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Abstract. In this article we introduce a newely defined function φ
2
G(β ) that represents the order of the second

group of units of the ring R = Z[i]/ < β >. We examine some of the properties of this function that are similar to

that of the Euler Phi function φ(n).
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1. Introduction

The Euler Phi function, φ(n), has been generalized through different approaches and was stud-

ied in many domains. In 1983, J.T Cross [1], extended the defintion of the Euler Phi function

to the domain of Gaussian integers Z[i], where φ G(β ) represents the order of the group of units

of the ring Z[i]/ < β > where β is a non zero Gaussian integer. That is φ G(β ) = |U(β )|.

Cross gave a complete charecterization for the group of units ΦG(β ) as shown in the following

theorem.
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Theorem 1.1.

(1) U (πn)∼= Zqn−qn−1.

(2) U(pn)∼= Zpn−1×Zpn−1×Zp2−1.

(3) U(1+ i)∼= Z1.

(4) U((1+ i)2)∼= Z2.

(5) U((1+ i)n)∼= Z2m−1×Z2m−2×Z4 if n = 2m.

(6) U((1+ i)n)∼= Z2m−1×Z2m−1×Z4 if n = 2m+1.

In 2006, a generalization for the group of units of any finite commutative ring with identity

was introduced by El -Kassar and Chehade [2]. They proved that the group of units of a commu-

tative ring R with identity, U(R), supports a ring structure and this made it possible to define the

second group of units of R as U2(R) =U(U(R)). Extending this definition to the kth level, the

kth group of units is defined as Uk(R) =U(Uk−1(R)). This generalization allowed to formulate

a new generalization to the Euler Phi function that represents the order of the generalized group

of units of the ring R and is denoted by φ
k(R). In [4], Assaf gave an explicit formula, φ

2(R), for

the order of the second group of units in the domain of integers.

In this paper, we introduce a newly defined function, φ
2
G(β ), the order of the second group

of units U2(β ) = Φ2
G(β ) of the ring Z[i]/ < β > .

Below we state two theorems that were discussed in [2].

Theorem 1.2. If a group (G,∗) is isomorphic to the additive group of a ring (R,+, .), then there

is an operation ⊗ on G such that (G,∗,⊗) is a ring isomorphic to (R,+, .).

Theorem 1.3. If R∼= R1⊕R2⊕ ...⊕Ri, then the group of units U(R) and U(R1)×U(R2)× ...×

U(Ri) are isomorphic.

In [4], Assaf gave the definition of the second group of units in the domain of integers and

listed some related properties.

Throughout this paper,

• n is a positive integer.

• α = 1+ i.
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• β and γ always denote any non- zero, non unit Gaussian integers.

• p and p j always denote prime integers that are congruent to 3 modulo 4.

• π and π j always denote Gaussian prime integers of the form a+ bi where a and b are

non zero integers.

• q = ππ = a2 +b2.

• q and q j always denote prime integers that are congruent to 1 modulo 4.

2. Definition of φ
2
G(β )

In this section, we define the new function φ
2
G(β ) and prove its multilplivcate property.

Definition 2.1. Define φ
2
G(β ) to be the order of the second group of units U2(Z[i]/ < β >) =

Φ2
G(β ). Thus we write, φ

2
G(β ) = |Φ2

G(β )|.

Lemma 2.1. The function φ
2
G is multiplicative.

Proof. Let gcd(β ,γ) ∼ 1, then Z[i]/ < βγ >∼= Z[i]/ < β > ⊕Z[i]/ < γ > . Applying theorem

1.3 for k = 2 and R = Z[i]/ < βγ > we get,

U2(Z[i]/ < βγ >)∼=U2(Z[i]/ < β >)×U2(Z[i]/ < γ >). Then

|U2(Z[i]/ < βγ >)|= |U2(Z[i]/ < β >)|.|U2(Z[i]/ < γ >)|. Consequently,

φ
2
G(βγ) = φ

2
G(β )φ

2
G(γ). �

The fact the φ
2
G is a multiplicative function gives a very important step in finding a general

formula of the order of the second group of units.

