve on the surface R

as

(2.11) α(s) = R(u1(s),u2(s)).

Then the fourth derivatives of the curve α are given by

(2.12) α
′ = R1u′1 +R2u′2,

(2.13) α
′′ = R11(u′1)

2 +2R12u′1u′2 +R22(u′2)
2 +R1u′′1 +R2u′′2,

(2.14) α
′′′ = R111(u′1)

3 +3R112(u′1)
2u′2 +3R122u′1(u

′
2)

2 +R222(u′2)
3

+3(R11u′1u′′1 +R12(u′′1u′2 +u′1u′′2)+R22u′2u′′2)+R1u′′′1 +R2u′′′2 .



1114 SOAD A. HASSAN, SAYED ABDEL-NAEIM BADR

(2.15) α
(4)(s) = (u′1)

4R1111 +(u′2)
4R2222 +4(u′1)

3u′2R1112 +6(u′1)
2(u′2)

2R1122

+4u′1(u
′
2)

3R1222 +6(u′1)
2u′′1R111 +6(u′2)

2u′′2R222

+6(2u′1u′2u′′1 +(u′1)
2u′′2)R112 +6(u′′1(u

′
2)

2 +2u′1u′2u′′2)R122

+(3(u′′1)
2 +4u′1u′′′1 )R11 +(3(u′′2)

2 +4u′2u′′′2 )R22

+2(2u′′′1 u′2 +3u′′1u′′2 +2u′1u′′′2 )R12 +u(4)1 R1 +u(4)2 R2

The projection of the curvature vector α ′′, the third order derivative vector α ′′′ and the fourth

order derivative vector α(4) onto the unit normal vector of the surface R, respectively are given

by

(2.16)
〈

α
′′,

R1×R2

‖R1×R2‖

〉
= L11(u′1)

2 +2L12u′1u′2 +L22(u′2)
2,

(2.17)
〈
α
′′′,N

〉
= (u′1)

3 〈R111,N〉+3(u′1)
2u′2 〈R112,N〉+3u′1(u

′
2)

2 〈R122,N〉

+(u′2)
3 〈R222,N〉+3(u′1L11 +u′2L12)u′′1 +3(u′1L12 +u′2L22)u′′2,

(2.18)
〈

α
(4),N

〉
= (u′1)

4 〈R1111,N〉+4(u′1)
3u′2 〈R1112,N〉+6(u′1)

2(u′2)
2 〈R1122,N〉

+(u′2)
4 〈R2222,N〉+4u′1(u

′
2)

3 〈R1222,N〉+6(u′1)
2u′′1 〈R111,N〉

+6(u′2)
2u′′2 〈R222,N〉+6(2u′1u′2u′′1 +(u′1)

2u′′2)〈R112,N〉

+6(u′′1(u
′
2)

2 +2u′1u′2u′′2)〈R122,N〉+3(u′′1)
2L11 +6u′′1u′′2L12

+3(u′′2)
2L22 +4(u′1L11 +u′2L12)u′′′1 +4(u′1L12 +u′2L22)u′′′2 .

2.3. Self-intersection of a parametric surface. Self-intersection point p of a parametric sur-

face R = R(u1,u2); c1 < u1 < c2, c3 < u2 < c4 is defined by finding two pairs of distinct param-

eter values (γ1,γ2) 6= (ν1,ν2) in the u1u2-plane, such that p = R(γ1,γ2) = R(ν1,ν2). [21].

Consider a surface R = R(u1,u2); c1 < u1 < c2, c3 < u2 < c4, which intersect it self at a curve

(with arc length parametrization) α(s). Assume that (v1(s),v2(s)) and (w1(s),w2(s)) are two

distinct paths in the u1u2-plane, defines the curve α(s) (see Fig. 2.1), then we can write

(2.19) α(s) = R(v1(s),v2(s)) = R(w1(s),w2(s)); (v1(s),v2(s)) 6= (w1(s),w2(s))

We can consider the surface R(u1,u2) as two distinct regular surfaces P(v1,v2) and Q(w1,w2)

which intersect at the curve α(s), where

(2.20) P(v1,v2) = R(v1,v2), Q(w1,w2) = R(w1,w2).
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Thus the curve α(s) can be viewed as a curve on both surfaces as

(2.21)
α(s) = P(v1(s),v2(s)) = (P1,P2,P3),

α(s) = Q(w1(s),w2(s)) = (Q1,Q2,Q3).

According to (2.21), we can write

(2.22) P j(v1(s),v2(s)) = Q j(w1(s),w2(s)); j = 1,2,3.

FIGURE 1. Fig 2.1

3. Transversal intersection

Assume that the surfaces (2.20) are intersecting transversally at the curve (2.21).

