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Abstract: Natural convective flow past a vertical cone maintained at non-uniform surface temperature in presence 

of heat generation and magnetic field is considered. The governing boundary layer equations are first transformed 

into a non-dimensional form and the resulting nonlinear system of partial differential equations are then solved 

numerically using the finite difference method. The results of the surface shear stress in terms of local skin friction 

and rate of heat transfer in terms of local Nusselt number, velocity distribution as well as temperature distribution 

are shown graphically for a selection of parameter sets consisting of the surface temperature gradient n, Prandtl 

numbers Pr, the heat generation parameter Q and the magnetic parameter M. 
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1. INTRODUCTION 

              Natural convection flow and heat transfer problems are of important consideration in the 

thermal design of a variety of industrial equipment and also in nuclear reactors, geo-physical 

fluid dynamics. When a heated surface is in contact with the fluid, the result of temperature 

difference causes buoyancy force, which induces natural convection heat transfer. Merk and 

Prins [1-2] developed the general relations for similar solutions on isothermal axisymmetric 

forms and showed that the vertical cone has such a solution. Approximate boundary layer 

techniques were utilized to arrive at an expression for dimensionless heat transfer. Similarity 

solution for natural convection from the vertical cone has been exhausted by Hering and Grosh 
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[3]. They showed that the similarity solutions to the boundary layer equations for a cone exist 

when the wall temperature distribution is a power function of distance along a cone ray. Later 

Hering [4] extended the analysis to investigate for low Prandtl number fluids. On the other hand 

Roy [5] has studied the same problem for high values of Prandtl number. Further, Pop and 

Takhar [6] have studied the compressibility effects in laminar free convection from a vertical 

cone, while Hossain and Paul [7], [8] have considered the effect of suction and injection when 

the cone surface is permeable. 

The effect of slenderness on the natural convection flow over a slender frustum of a cone 

has studied.  The problem of natural convection flow over a frustum of a cone without traverse 

curvature effect has been treated in the literature, even though the problem for a full cone has 

been considered quite extensively. On the other hand, the overall heat transfer in laminar natural 

convection flow from a vertical cone by using the integral method has investigated. 

A study of the flow in presence of a magnetic field is important from the technical point 

of view, and such types of problems have received much attention by many researchers. Kuiken 

[9] studied the problem of MHD natural convection in a strong cross-field. Chowdhury and 

Islam [10] investigated MHD natural convection flow of visco-elastic fluid past an infinite 

porous plate. Hydromagnetic convection from a cone and a wedge with variable surface 

temperature and internal heat generation or absorption were studied. Hossain [11] introduced the 

viscous and joule heating effects on MHD-natural convection flow with variable plate 

temperature. Moreover, Hossain etal. [12-13] discussed both forced and natural convection 

boundary layer flow of an electrically conducting fluid in presence of magnetic field. 

A large number of physical phenomena involve natural convection driven by heat 

generation. The study of heat generation in moving fluids is important in view of several 

physical problems such as those dealing with chemical reactions and those concerned with 

dissociating fluids. The heat transfer characteristics in the laminar boundary layer of a viscous 

fluid over a linearly stretching continuous surface have been studied with viscous dissipation or 

frictional heating and internal heat generation. In this study they considered that the volumetric 

rate of heat generation q'''[W/m3], should be 
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where Q0is the heat generation constant. Hossain et al. [13] also discussed the problem of natural 

convection flow along a vertical wavy surface with uniform surface temperature in presence of 

heat generation. Following [13], Molla et al. [14], [15] investigated the natural convection with 

heat generation along a uniformly heated horizontal circular cylinder, and sphere, respectively.  

The present work considers the natural convection boundary layer flow past a vertical cone 

with uniform surface temperature in presence of magnetic field and heat generation. The 

governing partial differential equations are reduced to partial differential equation, under the 

usual Boissinesq approximation. The transformed boundary layer equations are solved 

numerically by using finite difference method. Solutions are presented in terms of Prandtl 

numbers, different values of surface temperature gradient for the values of magnetic parameters 

with the heat generation parameters. 

