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Abstract. In this paper, we describe a new approach for extracting thin nets in 2−D grey-level images. The key

point is to model thin nets as the crest lines of the image surface. Crest lines are the lines where one of the two

principal curvatures is locally extremal. We define these lines using first, second and third derivatives of the image.

We compute the image derivatives using recursive filters approximating the Gaussian filter and its derivatives. This

paper presents an algorithm to extract thin nets from 2−D images and we apply this method to the extraction of

roads in satellite images.
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1. Introduction

In many images, Thin Nets (TN) correspond to important features [12, 13]. For instance,

in aerial and medical images, TN are attached respectively to roads and blood vessels. TN

are formed by the points where the grey-level is locally extremum in a given direction. This

direction is the normal to the curve traced by the TN at this point. Classical edge detection
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algorithms [4, 9, 10, 15, 27] are not able to detect TN. In this paper, we propose a new method

to detect TN using differential geometry.

The authors in [1, 2, 3, 4, 6] provided a new approach to extract ridges (as local maximum)

and ravines (as local minimum) in images by the gradient, Hessian matrix and its derivatives

of this images, and they provided a new approach in [24], a new algorithm in [7] to extract

height ridges (generalized local maximum) in 2-D images and [25] provide generalized of this

algorithm in n-D Riemannian geometry.

An important point of our approach in this paper is the ability to identify TN by crest lines

on the surface defined by the image [22]. We use the definition of crest lines proposed in [19]

for 3−D volumic images, i.e. the points where the maximum curvature is maximum along the

maximum principal curvature direction. In the present case, we come up with different expres-

sions of the surface differential properties, using partial derivatives of the 2−D images. The

principal curvatures and principal directions of the surface defined by the image are expressed

using first and second order partial derivatives of this image. These are the same as those given

in reference [22]. We propose a new criterion which uses, in addition to the first and second

order partial derivatives, a third partial derivative for characterizing the crest points. We stress

that this criterion is different from the one proposed in [19] for 3−D volumic images, although

it characterizes the same differential property. To compute the partial derivatives, we use an ex-

tension to the third order of the recursive filters approximating the Gaussian and its derivatives

[11, 18]. We have tested this method on satellite data in which TN correspond to roads. The

quality of the results obtained clearly shows the flexibility and the pertinence of our approach.

2. Computing partial derivatives of a 2-D image using the Gaussian filter
and its derivatives

Let I(x,y) be a 2−D image. We look for the partial derivatives of I(x,y) using the following

formula :

Ixmyp =
∂ n(I(x,y))

∂xm∂yp , n = m+ p. (2.1)

Here, we use the subscript notation Ixmyp to indicate for the derivative orders. If

g(x,y) = g1(x)g2(y) is the impulse response of a smoothing filter, the restored image Ir is equal
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to I ∗g, where ∗ is the 2−D convolution product. Typically, when the properties of the convo-

lution product are used, we obtain :

∂ nIr

∂xm∂yp =
∂ n(I ∗g)
∂xm∂yp = I ∗ ( ∂ ng

∂xm∂yp ) (2.2)

where, the impulse response of the filter which computes Ixmyp can be defined by : ∂ ng
∂xm∂yp .

Using the separability property, we use the Gaussian smoothing filter and its derivatives up to

the third order described in [20] to compute the derivatives of a 2−D image. We use these filters

because all the results of the forthcoming algorithms strongly depend on the way for which the

partial derivatives are computed. We come up with the following algorithm for computing
∂ nI

∂xm∂yp , m+ p≤ 3 [13] :

f or (m, p)such that (m+ p)≤ 3do

 Ixm = I ∗gm(x)

Ixmyp = Ixm ∗gp(y)

where the convolution products are implemented using the recursive filters. In the next section,

we estimate first, second and third-order partial derivatives which estimate using this algorithm.

Lemma 2.1. In digital image processing, convolutional filtering [16, 23] plays an important

role in many important algorithms in edge detection and related processes.

3. Using differential properties of the image surface to extract the TN

3.1. TN and crest lines of an image surface

In the grey level images, the Thin Nets (TN) are formed by the points where the luminance

is locally extremum in a given direction. This direction is the normal to the curve traced by the

TN at this point. Classical edge models [4, 5, 9, 10, 15, 27] are not able to characterize TN.