Lemma 2.2. If β = α or β = α2, then φ
2
G(β ) = 1, else φ

2
G(β ) is even.

Proof. If β = α or β = α2, then U2(β ) is trivial, see [3]. Hence |U2(β )| = φ
2
G(β ) = 1. Now,

suppose that β 6= α and β 6= α2, then applying the fundemental theorem of abelian groups we

get, U(β )∼= Zn1×Zn2× ...×Znk and in ring structure U(β )∼= Zn1⊕Zn2⊕ ...⊕Znk . Moreover,

U2(β )∼=U(Zn1)×U(Zn2)× ...×U(Znk). Then φ
2
G(β ) = φ(n1)φ(n2)...φ(nk) a product of even

integers which is again even. �
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3. The Explicit formula for φ
2
G(β )

In order to determine an explicit formula for φ
2
G, we have to examine the cases when β = αn,

πn, and pn.

Lemma 3.1. Let n be a positive integer, then

φ
2
G(α

n) =


1 if n≤ 2

2 if 3≤ n≤ 4

2n−4 if n≥ 5.

Proof. Let n≥ 5, then using theorem 1.1 we have

ΦG(α
n)∼=

 Z2m−1×Z2m−2×Z4 i f n = 2m.

Z2m−1×Z2m−1×Z4 i f n = 2m+1.

If n = 2m, Φ2
G(α

n)∼=U(Z2m−1)×U(Z2m−2)×U(Z4).

Hence,

|Φ2
G(α

n)|= |U(Z2m−1)|.|U(Z2m−2)|.|U(Z4)|= φ(2m−1).φ(2m−2).φ(4).

Consequently, φ
2
G(α

n) = 2n−4.

If n = 2m+1, then Φ2
G(α

n)∼=U(Z2m−1)×U(Z2m−1)×U(Z4). So,

|Φ2
G(α

n)|= |U(Z2m−1)|.|U(Z2m−1)|.|U(Z4)|= φ(2m−1).φ(2m−1).φ(4).

Hence, φ
2
G(α

n) = 2n−4.

If n = 1 or 2, then Φ2
G(α

n) is trivial. Therefore, φ
2
G(α

n) = 1.

If n = 3, ΦG(α
n)∼= Z4.Then φ

2
G(α

n) = |Φ2
G(α

n)|= |U(Z4)|= 2.

If n = 4, ΦG(α
n)∼= Z2×Z4. This gives φ

2
G(α

n) = |Φ2
G(α

n)|= |U(Z2)|.|U(Z4)|= 2.

�

Lemma 3.2. φ
2
G(π

n) = φ(φ G(π
n)).
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Proof. Using theoerm 1.1, we have ΦG(π
n)∼= Zqn−qn−1 . Then, Φ2

G(π
n)∼=U(Zqn−qn−1). There-

fore, |U(Zqn−qn−1)|= φ(qn−qn−1) = φ(qn−1(q−1)). Consequently, φ
2
G(π

n) = φ(φ G(π
n)).

�

Lemma 3.3. φ
2
G(pn) =

 φ(φ G(p)), if n = 1

(p−1)2 p2n−4φ(φ G(pn)), if n≥ 2.

Proof. Theorem 1.1 gives ΦG(p)∼=Zp2−1 when n= 1. Thus, Φ2
G(p)∼=U(Zp2−1) and |Φ2

G(p)|=

|U(Zp2−1)|. Consequently, φ
2
G(p) = φ(p2−1) = φ(φ G(p)).

For n≥ 2, we have ΦG(pn)∼= Zpn−1×Zpn−1×Zp2−1. Thus,

Φ
2
G(p)∼=U(Zpn−1)×U(Zpn−1)×U(Zp2−1)

and |Φ2
G(p)|= |U(Zpn−1)|.|U(Zpn−1)|.|U(Zp2−1)|. Consequently,

φ
2
G(pn) = φ(pn−1)φ(pn−1)φ(p2−1) = (p−1)2 p2n−4

φ(φ G(p)).

�

Notation 3.1. For simplicity, we denote by fp(n) to be a function defined as

fp(n) =

 1 if n = 1

(p−1)2 p2n−4 if n≥ 2.

Using this notation, we can write φ
2
G(pn) = fp(n)φ(φ G(pn)).

Following lemmas 3.1, 3.2 and 3.3, we can write an explicit form of the order of the second

group of units of the ring of Gaussian integers modulo any non zero and non unit Gaussian

integer β given in the following theorem.

