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Abstract. In 2014, Duan et al. proposed the generalized viscosity approximation method to obtain the strong

convergence theorem in the framework of Hilbert space. The purpose of this paper is to establish the convergence

of generalized Viscosity approximation method for nonexpansive mappings in Hadamard manifolds. Our theorem

improves and extends the results that have been proved in this direction for this important class of nonlinear

mappings.
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1. Introduction

Let M be Hadamard manifold and C be a nonempty subset of M. A mapping T : C→M is

called nonexpansive if for any x,y ∈C,

d(T (x),T (y))≤ d(x,y)
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Let us denote the fixed point set of T by

Fix(T ) = {x ∈C : T (x) = x}

If C ⊆ M is bounded, closed and convex and T is a nonexpansive mapping of C into itself,

then Fix(T ) is nonempty [11]. For approximation of fixed points of a nonexpansive mapping,

researchers use some methods. In fixed point theory, approximation methods have attracted

so much attention, since they are very powerful and important tools in the study of nonlinear

sciences.

Viscosity approximation method for nonexpansive mapping was introduced by Moudafi [22]

in 2000. He established strong convergence of both implicit and explicit schemes in a Hilbert

space. In 2004, Xu [33] extended Moudafi’s results [22] to the framework of uniformly smooth

Banach spaces and proved the strong convergence of iterative schemes. Many authors studied

the fixed point problems for nonexpansive mappings by the viscosity approximation methods

and obtained a series of good results [5, 14, 16, 25, 28, 34]. Over the last decades, Viscosity ap-

proximation methods have been applied to convex optimization, linear programming, monotone

inclusions, elliptic differential equations and so on.

In the last few years, several important concepts of nonlinear analysis and optimization prob-

lems have been extended from Euclidean space to a Riemannian manifold setting. In fact,

a manifold is not a linear space. In this setting the linear space is replaced by a Hadamard

manifold and the line segment by a geodesic (see [1, 2, 3, 4, 10, 12, 17, 19, 24, 26, 30, 31]).

There are lots of optimization problems arising in various applications which cannot be posed

in linear spaces and requires a Hadamard manifold structure for their formalization and study.

Some algorithms for solving variational inequalities and minimization problems have been ex-

tended from the Hilbert space framework to the more general setting of Riemannian manifolds

[6, 9, 18, 23, 29, 35]. Most of the extended methods require the Riemannian manifold to have

non-positive sectional curvature, i.e., a Hadamard manifold. Since the exponential map cannot

be defined in the whole tangent bundle, it is not invertible. Then we will focus in the case of

Hadamard manifolds, remarking the statements which remain true in Riemannian manifolds in

general.
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In 2014, Duan and He [8] proposed a generalized viscosity approximation method for non-

expansive mappings and obtained the following strong convergence theorem in the framework

of Hilbert space.

Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let { fn}

be a sequence of ρn-contractive self-maps of C with 0 ≤ ρl = liminf
n→∞

ρn ≤ limsup
n→∞

ρn ≤ ρu < 1.

Let S : C→C be a nonexpansive mapping. Assume the set Fix(S) 6= φ and { fn(x)} is uniformly

convergent for any x ∈ D, where D is any bounded subset of C. Given x1 ∈ C, let {xn} be

generated by the following algorithm:

xn+1 = αn fn(xn)+(1−αn)Sxn(1.1)

where the sequence {an} ⊂ (0,1) satisfies the following conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞

∑
n=1

αn = ∞;

(iii)
∞

∑
n=1
|αn+1−αn|< ∞.

Then the sequence {xn} defined by (1.1) converges strongly to a point x∗ ∈ Fix(S), which is also

the unique solution of the variational inequality

〈 f (x∗)− x∗, p− x∗〉 ≤ 0, ∀ p ∈ Fix(S)(1.2)

Recently, Jeong J.U. [13] proved some results using generalized viscosity approximation

methods for mixed equilibrium problems and fixed point problems. Motivated and inspired by

the works mentioned above, we study the generalized viscosity approximation method (1.1) for

nonexpansive mappings in the setting of Hadamard manifolds, i.e., complete simply connected

Riemannian manifolds of nonpositive sectional curvature. Also we show that the result proved

in this paper extends the corresponding results of Duan et al. [8] and Marquez [21].

