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Abstract. In this paper, we introduce the sequence space Vσ (M, p,r,4), where M is an Orlicz function, p = (pm)

is any sequence of strictly positive real numbers and r≥ 0 and study some of the properties and inclusion relations

that arise on the said space.
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1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively.

We write

ω = {x = (xk) : xk ∈ R or C },

the space of all real or complex sequences.

Let `∞, c and c0 denote the Banach spaces of bounded, convergent and null sequences respec-

tively.

The following subspaces of ω were first introduced and discussed by Maddox [11-12].
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`(p) = {x ∈ ω : ∑
k
|xk|pk < ∞},

`∞(p) = {x ∈ ω : sup
k
|xk|pk < ∞},

c(p) = {x ∈ ω : lim
k
|xk− l|pk = 0, for some l ∈C },

c0(p) = {x ∈ ω : lim
k
|xk|pk = 0},

where p = (pk) is a sequence of striclty positive real numbers.

The concept of paranorm is closely related to linear metric spaces.It is a generalization of that

of absolute value.(see[12])

Let X be a linear space. A function g : X −→ R is called paranorm, if for all x,y,z ∈ X ,

(PI) g(x) = 0 i f x = θ ,

(P2) g(−x) = g(x),

(P3) g(x+ y)≤ g(x)+g(y),

(P4) If (λn) is a sequence of scalars with λn→ λ (n→ ∞) and xn,a ∈ X with xn→ a (n→ ∞) ,

in the sense that g(xn−a)→ 0 (n→ ∞) , in the sense that g(λnxn−λa)→ 0 (n→ ∞).

An Orlicz function is a function M : [0,∞)→ [0,∞), which is continuous, non-decreasing and

convex with M(0) = 0, M(x)> 0 for x > 0 and M(x)→ ∞ as x→ ∞.

Lindenstrauss and Tzafriri[9] used the idea of Orlicz functions to construct the sequence space

`M = {x ∈ ω :
∞

∑
k=1

M(
|xk|
ρ

)< ∞, for some ρ > 0}

The space `M is a Banach space with the norm

||x||= inf{ρ > 0 :
∞

∑
k=1

M(
|xk|
ρ

)≤ 1}

The space `M is closely related to the space `p which is an Orlicz sequence space with M(x)= xp

for 1≤ p < ∞.

An Orlicz function M is said to satisfy42 condition for all values of x if there exists a constant

K > 0 such that M(Lx)≤ KLM(x) for all values of L > 1.

A sequence space E is said to be solid or normal if (xk) ∈ E implies (αkxk) ∈ E for all sequence
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of scalars (αk) with |αk|< 1 for all k ∈ N.

For Orlicz function and related results see([2],[7],[15]).

Let σ be an injection on the set of positive integers N into itself having no finite orbits and T be

the operator defined on `∞ by T (xk) = (xσ(k)).

A positive linear functional Φ, with ||Φ||= 1, is called a σ -mean or an invariant mean if

Φ(x) = Φ(T x) for all x ∈ `∞.

A sequence x is said to be σ -convergent, denoted by x∈Vσ , if Φ(x) takes the same value, called

σ − limx, for all σ -means Φ. We have

Vσ = {x = (xk) :
∞

∑
m=1

tm,n(x) = L uniformly in n, L = σ − limx},

where for m≥ 0,n > 0.

tm,n(x) =
xk + xσ(k)+ .....+ xσm(k)

m+1
,and t−1,n = 0.

where σm(k) denotes the mth iterate of σ at n. In particular, if σ is the translation, a σ -mean is

often called a Banach limit and Vσ reduces to f, the set of almost convergent sequences.

Subsequently the spaces of invariant mean has been studied by various authors,

see( [1], [10], [13], [14], [16], [17]).

The idea of Difference sequence sets

X4 = {x = (xk) ∈ ω :4x = (xk− xk+1) ∈ X},

where X = `∞, c or c0 was introduced by Kizmaz [8].

Kizmaz [8] defined the sequence spaces,

`∞(4) = {x = (xk) ∈ ω : (4xk) ∈ `∞},

c(4) = {x = (xk) ∈ ω : (4xk) ∈ c},

c0(4) = {x = (xk) ∈ ω : (4xk) ∈ c0},
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where4x = (xk− xk+1). These are Banach spaces with the norm

||x||4 = |x1|+ ||4x||∞.

For difference sequences and related results see([3-5],[7]).

2. Main results

Recently Ebadullah[6] introduced and studied the sequence space

Vσ (M, p,r) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|tm,n(x)|
ρ

)]pm < ∞ uniformly in n, ρ > 0}.

Where M is an Orlicz function, p = (pm) is any sequence of strictly positive real numbers and

r ≥ 0 .