One way to tackle this problem is to define TN, using the differential properties of the image

surface I(x,y) which defines a regular surface in the Mong form (x,y, I(x,y)). Some work on

corner and vertex detection [14, 21] use the same paradigm. We use the definition of crest

lines proposed in [20] for 3−D volumic images, i.e. the points where the maximal curvature

is locally maximal in the corresponding principal direction. These lines can be characterized

as the zero-crossings of a coefficient, noted em, which they called extremality. the vector em
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is the directional derivative of the maximum principal curvature (DMC) in the corresponding

principal direction defined by em = ∇κmax · tmax, where · means the scalar product. We use

this expression (em = 0) in order to extract TN, but our explicit equation of em is completely

different because it must be obtained from a 3−D surface defined by a 2−D image.

We can also extract the TN by the zero-crossings of

DDI = ∇I(x,y) · tmax , where DDI is the directional derivative of the 2-D grey-level image func-

tion I(x,y) in direction tmax. The explicit expression of DDI shows that DDI can be computed

directly from the first and second derivatives of the image which an interesting aspect of this

method. But unfortunately, the quality of the results obtained by this algorithm is not accept-

able for various reasons including noise. Moreover conceptually speaking, this method does

not stem from the differential geometry properties of the surfaces. This is why we have chosen

em = 0 using the third derivative of the image.

3.2 From partial derivatives to crest lines of an image surface

3.2.1 Computing the directional Derivative of the Maximum principal Curvature (DMC)

Let us consider the surface S(x,y) associated to the grey-level intensity of a 2−D image

I(x,y) described by the Mong form S(x,y) = (x,y, I(x,y))t .

We define the tangent plane ST (x,y) = {Sx,Sy} of the surface S(x,y) at each point P by :

Sx = (
∂S
∂x

) = (1,0, Ix)
t , Sy = (

∂S
∂y

) = (0,1, Iy)
t (3.1)

and we have

Sxx = (0,0, Ixx)
t , Sxy = (0,0, Ixy)

t , Syy = (0,0, Iyy)
t (3.2)

The first and second fundamental quantities gαβ and Lαβ respectively, can be used to compute

the two principal curvatures and two principal directions at each point P of the surface S(x,y)

[8] as the following

gxx = 1+ I2
x , gxy = IxIy, gyy = 1+ I2

y , g = Det(gαβ ) = 1+ I2
x + I2

y

gxx =
gyy

g
=

1+ I2
y

g
, gxy =

−gxy

g
=
−IxIy

g
, gyy =

gxx

g
=

1+ I2
x

g

(3.3)
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Lxx =
Ixx√

g
, Lxy =

Ixy√
g
, Lyy =

Iyy√
g
, L = Det(Lαβ ) =

1
g
[IxxIyy− I2

xy] (3.4)

where N =
Sx∧Sy√

g = 1√
g(−Ix,−Iy,1).

By definition, κg = κ1κ2 is the Gaussian curvature and κm = 1
2(κ1+κ2) is the mean curvature

at each point of the surface S(x,y). Therefore, the expressions of κg and κm can be given by the

following forms:

κg =
L
g
=

1
g2 (IxxIyy− I2

xy)

κm =
1
2

gαβ Lαβ =
1

2g
3
2
(Ixx−2IxIxyIy + IxxI2

y + Iyy + IyyI2
x )

(3.5)

Finally, the principal curvatures κ1 and κ2 are the solutions the equation given as follows:

K2−2kmK + km = 0

κ1,2 = κm±
√

κ2
m−κg (3.6)

The explicit expression can be written as (using (3.5)):

κ1,2 =[Ixx−2IxIxyIy + IxxI2
y + Iyy + IyyI2

x ± (I2
xx +4I2

xy−2IxxIyy +4I2
x I2

xy+

I4
x I2

yy−2IxxI2
y Iyy−4IxIxxIxyI3

y −2I2
x IxxIyy−4IxIxyIyIyy +2I2

xxI2
y+

4I2
xyI2

y + I2
xxI4

y + I2
yy +2I2

x I2
yy−4I3

x IxyIyIyy−4IxIxxIxyIy +2I2
x IxxI2

y Iyy+

4I2
x I2

xyI2
y )

1/2]/(1+ I2
x + I2

y )
3/2

(3.7)

The expressions of κ1 or κ2 show that the principal curvatures of a surface can be computed

directly from the first and second derivatives of the image. Once κ1 and κ2 are computed, the

principal directions t1 and t2, which are the two eigenvectors of the matrix (Lαβ gαβ ), may be

represented in the basis {Sx,Sy} of the tangent space to the image with the two vectors

ti =
1

g3/2

 Ixy + I2
y Ixy− IxIyIyy

g3/2κi− (Ixx + I2
y Ixx− IxIyIxy)

 , i = 1,2.

Let κmax = κ1 be the maximum curvature in absolute value (|κ1| ≥ |κ2|) and also tmax = t1.