3.1. The unit tangent vector field. Differentiation (2.22) with respect to s yields

(3.1)

P1
1 v′1 +P1

2 v′2 = Q1
1w′1 +Q1

2w′2,

P2
1 v′1 +P2

2 v′2 = Q2
1w′1 +Q2

2w′2,

P3
1 v′1 +P3

2 v′2 = Q3
1w′1 +Q3

2w′2

Since the surface Q(w1(s),w2(s)) is regulare, thene without loss of generality, we have∣∣∣∣∣∣Q
l
1 Ql

2

Qm
1 Qm

2

∣∣∣∣∣∣ 6= 0, {l,m} ⊂ {1,2,3}

The system (3.1) can be written as

(3.2)
Pl

1v′1 +Pl
2v′2 = Ql

1w′1 +Ql
2w′2,

Pm
1 v′1 +Pm

2 v′2 = Qm
1 w′1 +Qm

2 w′2,
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(3.3) Pq
1 v′1 +Pq

2 v′2 = Qq
1w′1 +Qq

2w′2, {l,m,q}= {1,2,3}.

where P j
i = P j

i (v1(s),v2(s)) =
∂P j

∂ui
, Q j

i = Q j
i (w1(s),w2(s)) =

∂Q j

∂ui
, i = 1,2. Solving the coef-

ficients w′1 and w′2 from linear system (3.2) and substituting into (3.3)yields

(3.4) v′1 = v′1, v′2 =−
η

ζ
v′1.

where

(3.5)

η = Qq
1A12−Qq

2A11−B12Pq
1 , ζ = Qq

1A22−Qq
2A21−B12Pq

2 ,

Ai j =

∣∣∣∣∣∣P
l
i Pm

i

Ql
j Qm

j

∣∣∣∣∣∣ , B12 =

∣∣∣∣∣∣Q
l
1 Qm

1

Ql
2 Qm

2

∣∣∣∣∣∣ , i, j = 1,2.

Since

(3.6)
2

∑
i, j=1

gi jv′iv
′
j = 1, gi j =

〈
Pi,Pj

〉
.

Substituting (3.4) into (3.6) yields

(3.7) v′1 =
ζ√

g11ζ
2−2g12ηζ +g22η2

, v′2 =
−η√

g11ζ
2−2g12ηζ +g22η2

.

Differentiation (2.21) with respect to s yields

(3.8) t = α
′(s) = P1v′1 +P2v′2 = Q1w′1 +Q2w′2

The unit tangent vector α ′(s) can be obtain by substituting (3.7) into (3.8), as follows

(3.9) t =
ζ P1−ηP2

‖ζ P1−ηP2‖
.

Using (3.7), (3.8) and (3.9), we obtain

(3.10) v′1 =
ζ

‖ζ P1−ηP2‖
, v′2 =

−η

‖ζ P1−ηP2‖
;

Using (3.8), (3.9) and (3.10), we obtain

(3.11) w′1 =
ζ A12−ηA22

B12 ‖ζ P1−ηP2‖
, w′2 =

ηA21−ζ A11

B12 ‖ζ P1−ηP2‖
.
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The tangent vector field of the self-intersection curve of the surface R = R(u1,u2) is given by

(3.12) t =
ζ R1(v1,v2)−ηR2(v1,v2)

‖ζ R1(v1,v2)−ηR2(v1,v2)‖
.

Using (3.10) and (3.11) we obtain

(3.13)

v′1 =
ζ

‖ζ R1(v1,v2)−ηR2(v1,v2)‖
, v′2 =

−η

‖ζ R1(v1,v2)−ηR2(v1,v2)‖
,

w′1 =
ζ A12−ηA22

B12 ‖ζ R1(v1,v2)−ηR2(v1,v2)‖
, w′2 =

ηA21−ζ A11

B12 ‖ζ R1(v1,v2)−ηR2(v1,v2)‖
,

where

(3.14)

η = A12Rq
1(w1,w2)−A11Rq

2(w1,w2)−B12Rq
1(v1,v2),

ζ = A22Rq
1(w1,w2)−A21Rq

2(w1,w2)−B12Rq
2(v1,v2),

Ai j =

∣∣∣∣∣∣ Rl
i(v1,v2) Rm

i (v1,v2)

Rl
j(w1,w2) Rm

j (w1,w2)

∣∣∣∣∣∣ , B12 =

∣∣∣∣∣∣R
l
1(w1,w2) Rm

1 (w1,w2)

Rl
2(w1,w2) Rm

2 (w1,w2)

∣∣∣∣∣∣ .
3.2. Curvature and curvature vector. Assume that the intersection curve α(s) is given by

(3.15) α(s) = (x1(s),x2(s),x3(s))

Then we have

(3.16)
α ′(s) = (x′1(s),x

′
2(s),x

′
3(s)), α ′′′(s) = (x′′′1 (s),x

′′′
2 (s),x

′′′
3 (s)),

α ′′(s) = (x′′1(s),x
′′
2(s),x

′′
3(s)), α(4)(s) = (x(4)1 (s),x(4)2 (s),x(4)3 (s)).