2. Preliminaries

Let q ∈ M, where M is a connected n-dimensional Riemannian manifold. A Riemannian

manifold is a Riemannian metric 〈·, ·〉, with the corresponding norm denoted by ‖·‖. We denote
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the tangent space of M at q by TqM. We define the length of a piecewise smooth curve, c :

[x,y]→M joining q to r (i.e. c(x) = q and c(y) = r), by using the metric as L(c) =
∫ y

x ‖c′(t)‖dt.

Then the Riemannian distance d(q,r) is defined to be the minimal length over the set of all such

curves joining q to r, which induces the original topology on M.

Let c be a smooth curve and ∇ be the Levi-Civita connection associated to (M,〈 , 〉). A

smooth vector field X along c is said to be parallel if ∇c′X = 0. If c′ is parallel, then c is a

geodesic and here ‖c′‖ is a constant. A geodesic joining q to r in M is said to be minimal

geodesic if its length equals d(q,r). A geodesic triangle ∆(q1,q2,q3) of a Riemannian manifold

is a set consisting of three points q1, q2 and q3 and three minimal geodesic γi joining qi to qi+1,

with i = 1,2,3(mod3).

A Riemannian manifold is complete if for any q ∈ M, all geodesics emanating from q are

defined for all −∞ < t < ∞. By the Hopf-Rinow theorem we know that if M is complete then

any pair of points in M can be joined by a minimizing geodesic. Thus (M,d) is a complete

metric space, and bounded closed subsets are compact.

Now, the exponential map expq : TqM→M at q∈M is such that expq v= γν(1,q) for each v∈

TqM, where γ(·) = γν(·,q) is the geodesic starting at q with velocity v. Then expq tv = γν(t,q)

for each real number t. The above mentioned definitions and notations can be easily found in

[3, 10].

Defintion 2.1 ([27]). A complete simply connected Riemannian manifold of non-positive sec-

tional curvature is called a Hadamard Manifold.

Now, we present some basic results. We assume that M is a n-dimensional Hadamard mani-

fold.

Proposition 2.1 ([27]). Let q ∈ M. Then expq : TqM→ M is a diffeomorphism. For any two

points q,r ∈ M there exists a unique normalized geodesic joining q to r, which is in fact a

minimal geodesic. This result shows that M has the topology and differential structure similar to

Rn. Thus Hadamard manifolds and Euclidean spaces have some similar geometrical properties.

Proposition 2.2 (Comparison theorem for triangles, [27]). Let ∆(q1,q2,q3) be a geodesic tri-

angle. For each i = 1,2,3(mod 3), by γi : [0, li]→ M the geodesic joining qi to qi+1 and set
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li = L(γi),αi = ∠(γ ′i (0)− γ ′i−1(li−1)). Then

α1 +α2 +α3 ≤ π,

l2
i + l2

i+1−2lili+1 cosαi+1 ≤ l2
i−1 .(2.1)

In terms of the distance and the exponential map, the inequality (2.1) can be rewritten as

d2(qi,qi+1)+d2(qi+1,qi+2)−2〈exp−1
qi+1

qi,exp−1
qi+1

qi+2〉 ≤ d2(qi−1,qi),(2.2)

since

〈exp−1
qi+1

qi,exp−1
qi+1

qi+2〉= d(qi,qi+1)d(qi+1,qi+2)cosαi+1 .

Proposition 2.3 ([27]). A subset N ⊆ M is said to be convex if for any two points q and r in

N, the geodesic joining q to r is contained in N, i.e., if γ : [a,b]→ M is a geodesic such that

q = γ(a) and r = γ(b) then γ((1− t)a+ tb) ∈ N for all t ∈ [0,1]. From now N will denote a

nonempty, closed and convex set in M.