 

2. MATHEMATICAL FORMALISM 

A steady two-dimensional laminar natural convection flow past a non-isothermal vertical 

permeable cone with variable surface temperature in presence of heat generation and magnetic 

field is considered. The effect of viscous dissipation on thermal boundary layer is neglected. The 

physical coordinates (x, y) are chosen such that x is measured from the leading edge, O, in the 

stream wide direction and y is measured normal to the surface of the cone. The co-ordinate 

system and flow configuration are shown in Fig: 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Physical model and coordinate system 
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Under the Boussinesq and boundary layer approximations, the governing equations for 

mass continuity, momentum and energy take the following forms: 
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Boundary conditions for the equations (1) to (3) are 
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(5) 

where u, v are the fluid velocity components in the x- and y-directions, respectively, ,



 is 

the kinematic coefficient of viscosity, g is the acceleration due to gravity, β is the coefficient of 

thermal expansion, α is the thermal diffusivity, γ is the cone apex half-angle, ρ is the 

density,
pC is the specific heat at constant pressure, 0 is the electrical conduction, 

0牋 is the 

strength of the magnetic field and T is the temperature of the fluid. Here, V represents the 

transpiration velocity of the fluid through the surface of the cone.  T
is the ambient fluid 

temperature,
wT  is the surface temperature with

wT T . When V is positive, it stands for suction 

or withdrawal and V is negative for injection or blowing of fluid through the surface of the cone. 

In this investigation we have considered only suction case and therefore, V is taken as positive 

throughout. The amount of heat generated or absorbed per unit volume is,  0Q T T ,
0Q  being 

a constant, which may take either positive or negative. The source term represents the heat 

generation when 
0 0Q   and the heat absorption when

0 0Q  .To make the above equations 

dimensionless, we introduce the new variable follows as 
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where 
xGr is the local Grashof number,  θ is the non-dimensional temperature,  is the stream 

function defined by 
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Finally, the functions  ,f   and  ,   are, respectively, the dimensionless stream 

function and the temperature function of the fluid in the boundary-layer region. 

Substituting the transformations given in (6) into (1) to (4), we obtained the following 

ordinary differential equations, 
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The corresponding boundary conditions to be satisfied by are as given below 
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In the above equations primes denote differentiation with respect to   

In practical applications, the physical quantities of principal interest are the shearing 

stress and the rate of heat transfer in terms of skin-friction co-efficient
fxC and
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0

w

y

u

y
 



 
  

 

and

0

w

y

T
q

y




 
   

 

 (13) 

are respectively, the shear-stress and rate of heat flux at the surface and 1
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Using transformation (6) in the above expressions for expressions for
fxC  and

XNu  take 

the following form: 
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2.1. Finite Difference Method: 

     In the present analysis, we shall employ an efficient solution technique, known as implicit 

finite difference method together with Keller-box elimination technique, which is well-

documented and widely used by Keller [16] and Cebeci [17] and also by Hossain et al. [13], 

Hossain and Paul[7], [8] etc. 

To apply the finite difference method, we first convert the equations (8) to (11) into the 

following system of first order equations with dependent variables u (ξ, η), v (ξ, η) and p (ξ, η) 
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' 0, 1f f       at   0    

(22) 
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Here n and j are just sequence of numbers on the (ξ, η) plane, nk and
jh  be the variable mesh 

widths. 

 

Fig: 2.Net rectangle of the difference approximation 
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equations (16) to (21) using central difference quotients and average about the mid-point to 

obtained 
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The boundary conditions becomes 
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If we assume that 1 1 1 1, , ,n n n n
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The coefficients of the momentum equation are 
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The boundary conditions becomes 

0 0 00, 0, 0,f u p     0, 0j ju    (71) 

which just express the requirement for the boundary conditions to remain during the iteration 

process. 

Now the system of linear equation (45) to (54) together with the boundary conditions (71) 

can be written in a block-matrix form a coefficient matrix, which are solved by using modified 

‘Keller Box’ methods specially introduced by Keller [16]. Later this method has been used most 
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efficiently by Cebeci and Bradshaw [17], Hossain and Paul [7], [8], Hossain [11] and Hossain et 

al. [13], taking the initial iteration to be given by convergent solution at
1j   . To initiate the 

process with ξ= 0, we first prescribe the initial profiles for the functions u, v and p from the exact 

solutions. Here 
j  are chosen so that the outer boundary 10e   and were sufficiently dense in 

the vicinity of the boundary layer. In the present integration scheme maximum values of ξ has 

been accounted till the asymptotic scheme maximum values of ξ has been accounted till the 

asymptotic values for the local skin friction as well as for the surface temperature number are 

reached. 

3. RESULTS AND DISCUSSION 

In this work, we have investigatedthe magnetohydrodynamic natural convection flow on a 

vertical circular cone with non-uniform surface temperature in presence of heat generation. The 

solutions obtained by solving the momentum and energy equations employing the finite 

difference method. The results are presented in terms of the local skin friction, local Nusselt 

number, velocity profile and temperature profile.  

Solutions are obtained for different values of Prandtl numbers and different values of surface 

temperature gradient for a wide range of values of magnetic parameterswith the heat generation 

parameters. 