In this article we introduce the sequence space

Vσ (M, p,r,4) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|tm,n(4x)|
ρ

)]pm < ∞ uniformly in n, ρ > 0}.

Where M is an Orlicz function, p = (pm) is any sequence of strictly positive real numbers and

r ≥ 0 .

Now we define the sequence spaces as follows;

For M(x) = x we get

Vσ (p,r,4) = {x = (xk) :
∞

∑
m=1

1
mr |tm,n(4x)|pm < ∞ uniformly in n}

For pm = 1, for all m, we get

Vσ (M,r,4) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|tm,n(4x)|
ρ

)]< ∞ uniformly in n, ρ > 0}
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For r = 0 we get

Vσ (M, p,4) = {x = (xk) :
∞

∑
m=1

[M(
|tm,n(4x)|

ρ
)]pm < ∞ uniformly in n, ρ > 0}

For M(x) = x and r=0 we get

Vσ (p,4) = {x = (xk) :
∞

∑
m=1
|tm,n(4x)|pm < ∞ uniformly in n, ρ > 0}

For pk = 1, for all m and r=0, we get

Vσ (M,4) = {x = (xk) :
∞

∑
m=1

[M(
|tm,n(4x)|

ρ
)]< ∞ uniformly in n, ρ > 0}

For M(x) = x, pm = 1, for all m and r=0, we get

Vσ (4x) = {x = (xk) :
∞

∑
m=1
|tm,n(4x)|< ∞ uniformly in n}.

Theorem 2.1. The sequence space Vσ (M, p,r,4) is a linear space over the field C of complex

numbers.

Proof. Let x,y ∈Vσ (M, p,r,4) and α,β ∈C then there exists positive numbers ρ1 and ρ2 such

that

∞

∑
m=1

1
mr [M(

|tm,n(4x)|
ρ1

)]pm < ∞,

and
∞

∑
m=1

1
mr [M(

|tm,n(4y)|
ρ2

)]pm < ∞

uniformly in n.

Define ρ3 = max(2|α|ρ1, 2|β |ρ2).

Since M is non decreasing and convex we have

∞

∑
m=1

1
mr [M(

|αtm,n(4x)+β tm,n(4y)|
ρ3

)]pm
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≤
∞

∑
m=1

1
mr [M(

|αtm,n(4x)|
ρ3

+
|β tm,n(4y)|

ρ3
)]pm

≤
∞

∑
m=1

1
mr

1
2
[M(

tm,n(4x)
ρ1

)+M(
tm,n(4y)

ρ2
)]< ∞

uniformly in n.

This proves that Vσ (M, p,r,4) is a linear space over the field C of complex numbers.

Theorem 2.2. For any Orlicz function M and a bounded sequence p = (pm) of strictly positive

real numbers, Vσ (M, p,r,4) is a paranormed space with

g(x) = inf
n≥1
{ρ

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(4x)|
ρ

)]pm)
1
H ≤ 1, uniformly in n}

where H = max(1, suppm).

Proof. It is clear that g(4x) = g(−4x).

Since M(0) = 0, we get

inf{ρ
pm
H } = 0, for x = 0

Now for α=β=1, we get

g(4x+4y)≤ g(4x)+g(4y).

For the continuity of scalar multiplication let l 6= 0 be any complex number. Then by the defi-

nition we have

g(l4x) = inf
n≥1
{ρ

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(l4x)|
ρ

)]pm)
1
H ≤ 1, uniformly in n}

g(l4x) = inf
n≥1
{(|l|s)

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(l4x)|
(|l|s)

)]pm)
1
H ≤ 1, uniformly in n}



σ -CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY ORLICZ FUNCTION 7

where s = ρ

|l| .

Since |l|pm ≤ max(1,|l|H), we have

g(l4x)≤ max(1, |l|H) inf
n≥1
{s

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(4x)|
(|l|s)

)]pm)
1
H ≤ 1, uniformly in n}

g(4lx)≤ max(1, |l|H)g(4x)

Therefore g(4x) converges to zero when g(4x) converges to zero in Vσ (M, p,r,4).

Now let x be fixed element in Vσ (M, p,r,4). There exists ρ > 0 such that

g(4x) = inf
n≥1
{ρ

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(4x)|
ρ

)]pm)
1
H ≤ 1, uniformly in n}

.

Now

g(l4x) = inf
n≥1
{ρ

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(l4x)|
ρ

)]pm)
1
H ≤ 1, uniformly in n}→ 0 as l→ 0.

This completes the proof.