A real valued function f defined on M is said to be convex if for any geodesic γ of M, the

composition function f ◦ γ : R→ R is convex, that is,

( f ◦ γ)(ta+(1− t)b)≤ t( f ◦ γ)(a)+(1− t)( f ◦ γ)(b) for any a,b ∈ R and 0≤ t ≤ 1.

Proposition 2.4 ([27]). Let d : M×M→ R be a distance function. Then d is a convex function

with respect to the product Riemannian metric, i. e., given any pair of geodesics γ1 : [0,1]→M

and γ2 : [0,1]→M the following inequality holds for all t ∈ [0,1]:

d(γ1(t),γ2(t))≤ (1− t)d(γ1(0),γ2(0))+ td(γ1(1),γ2(1))

In particular, for each q ∈M, the function d(·,q) : M→ R is a convex function. Let PN denotes

the projection onto N defined by

PN(q) = {q0 ∈ N : d(q,q0)≤ d(q,r), for all r ∈ N} for all q ∈M .

Proposition 2.5 ([31]). For any point q ∈M, PN(q) is a singleton and the following inequality

holds for all r ∈ N

〈exp−1
PN(q)

q,exp−1
PN(q)

r〉 ≤ 0.
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Lemma 2.1 ([32]). Let {an} be a sequence of nonnegative real numbers satisfying the property

an+1 ≤ (1−αn)an +αnbn, n≥ 0,

where {αn}∞
n=0 ⊂ (0,1) and {bn}∞

n=0 be a sequence such that

(i) lim
n→∞

αn = 0 and
∞

∑
n=0

αn = ∞

(ii) either limsup
n→∞

bn ≤ 0 or
∞

∑
n=0
|αnbn|< ∞.

Then the sequence {an}∞
n=0 converges to zero.

3. Main Result

Theorem 3.1. Let C be a closed convex subset of Hadmard manifold M and let T : C → C

be a nonexpansive mapping such that F(T ) 6= φ . Let ψn : C→ C be ρn-contraction with 0 ≤

ρl = liminf
n→∞

ρn ≤ limsup
n→∞

ρn = ρu < 1. Suppose that {ψn(x)} is uniformly convergent for any

x ∈ A, where A is any bounded subset of C. If the sequence λn ⊂ (0,1) satisfies the following

conditions:

(i) lim
n→∞

λn = 0,
∞

∑
n=1

λn = ∞,

(ii)
∞

∑
n=1
|λn+1−λn|< ∞ and

(iii) lim
n→∞

(λn−λn−1)
λn

= 0.

Then the sequence {xn} generated by the algorithm

xn+1 = expψn(xn)((1−λn)exp−1
ψn(xn)

T (xn))(3.1)

converges strongly to x̄ ∈C, which is also the unique solution of the variational inequality

〈exp−1
x̄ ψ(x̄),exp−1

x̄ x〉 ≤ 0, ∀ x ∈ Fix(T ).(3.2)

The algorithm (3.1) is equivalent to xn+1 = γn(1− λn), ∀ n ≥ 0 where γn : [0,1]→ M is the

geodesic joining ψn(xn) to T (xn).

Proof. We first prove the boundedness of {xn}.
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For this, take x ∈ F(T ). Then, by the convexity of the distance function and nonexpansivity

of T , we have

d(xn+1,x)≤ d(γn(1−λn),x)

≤ λnd(ψn(xn),x)+(1−λn)d(xn,x)

≤ λnρnd(xn,x)+λnd(ψn(x),x)+(1−λn)d(xn,x)

≤ (1−λn(1−ρn))d(xn,x)+λn(1−ρn)
d(ψn(x),x)
(1−ρn)

≤max
{

d(xn,x),
1

1−ρn
d(ψn(x),x)

}
(3.3)

By mathematical induction, we have

d(xn+1,x)≤max
{

d(x0,x),
1

1−ρn
d(ψn(x),x)

}
(3.4)

which implies that {xn} is bounded, so {T (xn)} and {ψn(xn)} is bounded due to uniform con-

vergence of {ψn} on A. Next, we claim that

d(xn+1,xn)→ 0 as n→ ∞ .(3.5)