Since the curvature vector is perpendicular on the tangent vector, then we have

(3.17)
[
x′1 x′2 x′3

][
x′′1 x′′2 x′′3

]T
= 0

The projection of curvature vector field α ′′(s) of the curve (2.20) onto the unit normal vector

fields N1 = (N1
1 ,N

2
1 ,N

3
1 ) and N2 = (N1

2 ,N
2
2 ,N

3
2 ) of both surfaces (2.21) are given by

(3.18)

[
N1

1 N2
1 N3

1

][
x′′1 x′′2 x′′3

]T
= (v′1)

2L1
11 +2v′1v′2L1

12 +(v′2)
2L1

22,

[
N1

2 N2
2 N3

2

][
x′′1 x′′2 x′′3

]T
= (w′1)

2L2
11 +2w′1w′2L2

12 +(w′2)
2L2

22.
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Solving the system (3.17)and (3.18) for x′′1, x′′2 and x′′3, we obtain

(3.19)


x′′1

x′′2

x′′3

=


x′1 x′2 x′3

N1
1 N2

1 N3
1

N1
2 N2

2 N3
2


−1

0

(v′1)
2L1

11 +2v′1v′2L1
12 +(v′2)

2L1
22

(w′1)
2L2

11 +2w′1w′2L2
12 +(w′2)

2L2
22


The curvature vector field α ′′(s) can be computed by using (3.12), (3.13) and (3.19). The

curvature κ is given by

κ
2 =

〈
α
′′,α ′′

〉
The curvature and curvature vector of self-intersection curves of the surface R(u1,u2) are given

by replacing the surfaces P(v1,v2) and Q(w1,w2) with R(v1,v2) and R(w1,w2), respectively.

3.3. Torsion and third order derivative. Since the intersection curve α(s) views as a curve

on both surfaces (2.20), then the Eq. (2.13) satisfies on both surfaces thus

(3.20) α
′′ = (v′1)

2P11 +2v′1v′2P12 +(v′2)
2P22 + v′′1P1 + v′′2P2,

(3.21) α
′′ = (w′1)

2Q11 +2w′1w′2Q12 +(w′2)
2Q22 +w′′1Q1 +w′′2Q2.

Taking the cross product of both hand sides of (3.20) with P1 and P2 and projecting the results

vector onto the surface normal vector N1, we obtain

(3.22)

v′′1 =
|α ′′,P2,N1|
‖P1×P2‖

− (v′1)
2 |P11,P2,N1|
‖P1×P2‖

−2v′1v′2
|P12,P2,N1|
‖P1×P2‖

− (v′2)
2 |P22,P2,N1|
‖P1×P2‖

,

v′′2 =
|P1,α

′′,N1|
‖P1×P2‖

− (v′1)
2 |P1,P11,N1|
‖P1×P2‖

−2v′1v′2
|P1,P12,N1|
‖P1×P2‖

− (v′2)
2 |P1,P22,N1|
‖P1×P2‖

.

Taking the cross product of both hand sides of (3.21) with Q1 and Q2 and projecting the results

vector onto the surface normal vector N2, we obtain

w′′1 =
|α ′′,Q2,N2|
‖Q1×Q2‖

− (w′1)
2 |Q11,Q2,N2|
‖Q1×Q2‖

−2w′1w′2
|Q12,Q2,N2|
‖Q1×Q2‖

− (w′2)
2 |Q22,Q2,N2|
‖Q1×Q2‖

,

(3.23)

w′′2 =
|Q1,α

′′,N2|
‖Q1×Q2‖

− (w′1)
2 |Q1,Q11,N2|
‖Q1×Q2‖

−2w′1w′2
|Q1,Q12,N2|
‖Q1×Q2‖

− (w′2)
2 |Q1,Q22,N2|
‖Q1×Q2‖

.

Differentiation (2.3) with respect to s and using (2.6)we obtain,

α
′′′(s) =−κ

2t +κ
′n+κτb,
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then we have 〈
α
′,α ′′′

〉
=−κ

2

Which can be written in the matrix form as

(3.24)
[
x′1 x′2 x′3

][
x′′′1 x′′′2 x′′′3

]T
=−κ

2

The projection of the third order derivative α ′′′(s) of the intersection curve α(s) onto the unit

normal vector fields N1 = (N1
1 ,N

2
1 ,N

3
1 ) and N2 = (N1

2 ,N
2
2 ,N

3
2 ) of both surfaces P(v1,v2) and

Q(w1,w2) are given by

(3.25)