Theorem 2.3. The sequence space

Vσ (M, p,r,4) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|tm,n(4x)|
ρ

)]pm < ∞ uniformly in n, ρ > 0}.

is a Banach space with the norm

g(4x) = inf
n≥1
{ρ

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(4x)|
ρ

)]pm)
1
H ≤ 1}.

Theorem 2.4. Suppose that 0 < pm < tm < ∞ for each m ∈ N and r > 0. Then

(a) Vσ (M, p,4)⊆Vσ (M, t,4).
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(b) Vσ (M,4)⊆Vσ (M,r,4)

Proof.(a) Suppose that x ∈Vσ (M, p,4).

This implies that [M(
|ti,n(4x)|

ρ
)]pm)≤ 1

for sufficiently large value of i, say i≥ m0 for some fixed m0 ∈ N.

Since M is non decreasing, we have

∞

∑
m=m0

[M(
|ti,n(4x)|

ρ
)]tm ≤

∞

∑
m=m0

[M(
|ti,n(4x)|

ρ
)]pm < ∞.

Hence x ∈Vσ (M, t,4).

(b) The proof is trivial.

Corollary 2.5. 0 < pm ≤ 1 for each m, then Vσ (M, p,4)⊆Vσ (M,4)

If pm ≥ 1 for all m , then Vσ (M,4)⊆Vσ (M, p,4).

Theorem 2.6. The sequence space Vσ (M, p,r,4) is solid.

Proof. Let x ∈Vσ (M, p,r,4). This implies that

∞

∑
m=1

1
mr [M(

|tm,n(4x)|
ρ

)]pm < ∞.

Let αm be a sequence of scalars such that |αm| ≤ 1 for all m ∈ N. Then the result follows from

the following inequality.

∞

∑
m=1

1
mr [M(

|αmti,n(4x)|
ρ

)]pm ≤
∞

∑
m=1

1
mr [M(

|ti,n(4x)|
ρ

)]pm < ∞.

Hence αx ∈Vσ (M, p,r,4) for all sequence of scalars (αm) with |αm| ≤ 1 for all m ∈ N when-

ever x ∈Vσ (M, p,r,4).
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Corollary 2.7. The sequence space Vσ (M, p,r,4) is monotone.

Theorem 2.8. Let M1,M2 be Orlicz function satisfying42 condition and

r,r1,r2 ≥ 0. Then we have

(a) If r > 1 then Vσ (M1, p,r,4)⊆Vσ (M0M1, p,r,4),

(b) Vσ (M1, p,r,4)∩Vσ (M2, p,r,4)⊆Vσ (M1 +M2, p,r,4),

(c) If r1 ≤ r2 then Vσ (M, p,r1,4)⊆Vσ (M, p,r2,4).

Proof. (a) Since M is continuous at 0 from right, for ε > 0 there exists 0 < δ < 1 such that

0≤ c≤ δ implies M(c)< ε .

If we define

I1 = {m ∈ N : M1(
|tm,n(4x)|

ρ
)≤ δ for some ρ > 0},

I2 = {m ∈ N : M1(
|tm,n(4x)|

ρ
)> δ for some ρ > 0},

when

M1(
|tm,n(4x)|

ρ
)> δ

we get

M(M1(
|tm,n(4x)|

ρ
))≤ {2M(1)

δ
}M1(

|tm,n(4x)|
ρ

)

Hence for x ∈Vσ (M1, p,r,4) and r > 1

∞

∑
m=1

1
mr [M0M1(

|tm,n(4x)|
ρ

)]pm = ∑
m∈I1

1
mr [M0M1(

|tm,n(4x)|
ρ

)]pm + ∑
m∈I2

1
mr [M0M1(

|tm,n(4x)|
ρ

)]pm.

∞

∑
m=1

1
mr [M0M1(

|tm,n(4x)|
ρ

)]pm ≤ max(εh,εH)
∞

∑
m=1

1
mr +max({2M1

δ
}h,{2M1

δ
}H)
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where 0 < h = inf pm ≤ pm ≤ H = sup
m

pm < ∞

(b)The proof follows from the following inequality

1
mr [(M1 +M2)(

|tm,n(4x)|
ρ

)]pm ≤C
1

mr [M1(
|tm,n(4x)|

ρ
)]pm +C

1
mr [M2(

|tm,n(4x)|
ρ

)]pm

(c)The proof is straightforward.

Corollary 2.9. Let M be an Orlicz function satisfying42 condition. Then we have

(a) If r > 1 then Vσ (p,r,4)⊆Vσ (M, p,r,4),

(b) Vσ (M, p,4)⊆Vσ (M, p,r,4),

(c) Vσ (p,4)⊆Vσ (p,r,4),

(d) Vσ (M,4)⊆Vσ (M,r,4).

Proof. The proof is straightforward.
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