Due to boundedness of {xn}, we can choose a constant K such that

d(xn,xn−1)≤ K and d(ψn(xn),xn)≤ K for all n≥ 0(3.6)

d(xn+1,xn)≤ d(γn(1−λn),γn−1(1−λn−1))

≤ d(γn(1−λn),γn−1(1−λn))+d(γn−1(1−λn),γn−1(1−λn−1))

≤ λnd(ψn(xn),ψn(xn−1))+(1−λn)d(xn,xn−1)+ |λn−λn−1|d(ψn(xn−1),xn−1)

≤ (1−λn(1−ρn))d(xn,xn−1)+ |λn−λn−1|d(ψn(xn−1),(xn−1)(3.7)

By putting λn(1−ρn) = λ ∗n and combining (3.6) and (3.7), we obtain

d(xn+1,xn)≤ (1−λ
∗
n )d(xn,xn−1)+K(|λn−λn−1|)(3.8)

If assumption (iii) holds, consider αn = λ ∗n and bn =
K(|λn−λn−1|

λn
and using Lemma 2.1, we find

that (3.5) holds.
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Now if assumption (ii) holds, for k ≤ n we have

d(xn+1,xn)≤
n

∏
i=k

(1−λ
∗
i )d(xk,xk−1)+K

n

∏
i=k

(|λi−λi−1|)

≤ K
n

∏
i=k

(1−λ
∗
i )+K

n

∏
i=k

(|λi−λi−1|)

lim
n→∞

d(xn+1,xn)≤ K
∞

∏
i=k

(1−λ
∗
i )+K

∞

∏
i=k

(|λi−λi−1|)(3.9)

By assumptions (i) and (ii), we obtain, lim
n→∞

d(xn+1,xn) = 0.

Next we prove that

limsup
n→∞

〈exp−1
x̄ ψn(x̄),exp−1

x̄ xn)〉 ≤ 0(3.10)

where x̄ = PF(T )ψn(x̄) is a unique solution of the variational inequality (3.2).

It is proved above that {xn} and {ψn(xn)} are bounded, thus {〈exp−1
x̄ ψn(x̄),exp−1

x̄ xn〉} is

bounded; hence its upper limit exists. Thus we can find a subsequence {nk} of {n} such that

limsup
n→∞

〈exp−1
x̄ ψn(x̄),exp−1

x̄ xn〉= lim
k→∞
〈exp−1

x̄ ψn(x̄),exp−1
x̄ xnk〉(3.11)

Without loss of generality, we may assume that xnk→ x∗ for some x∗ ∈M, since {xn} is bounded.

Using the convexity of distance function, we have

d(xnk+1,T (xnk))≤ λnd(ψn(xnk),T (xnk)).

Since {d(ψn(xnk),T (xnk))} is bounded as {xn} and {ψn(xn)} are bounded.

By assumption (i) it follows that lim
k→∞

d(xnk+1,T (xnk)) = 0 as λnk → 0.

Now, by d(xnk ,T (xnk))≤ d(xnk+1,xnk)+d(xnk+1,T (xnk)), we get lim
n→∞

d(xnk ,T (xnk)) = 0.

Therefore

d(x∗,T (x∗))≤ d(x∗,xnk)+d(xnk ,T (xnk))+d(T (xnk),T (x
∗))→ 0

which shows that x∗ ∈ Fix(T ).

Then, since 〈exp−1
x̄ ψn(x̄),exp−1

x̄ x〉 ≤ 0 for any x ∈ Fix(T ), we obtain that

lim
k→∞
〈exp−1

x̄ ψn(x̄),exp−1
x̄ xnk〉= 〈exp−1

x̄ ψn(x̄),exp−1
x̄ x∗〉 ≤ 0(3.12)

Now combining (3.11) and (3.12), we obtain (3.10).
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Finally, we show that

lim
n→∞

d(xn, x̄) = 0.(3.13)

For this, consider the geodesic triangle ∆(q1,q2,q3) and its comparison triangle ∆(q1,q2,q3)⊂

R2. Fix n ≥ 0 and set q1 = ψn(xn), q2 = T (xn), q3 = x̄. So we can write (3.1) as xn+1 =

expq1
((1− λn)exp−1

q1
q2). The comparison point of xn+1 in R2 is x′n+1 = λnq′1 + (1− λn)q′2.