[
N1

1 N2
1 N3

1

][
x′′′1 x′′′2 x′′′3

]T
= ψ1,

[
N1

2 N2
2 N3

2

][
x′′′1 x′′′2 x′′′3

]T
= ψ2,

where

(3.26)

ψ1 = (v′1)
3 〈P111,N1〉+3(v′1)

2v′2 〈P112,N1〉+3v′1(v
′
2)

2 〈P122,N1〉

+(v′2)
3 〈P222,N1〉+3v′1v′′1L1

11 +3(v′′1v′2 + v′1v′′2)L
1
12 +3v′2v′′2L1

22,

ψ2 = (w′1)
3 〈Q111,N2〉+3(w′1)

2w′2 〈Q112,N2〉+3w′1(w
′
2)

2 〈Q122,N2〉

+(w′2)
3 〈Q222,N2〉+3w′1w′′1L2

11 +3(w′′1w′2 +w′1w′′2)L
2
12 +3w′2w′′2L2

22.

Solving the system (3.25) and (3.25), we obtain

(3.27)


x′′′1

x′′′2

x′′′3

=


x′1 x′2 x′3

N1
1 N2

1 N3
1

N1
2 N2

2 N3
2


−1
−κ2

ψ1

ψ2

 .

The third order derivative α ′′′(s) can be computed by using (3.12), (3.18), (3.26) and (3.27).

The torsion τ is given by (2.7). The torsion and third order derivative of self-intersection curves

of the surface R(u1,u2) are given by replacing the surfaces P(v1,v2) and Q(w1,w2) to R(v1,v2)

and R(w1,w2), respectively.
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4. Tangentially Intersection curves

Assume that the surfaces (2.20) are intersecting tangentially at a point p on the curve (2.21),

then the unit surface normal vector fields of both surfaces are parallel to each other. in other

words

(4.1)
P1×P2

‖P1×P2‖
= δ

Q1×Q2

‖Q1×Q2‖
, δ =±1.

4.1. Tangential direction. Differentiation (2.22), with respect to s yields

(4.2) P j
1v′1 +P j

2v′2 = Q j
1w′1 +Q j

2w′2, j = 1,2,3

where P j
i = P j

i (v1(s),v2(s)) =
∂P j

∂ui
, Q j

i = Q j
i (w1(s),w2(s)) =

∂Q j

∂ui
, i = 1,2

since the unit surface normal vector fields of both surfaces are parallel to each other, then the

system (4.2) reduced to only two Eqs.. Projecting the curvature vector α ′′(s) onto the two unit

normal vector fields of both surfaces and using (4.1), we obtain〈
α
′′,

Q1×Q2

‖Q1×Q2‖

〉
= δ

〈
α
′′,

P1×P2

‖P1×P2‖

〉
Using (2.16) and (4.1), we obtain

(4.3)
2

∑
i, j=1

L2
i jw
′
iw
′
j = δ

2

∑
i, j=1

L1
i jv
′
iv
′
j

where

L1
i j =

〈
Pi j,N1

〉
, L2

i j =
〈
Qi j,N2

〉
,

Assume that the system (4.2) reduced to

(4.4)
Pl

1v′1 +Pl
2v′2 = Ql

1w′1 +Ql
2w′2,

Pm
1 v′1 +Pm

2 v′2 = Qm
1 w′1 +Qm

2 w′2; {l,m} ⊂ {1,2,3},

then we have

(4.5)

w′1

w′2

=
1

B12

 A12 A22

−A11 −A21

v′1

v′2

 , B12 6= 0

where

(4.6) Ai j =

∣∣∣∣∣∣P
l
i Pm

i

Ql
j Qm

j

∣∣∣∣∣∣ , B12 =

∣∣∣∣∣∣Q
l
1 Qm

1

Ql
2 Qm

2

∣∣∣∣∣∣ , i, j = 1,2.
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Substituting (4.5) into (4.3) yields

(4.7) a11(
v′2
v′1
)2 +2a12(

v′2
v′1
)+a22 = 0; v′1 6= 0,

where

(4.8)

a11 = (A12)
2L2

11−2A12A11L2
12 +(A11)

2L2
22−δ (B12)

2L1
11

a12 = A12A22L2
11− (A11A12 +A12A21)L2

12 +A11A21L2
22−δ (B12)

2L1
12

a22 = (A22)
2L2

11−2A21A22L2
12 +(A21)

2L2
22−δ (B12)

2L1
22

Solving (4.7) yield

(4.9)
v′2
v′1

=
−a12±

√
(a12)2−a11a22

a11
.