The gradient of κmax in the associated direction tmax , called the directional derivative of the

maximum curvature (DMC), is given by :

DMC = ∇κmax · tmax = ∇κmax ttr
max (3.8)
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where

∇κmax =

 ∂κmax
∂x

∂κmax
∂y

 , tmax =

 ξ

κmax−ζ

 , ξ =
Ixy + I2

y Ixy− IxIyIyy

g3/2 ,

ζ =
Ixx + I2

y Ixx− IxIyIxy

g3/2 and tr means the matrix transpose.

The expression of DMC can also be written as

DMC = (
∂κmax

∂x
)ξ +(

∂κmax

∂y
)(κmax−ζ ) (3.9)

The expression of the DMC shows that the directional derivative of the maximum principal

curvature at each point of the surface can be computed directly from the first, second and third

derivatives of the image. Once the DMC is computed, we extract the points where the DMC=0

(the zero-crossings of the DMC).

3.2.2. Extraction of the zero-crossings of the DMC

Here, we present how to extract the zero-crossings of the computed DMC, in the previous

section. Theoretically, the absolute value of the DMC is invariant but its sign depends on the

orientation of the vectors t1 and t2. That is one reason why Thirion [26] introduced the Gaussian

extremality which is an Euclidean invariant but having a different geometrical meaning than

crest lines. However, in our case, assuming that (N, t1, t2) is always a direct orthogonal frame,

where N is the surface unit normal, we can ensure the coherence of the orientation of tmax.

Therefore, the zero-crossings of the DMC can be characterized, in most cases, as the points

where the sign of the DMC changes.

Using the expression 3.9 and separating the flat and umbilical points (the points which κ1 =

κ2 = 0 and κ1 = κ2 6= 0 respectively) [8], we compute the DMC image. The sign image (Sdmc)

can be built from the DMC image as follows : Sdmc = 1 if DMC >0

Sdmc = 0 if DMC ≤0
(3.10)

The zero-crossings of the DMC are the transitions 0 ↑ 1 and 1 ↓ 0. We select the zero-crossings

of the DMC such that the maximum curvature κmax is greater than a given positive threshold
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and remove in image obtained the points where κmax is smaller than the other one. This thresh-

olding image allows us to remove the valley points having one principal curvature which is

negative with a high absolute value and the other having a small value near zero. Moreover,

this thresholding stage yields to hold only the points where the maximum curvature is locally

maximum (the zero-crossings of the DMC correspond to both the maximum and the minimum

of the maximum curvature).

4. Algorithms

The proposed extraction algorithm of TN can be split as follows :

(1) Computation of the partial derivatives of the image I(x,y) up to 3d order. We estimate

these derivatives using a recursive Gaussian filter and its derivatives [11, 20].

(2) Computation of the two principal curvatures κ1, κ2, as well as the two principal direc-

tions t1, t2.

(3) Separating the flat and umbilic points and for the other points:

i f |κ1|> |κ2| do κmax = κ1, tmax = t1

else do κmax = κ2, tmax = t2

end.

DMC = ∇κmax · tmax

(3.10)

(4) Extraction of the zero-crossings of the DMC.

5. Experimental results

In this section, we discuss some experimental results obtained on synthetic and real data in

order to extract the TN. We illustrate the results on synthetic data in Fig.(1) and Fig. (2). In

Fig.(1a), we have added a Gaussian noise to picture representing circle and a form hexagonal in

grey-level. This is done in order to make complicated noisy data. Fig.(1b), present the results

of the edge detection with a Gaussian filter [10] of the original image. This image show that a

classic edge detection algorithm is not able to detect TN picture.
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(A) Original image with Gaussian noise. (B) Edge detection by Gaussian filter.

FIGURE 1. Edge detection

Fig. (2) is the results of our extraction algorithm of TN for two values of the threshold, which

we illustrate the extraction of these thin nets.

(A) Extraction of TN. Threshold =0.5 (B) Extraction of TN. Threshold =0.8

FIGURE 2. Extraction of TN by our algorithm.

We have also compared in Figs.(2a) and Figs. (2b) the response fidelity of our method using

two pictures in which edge detection and TN are presented. The ability to successfully extract

the thin net yet exclude the edge detection shows the pertinence and fidelity of the TN extraction

algorithm.
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Fig.(3) to Fig.(5) present the results of our algorithm on satellite data. For these images, we

have extracted the zero-crossings of the DMC image and have thresholded with κmax image.

(A) Satellite Image of the roads. (B) Extraction of TN

FIGURE 3. Extraction of TN for Satellite Image

(A) Satellite Image (B) Extraction of TN

FIGURE 4. Extraction of TN by our algorithm.
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(A) Image of Dubai City (B) Extraction of TN

FIGURE 5. Dubai City.
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