Then

d(ψn(xn), x̄) = d(q1,q3) = ‖q′1−q′3‖ and d(T (xn), x̄) = d(q2,q3) = ‖q′2−q′3‖.

Let θ and θ ′ denote the angles at q3 and q′3, respectively. Therefore θ ≤ θ ′ by Lemma 3.5(1)

[18, p. 547] and then cosθ ′ ≤ cosθ . Thus by Lemma 3.5(2) [18, p. 547], we have

d2(xn+1, x̄)≤ ‖x′n+1−q′3‖2

= ‖λn(q′1−q′3)+(1−λn)(q′2−q′3)‖2

= λ
2
n ‖q′1−q′3‖+(1−λn)

2‖q′2−q′3‖2 +2λn(1−λn)‖q′1−q′3‖‖q′2−q′3‖cosθ
′

≤ λ
2
n d2(ψn(xn), x̄)+(1−λn)

2d2(T (xn), x̄)+2λn(1−λn)d(ψn(xn), x̄)d(T (xn), x̄)cosθ

≤ λ
2
n d2(ψn(xn), x̄)+(1−λn)

2d2(xn, x̄)+2λn(1−λn)d(ψn(xn), x̄)d(xn, x̄)cosθ

≤ λ
2
n d2(ψn(xn), x̄)+(1−λn)

2d2(xn, x̄)

+2λn(1−λn)(d(ψn(xn),ψn(x̄))+d((ψn(x̄),(x̄)))d(xn, x̄)cosθ

≤ λ
2
n d2(ψn(xn), x̄)+(1−λn)

2d2(xn, x̄)

+2λn(1−λn)(〈exp−1
x̄ ψn(x̄),exp−1

x̄ xn〉+ρnd2(xn, x̄))

≤ λ
2
n d2(ψn(xn), x̄)+ [(1−λn)

2

+2λn(1−λn)ρn]d2(xn, x̄))+2λn(1−λn)(〈exp−1
x̄ ψn(x̄),exp−1

x̄ xn〉)

= (1−2λn +λ
2
n +2λn(1−λn)ρn)d2(xn, x̄)+λ

2
n d2(ψn(xn), x̄)

+2λn(1−λn)(〈exp−1
x̄ ψn(x̄),exp−1

x̄ xn〉)

= (1−αn)d2(xn, x̄)+αnβn

where βn =
1

αn
(λ 2

n d2(ψn(xn), x̄)+2λn(1−λn)(〈exp−1
x̄ ψn(x̄),exp−1

x̄ xn〉))
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and αn = 2λn +λ 2
n +2λn(1−λn)ρn.

Now using given hypothesis (i) and (3.12), lim
n→∞

βn ≤ 0 and lim
n→∞

αn = 0. Also, by hypothesis

(ii), we obtain
∞

∑
n=0

αn = ∞. Thus applying Lemma 2.1, (3.13) holds.

Remark 3.1. In [21], the convergence of the following viscosity approximation method was

proved in the setting of Hadamard Manifold:

xn+1 = expψ(xn)((1−αn)exp−1
ψ(xn)

T (xn))), ∀ n≥ 0(3.14)

where γn : [0,1]→ M is the geodesic joining ψ(xn) to T (xn) and ψ is a contraction mapping

on C.

In this paper, when we take ψ1 = ψ2 = ψ3 = . . . = ψn = . . . = ψ , ∀ n ∈ N, we casethat is a

special case of (3.1).

Remark 3.2 ([20]). Halpern’s iteration method

xn+1 = expu((1−αn)exp−1
u T (xn)), ∀ n≥ 0

is also a special case of (3.1) when ψ1 = ψ2 = ψ3 = . . .= ψn = . . .= u, ∀ n ∈ N.
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