In other words

(4.10) v′2 = λv′1; λ =
−a12±

√
(a12)2−a11a22

a11

Since α ′(s) is the unit tangent vector of the curve α(s) on the surface P(v1,v2), then we have

(4.11)
2

∑
i, j=1

gi jv′iv
′
j = 1, gi j =

〈
Pi,P j

〉
Substituting (4.10) into (4.11) yields

(4.12)

v′1 =
1√

g11 +2g12λ +g22λ
2
,

v′2 =
λ√

g11 +2g12λ +g22λ
2
.

The unit tangent vector of the tangential intersection curves of the parametric surfaces P(v1,v2)

andQ(w1,w2) can be obtained by

(4.13) t =
P1 +λP2

‖P1 +λP2‖
.

From the previous formulas, it is easy to see that, there are four distinct cases for the solution

of (4.7) depending upon the discriminant ∆ = (a12)
2−a11a22, these cases are as the following:
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Lemma 1. The point p is a branch point of the intersection curve, if ∆ > 0 and there is another

intersection branch crossing the intersection curve at that point.

Lemma 2. The surfaces P(v1,v2) and Q(w1,w2) intersect at the point p and at its neighbor-

hood, if ∆ = 0 and (a11)
2 +(a12)

2 +(a22)
2 6= 0. (Tangential intersection curve).

Lemma 3. The point p is an isolated contact point of the surfaces P(v1,v2) and Q(w1,w2), if

∆ < 0.

Lemma 4. The surfaces P(v1,v2) and Q(w1,w2) have contact of at least second order at the

point p, if a11 = a12 = a22 = 0. (Higher-order contact point).

Using (4.5),(4.12) and (4.13), we obtain

(4.14) v′1 =
1

‖P1 +λP2‖
, v′2 =

λ

‖P1 +λP2‖
;

Using (4.34) and (4.43), we obtain

(4.15) w′1 =
A12 +λA22

B12 ‖P1 +λP2‖
, w′2 =

−A11−λA21

B12 ‖ζ P1−ηP2‖
.

Then the tangent vector field of the tangential self-intersection curves of the surface R=R(u1,u2)

is given by

(4.16) t =
R1(v1,v2)+λR2(v1,v2)

‖R1(v1,v2)+λR2(v1,v2)‖
,

(4.17)

v′1 =
1

‖R1(v1,v2)+λR2(v1,v2)‖
, v′2 =

λ

‖R1(v1,v2)+λR2(v1,v2)‖
,

w′1 =
A12 +λA22

B12 ‖R1(v1,v2)+λR2(v1,v2)‖
, w′2 =

−A11−λA21

B12 ‖R1(v1,v2)+λR2(v1,v2)‖
,
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where

(4.18)

λ =
−a12±

√
(a12)2−4a11a22

2a11
,

a11 = (A12)
2L2

11−2A12A11L2
12 +(A11)

2L2
22−δ (B12)

2L1
11,

a12 = A12A22L2
11− (A11A12 +A12A21)L2

12 +A11A21L2
22−δ (B12)

2L1
12,

a22 = (A22)
2L2

11−2A21A22L2
12 +(A21)

2L2
22−δ (B12)

2L1
22,

Ai j =

∣∣∣∣∣∣ Rl
i(v1,v2) Rm

i (v1,v2)

Rl
j(w1,w2) Rm

j (w1,w2)

∣∣∣∣∣∣ , L1
i j =

〈
Ri j(v1,v2),N1〉 ,

B12 =

∣∣∣∣∣∣R
l
1(w1,w2) Rm

1 (w1,w2)

Rl
2(w1,w2) Rm

2 (w1,w2)

∣∣∣∣∣∣ , L2
i j =

〈
Ri j(w1,w2),N2〉 ,

4.2. Curvature and curvature vector. Since the intersection curve views as a curve on both

surfaces, then Eq. (2.13) satisfies on both surfaces thus

(4.19) (v′1)
2P11 +2v′1v′2P12 +(v′2)

2P22 + v′′1P1 + v′′2P2

= (w′1)
2Q11 +2w′1w′2Q12 +(w′2)

2Q22 +w′′1Q1 +w′′2Q2

Taking the cross product of both hand sides of (4.19) with Q1 and Q2 and projecting the resulting

equations onto the surface normal vector N2, we obtain

(4.20)

w′′2 =
|Q1,P1,N2|
‖Q1×Q2‖

v′′1 +
|Q1,P2,N2|
‖Q1×Q2‖

v′′2 +
c11

‖Q1×Q2‖
,

w′′1 =
|P1,Q2,N2|
‖Q1×Q2‖

v′′1 +
|P2,Q2,N2|
‖Q1×Q2‖

v′′2 +
c12

‖Q1×Q2‖
.
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where

(4.21)

c11 = (v′1)
2 |Q1,P11,N2|+2v′1v′2 |Q1,P12,N2|+(v′2)

2 |Q1,P22,N2|

−(w′1)2 |Q1,Q11,N2|−2w′1w′2 |Q1,Q12,N2|− (w′2)
2 |Q1,Q22,N2| ,

c12 = (v′1)
2 |P11,Q2,N2|+2v′1v′2 |P12,Q2,N2|+(v′2)

2 |P22,Q2,N2|

−(w′1)2 |Q11,Q2,N2|−2w′1w′2 |Q12,Q2,N2|− (w′2)
2 |Q22,Q2,N2| .