Table 1: Comparison of the present numerical values of ''f and – for Pr = 0.1 and n = 0.5 

while Q = 0, M = 0 with the results obtained by Hossain and Paul [8] 

 '' ,0f    ? 0   

ξ =0.0 ξ =4.0 ξ =10.0 ξ =0.0 ξ =4.0 ξ =10.0 

1.01332* 

1.01350 

1.66712* 

1.67292 

0.97304* 

0.98585 

0.24584* 

0.24584 

0.47828* 

0.47697 

1.01145* 

1.00903 

*represents the values from Hossain and Paul[8]. 

The results of this above mentioned method for the numerical values of local skin friction and 

local Nusselt number agaist ξare depictedin tabular form in table: 1 forPr = 0.1 and n = 0.5 while 

Q = 0, M = 0.  
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Now we shall give our attention to the effect of pertinent parameters i.e. Pr, n, Q, M on 

the dimensionless velocity profile  
1

2, x

ux
f Gr 




  and temperature 

profile,  ,
w

T T

T T
   







, in the flow field, computed by finite difference method. 

 

 

 

 

 

 

 

 

 

Fig.3. Velocity distribution (a) and temperature distribution (b) against   for Pr = 0.1, 0.2, 0.3 

and ξ= 0.0, 3.0, 8.0 while n = 0.1, Q = 0.2, M = 0.2. 
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Fig.4. Velocity distribution (a) and temperature distribution (b) against   for n = 0.0, 0.5, 

1.0 and ξ= 0.0, 3.0, 5.0 while Pr = 0.1, Q = 0.0, M = 0.2 
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Fig.5. Velocity distribution (a) and temperature distribution (b) against for Q = 0.0, 0.5, 1.0 and 

ξ= 0.0, 4.0, 8.0 while Pr = 0.1, n = 0.5, M = 0.2. 

 

 

 

 

 

 

 

 

 

 

Fig.6. Velocity distribution (a) and temperature distribution (b) against  for M = 0.0, 0.1, 0.2 

and ξ= 0.0, 3.0, 5.0 while Pr = 0.1, n = 0.5, Q = 0.2. 
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0.20134 for Pr = 0.3 and they are 0.44427, 0.17360 and 0.03437, respectively. From Fig: 3(b) it 

can be seen that the temperature profile decreases owing to the increase in the suction parameterξ. 

In addition, we see from Fig: 3 that both the velocity and temperature profiles decrease as the 

value of Pr increases. We further observe that at a given value of Pr, both the momentum and 

thermal boundary-layer thickness decreases with the increasing values ofξ. 

From figure 4 we see that when the surface temperature gradient, n, increases, both the 

velocity and temperature profiles decrease. We further observed that both the value of velocity 

and temperature decrease as the suction parameter, ξ, increases. From fig: 4, we also see that for 

larger values ofξ , the velocity and temperature profile come closures for different values of n. 

From these we conclude that, both the momentum and thermal boundary-layer thickness 

decrease with the increasing values ofξ. 

Figure 5 shows that if the heat generation parameter increases, both the velocity and 

temperature profiles increase. We further observed that both the value of velocity and 

temperature decrease as thesuction parameter,ξ, increases. As Q increases, the velocity gradient 

at the surface increases, which enhance the fluid velocity. On the other hand, when Q increases, 

fluid temperature also gradually increases. 

The figure6 shows that when the magnetic parameter M increases, the velocity profile 

decreases but the temperature profile increases. But near the surface of the cone the velocity 

increases and then decreases slowly and finally approaches zero according to outer boundary 

condition. We further noticed that both the value of velocity and temperature decrease as the 

suction parameter, ξ, increases. 

 

4. CONCLUSIONS 

MHD natural convection flow from a vertical circular cone with heat generation has been 

investigated here numerically. The governing boundary layer equation are transformed into a 

non-dimensional form and the resulting non-linear systems of partial differential equations are 

reduced to local non-similarity boundary layer equations, which are solved numerically by using 

finite difference method. From the present investigation the following conclusions may be drawn: 

 Both the velocity and temperature profiles decrease gradually when the values of Prandtl 

number increases within the boundary layer region. 
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 For increased values of surface temperature gradient, n, both the velocity and temperature 

profiles decrease slightly. 

 For increasing values of heat generation parameter, Q, both the velocity and temperature 

profiles increase gradually. 

 An increase in the values of magnetic parameter, M,  the velocity profile decreases 

slightly for increasing values of magnetic parameter, M, whereas the temperature profile 

increases. 
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