Projecting the vector α ′′′(s) onto N1 and N2 then using (4.1), we obtain

(4.22) δ (v′1L1
11 + v′2L1

12)v
′′
1 +δ (v′1L1

12 +3v′2L1
22)v

′′
2

= (w′1L2
11 +w′2L2

12)w
′′
1 +(w′1L2

12 +3w′2L2
22)w

′′
2 +

c13

3
,

where

(4.23) c13 = (w′1)
3 〈Q111,N2〉+3(w′1)

2w′2 〈Q112,N2〉+(w′2)
3 〈Q222,N2〉

+3w′1(w
′
2)

2 〈Q122,N2〉− (v′1)
3 〈P111,N2〉− (v′2)

3 〈P222,N2〉

−3v′1(v
′
2)

2 〈P122,N2〉−3(v′1)
2v′2 〈P112,N2〉 .

Since the curvature vector is perpendicular on the tangent vector, then we have

(4.24) (v′1g11 + v′2g12)v′′1 +(v′1g12 + v′2g22)v′′2 =−


〈P11,P1〉(v′1)3 + 〈P22,P2〉(v′2)3

+(2〈P12,P1〉+ 〈P11,P2〉)(v′1)2v′2

+(2〈P12,P2〉+ 〈P22,P1〉)v′1(v′2)2),


We can compute v′′1, v′′2, w′′1 and w′′2 by solving (4.20), (4.22) and (4.24).

The curvature vector and the curvature of the tangential intersection curves of the parametric

surfaces P(v1,v2) and Q(w1,w2) can be computed by using (2.13) and (2.4) respectively.

The curvature and curvature vector of the tangential self-intersection curves of the surface

R(u1,u2) are given by replacing the surfaces P(v1,v2) and Q(w1,w2) to R(v1,v2) and R(w1,w2),

respectively.
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4.3. Torsion and third order derivative. The intersection curve views as a curve on both

surfaces, then Eq. (2.14) satisfies on both surfaces thus

(4.25)


(v′1)

3P111 +3(v′1)
2v′2P112

+3v′1(v
′
2)

2P122 +(v′2)
3P222

+3v′1v′′1P11 +3(v′′1v′2 + v′1v′′2)P12

+3v′2v′′2P22 + v′′′1 P1 + v′′′2 P2,

=


(w′1)

3Q111 +3(w′1)
2w′2Q112

+3w′1(w
′
2)

2Q122 +(w′2)
3Q222

+3w′1w′′1Q11 +3(w′′1w′2 +w′1w′′2)Q12

+3w′2w′′2Q22 +w′′′1 Q1 +w′′′2 Q2,


Taking the cross product of both hand sides of (4.25) with Q1 and Q2 and projecting the resulting

equations onto the surface normal vector N2, we obtain

(4.26)

w′′′2 =
|Q1,P1,N2|
‖Q1×Q2‖

v′′′1 +
|Q1,P2,N2|
‖Q1×Q2‖

v′′′2 +
c14

‖Q1×Q2‖
,

w′′′1 =
|P1,Q2,N2|
‖Q1×Q2‖

v′′′1 +
|P2,Q2,N2|
‖Q1×Q2‖

v′′′2 +
c15

‖Q1×Q2‖
.

where

(4.27)

c14 = (v′1)
3 |Q1,P111,N2|+3(v′1)

2v′2 |Q1,P112,N2|+3v′1(v
′
2)

2 |Q1,P122,N2|

−3w′1(w
′
2)

2 |Q1,Q122,N2|+3v′1v′′1 |Q1,P11,N2|+3v′2v′′2 |Q1,P22,N2|

+(v′2)
3 |Q1,P222,N2|−3w′1w′′1 |Q1,Q11,N2|−3(w′1)

2w′2 |Q1,Q112,N2|

−(w′1)3 |Q1,Q111,N2|− (w′2)
3 |Q1,Q222,N2|−3w′2w′′2 |Q1,Q22,N2|

+3(v′′1v′2 + v′1v′′2) |Q1,P12,N2|−3(w′′1w′2 +w′1w′′2) |Q1,Q12,N2| ,

c15 = (v′1)
3 |P111,Q2,N2|+3(v′1)

2v′2 |P112,Q2,N2|+3v′1(v
′
2)

2 |P122,Q2,N2|

+(v′2)
3 |P222,Q2,N2|+3v′1v′′1 |P11,Q2,N2|−3(w′1)

2w′2 |Q112,Q2,N2|

+3v′2v′′2 |P22,Q2,N2|−3w′1(w
′
2)

2 |Q122,Q2,N2|−3w′2w′′2 |Q22,Q2,N2|

−(w′1)3 |Q111,Q2,N2|− (w′2)
3 |Q222,Q2,N2|−3w′1w′′1 |Q11,Q2,N2|

+3(v′′1v′2 + v′1v′′2) |P12,Q2,N2|−3(w′′1w′2 +w′1w′′2) |Q12,Q2,N2| ,

Projecting the vector α(4)(s) onto the two unit normal vector fields of both surfaces and using

(2.18) and (4.1), we obtain

(4.28)
(w′1L2

11 +w′2L2
12)w

′′′
1 +(w′1L2

12 +w′2L2
22)w

′′′
2

= δ (v′1L1
11 + v′2L1

12)v
′′′
1 +δ (v′1L1

12 + v′2L1
22)v

′′′
2 +

c16

4
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where

(4.29) c16 = (v′1)
4 〈P1111,N2〉+4(v′1)

3v′2 〈P1112,N2〉+6(v′1)
2(v′2)

2 〈P1122,N2〉

+(v′2)
4 〈P2222,N2〉+4v′1(v

′
2)

3 〈P1222,N2〉+6(v′1)
2v′′1 〈P111,N2〉

+6(v′2)
2v′′2 〈P222,N2〉+6(2v′1v′2v′′1 +(v′1)

2v′′2)〈P112,N2〉

+6(v′′1(v
′
2)

2 +2v′1v′2v′′2)〈P122,N2〉+3δ (v′′1)
2L1

11 +6δv′′1v′′2L1
12

+3δ (v′′2)
2L1

22− (w′1)
4 〈Q1111,N2〉−4(w′1)

3w′2 〈Q1112,N2〉

−6(w′1)
2(w′2)

2 〈Q1122,N2〉− (w′2)
4 〈Q2222,N2〉−3(w′′1)

2L2
11

−4w′1(w
′
2)

3 〈Q1222,N2〉−6(w′1)
2w′′1 〈Q111,N2〉−6w′′1w′′2L2

12

−6(w′2)
2w′′2 〈Q222,N2〉−6(2w′1w′2w′′1− (w′1)

2w′′2)〈Q112,N2〉

−6(w′′1(w
′
2)

2−2w′1w′2w′′2)〈Q122,N2〉−3(w′′2)
2L2

22

Since 〈
α
′,α ′′′

〉
=−κ

2

which can be written as

(4.30)

(v′1g11+v′2g12)v′′′1 +(v′1g12+v′2g22)v′′′2 =−( κ2 +(v′1)
4 〈P111,P1〉+3(v′1)

3v′2 〈P112,P1〉

+3(v′1)
2(v′2)

2 〈P122,P1〉+ v′1(v
′
2)

3 〈P222,P1〉

3(v′1v′2v′′1 +(v′1)
2v′′2)〈P12,P1〉+3(v′1)

2v′′1 〈P11,P1〉

+3v′1v′2v′′2 〈P22,P1〉+(v′1)
3v′2 〈P111,P2〉

+3(v′1)
2(v′2)

2 〈P112,P2〉+3v′1(v
′
2)

3 〈P122,P2〉

+(v′2)
4 〈P222,P2〉+3v′1v′2v′′1 〈P11,P2〉

+3(v′′1(v
′
2)

2 + v′1v′2v′′2)〈P12,P2〉+3(v′2)
2v′′2 〈P22,P2〉)

We can compute v′′′1 , v′′′2 , w′′′1 and w′′′2 by solving (4.26), (4.28) and (4.30).

The third derivative vector and the torsion of the tangential intersection curves of two para-

metric surfaces P(v1,v2) and Q(w1,w2) can be computed by using (2.14) and (2.7), respectively.

The third derivative vector and the torsion of the tangential self-intersection curves of the

surface R(u1,u2) are given by replacing the surfaces P(v1,v2) and Q(w1,w2) to R(v1,v2) and

R(w1,w2), respectively.
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5. Examples

Example 1. Consider the two parametric surfaces

(5.1)
P = (1+ sinv2,cosv2,v1)

Q = (2cosw1 cosw2,2sinw1 cosw2,2sinw2)

FIGURE 2. Fig 5.1

Transversal intersection: Using (3.9) and (5.1), we obtain

(5.2) t =
(cosv2 sinw2,−sinv2 sinw2,−cosw2 cos(v2 +w1))√

1− cos2 w2 sin2(w1 + v2)
.

Using (3.19) and (5.1), we obtain

(5.3) α
′′ = (

a1

a4
,
a2

a4
,
a3

a4
),
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where

(5.4)

a1 = cosv2 cos3 (v2 +w1)cos3 w2 +2sinw1 cos(v2 +w1)cos4 w2

−cosv2 cos(v2 +w1)cos3 w2−2sinw1 cos(v2 +w1)cos2 w2

+cosv2 cos(v2 +w1)cosw2 +2sinv2 cos4 w2−4sinv2 cos2 w2 +2sinv2

a2 = −sinv2 cos3 (v2 +w1)cos3 w2−2cosw1 cos(v2 +w1)cos4 w2

−sinv2 cos(v2 +w1)cosw2 +2cosv2 cos4 w2−4cosv2 cos2 w2

+sinv2 cos(v2 +w1)cos3 w2 +2cosw1 cos(v2 +w1)cos2 w2 +2cosv2

a3 = sinw2


cos2 (v2 +w1)cos2 w2−2cosv2 cosw2 sinw1

−2cosw1 cosw2 sinv2 +2cosv2 cos3 w2 sinw1

+2cosw1 cos3 w2 sinv2− cos2 w2 +1



a4 =
1
8

 cos(2v2 +2w1−2w2)+ cos(2v2 +2w1 +2w2)

−2cos2w2 +2cos(2v2 +2w1)+6


Using (3.21) and (5.1) we obtain

(5.5)


x′′′1

x′′′2

x′′′3

=


cosv2 sinw2√

1−cos2 w2 sin2(w1+v2)

−sinv2 sinw2√
1−cos2 w2 sin2(w1+v2)

−cosw2 cos(v2+w1)√
1−cos2 w2 sin2(w1+v2)

sinv2 cosv2 0

cosw1 cosw2 sinw1 cosw2 sinw2


−1

×


−(a1)

2 +(a2)
2 +(a3)

2

(a4)
2

−3v′2v′′2

3(w′1)
2w′2 sin2w2−6w′1w′′1 cos2 w2−6w′2w′′2



Tangentially intersection:The surfaces are intersecting tangentially at the point p(2,0,0) as

shown in Fig. (5.1). The first Equation in the system (4.2) vanishes at the point p(2,0,0), then

by using (4.7) at p(2,0,0), we obtain ∆ > 0, this means that the point p(2,0,0) is a branch
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point, λ =±1. Using (4.13)and (5.1) at the point p(2,0,0), we obtain

(5.6) t = (0,± 1√
2
,

1√
2
).

Using (4.20), (4.24), (2.4), (2.13) and (5.1) at the point p(2,0,0), we obtain

(5.7) n = (−1,0,0), κ = 1
2 .

(5.8) b = (0,−1
2

√
2,±1

2

√
2)

Using (4.26), (4.28), (4.30), (2.7), (2.14) and (5.1) at the point p(2,0,0), we obtain

α ′′′(s) = (0,± 1
32

√
2,− 9

32

√
2) τ =∓5

8 .

Example 2: Consider the surface

(5.9) R(u1,u2) = (u1−
u3

1
3
+u1u2

2,−u2−u2
1u2 +

u3
2

3
,u2

1−u2
2); −5 < u1,u2 < 5.

FIGURE 3. Fig 5.2

Let us find the Frenet vectors, the curvature and the torsion of the transversal self-intersection

curve at the transversal self-intersection point p(28
3

√
2,0,−7)=R(

√
2,3)=R(

√
2,−3)∈R(u1,u2).

Using (3.12) and (5.2) at the point p(28
3

√
2,0,−7), we obtain

(5.10) t = (
5
9

√
3,0,−1

9

√
6).

Using (3.19), (2.4), (2.13) and (5.2) at the point p(28
3

√
2,0,−7), we obtain

(5.11) κn = ( 1
972

√
2,0, 5

972), κ = 1
324

√
3, n = (1

9

√
6,0, 5

9

√
3), b = (0,−1,0).
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Using (3.21), (2.7), (2.14) and (5.2) at the point p(28
3

√
2,0,−7), we obtain

(5.12) α ′′′ = (− 23
314928

√
3,0,− 11

78732

√
6), τ = 0.

6. Conclusion

Algorithms for computing all the differential geometry properties of, self-intersection curves of

a parametric surface and the intersection curves of two parametric surfaces in R3, for transver-

sal and tangential intersection. This paper is an extension to the works of Ye and Maekawa

(1999). They gave an example of implicit-parametric surfaces intersection and they computed

the tangent vector field and refired to how obtain the curvature vector, the curvature, the tor-

sion and the higher derivatives of the intersection curves by using they method. But this paper

introduce a direct formulas to compute all the properties. The types of singularity on the inter-

section curve are characterized. The questions of how to exploit and extend these algorithms

to compute the differential geometry properties of intersection curves between three surfaces in

R4, can be topics of future research.
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