Theorem 3.1. Let β =αn
(

r
∏

t=1
pnt

t

)(
j

∏
s=1

π
ks
s

)
be the decomposition of β into product of distinct

prime powers, with n, nt , ks are non negative integers for 1≤ t ≤ r and 1≤ s≤ j. Then

φ
2
G(β ) =



(
r

∏
t=1

fpt (nt)φ(φ G(pnt
t ))

)(
j

∏
s=1

φ(φ G(π
ns
s ))

)
if n≤ 2

2
(

r
∏
t=1

fpt (nt)φ(φ G(pnt
t ))

)(
j

∏
s=1

φ(φ G(π
ks
s ))

)
if 3≤ n≤ 4

2n−4
(

r
∏

t=1
fpt (nt)φ(φ G(pnt

t ))

)(
j

∏
s=1

φ(φ G(π
ks
s ))

)
if n≥ 5.
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Proof. Using the multiplicative property of φ
2
G, we can write

φ
2
G(β ) = φ

2
G(α

n)

(
r

∏
t=1

φ
2
G (pnt

t )

)(
j

∏
s=1

φ
2
G

(
π

ks
s

))
.

Applying lemmas 3.1, 3.2 and 3.3, we deduce the explicit form stated for φ
2
G(β ).

�

Example 3.1. Let β = 3.72(1+ i)3(1+2i)2, then φ
2
G(β ) = φ

2
G(3.5

2(1+ i)3(1+2i)2) = φ
2
G((1+

i)3)φ 2
G(3)φ

2
G(5

2)φ 2
G((1+ 2i)2). Hence, φ

2
G(β ) = 2φ(9− 1)(7− 1)272(2)−4φ(49− 1)φ(5(5−

1)) = 36864.

4. Properties for φ
2
G(β )

It is well known that φ G(γ)|φ G(β ) whenever γ|β . We will prove this property for φ
2
G.

Lemma 4.1. Let β = αn and let γ|β , then φ
2
G(γ)|φ 2

G(β ).

Proof. Since γ|β , then γ = αk, where 1≤ k≤ n. Now, consider all possible cases of n. Refering

to lemma 3.1, we have the following three cases. If n ≤ 2, then φ
2
G( β ) = φ

2
G(γ) = 1. Conse-

quently, φ
2
G(γ)|φ 2

G(β ). If n = 3 or n = 4, then φ
2
G( β ) = 2 and φ

2
G(γ) = 1 or φ

2
G(γ) = 2. Hence,

φ
2
G(γ)|φ 2

G(β ). If n ≥ 5, then φ
2
G( β ) = 2n−4. Since 1 ≤ k ≤ n, then we have k < 4 or k ≥ 5.

If k < 4, then φ
2
G(γ) = 1 or φ

2
G(γ) = 2, thus φ

2
G(γ)|φ 2

G(β ). If k ≥ 5, then φ
2
G(γ) = 2k−4. Since

k ≤ n, then 2k−4|2n−4 and we get φ
2
G(γ)|φ 2

G(β ). �

Lemma 4.2. Let β = πn and let γ|β , then φ
2
G(γ)|φ 2

G(β ).

Proof. Since γ|β , then γ = πk, where 1≤ k≤ n. Lemma 3.2 gives φ
2
G( β ) = φ(qn−1(q−1)) and

φ
2
G(γ) = φ(qk−1(q−1)). Since k ≤ n, then qk−1(q−1)|qn−1(q−1). And φ(m)|φ(n) whenever

m|n, we conclude that φ
2
G(γ)|φ 2

G(β ). �

Lemma 4.3. Let β = pn and let γ|β , then φ
2
G(γ)|φ 2

G(β ).

Proof. Since γ|β , then we write γ = pk, where 1 ≤ k ≤ n. If n = 1, then k = n = 1 and then

φ
2
G(γ) = φ

2
G(β ). If n > 1, then φ

2
G( β ) = (p− 1)2 p2n−4φ(φ G(p)). Since k ≤ n, then we have
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k = 1 or k > 1. If k = 1, then φ
2
G(γ) = φ(φ G(p)) and in this case φ

2
G(γ)|φ 2

G(β ). If k > 1, then

φ
2
G( γ) = (p−1)2 p2k−4φ(φ G(p)). But p2k−4|p2n−4 for k ≤ n, then φ

2
G(γ)|φ 2

G(β ). �

Theorem 4.1. If γ|β , then φ
2
G(γ)|φ 2

G(β ).

Proof. Let β = αn
(

r
∏

t=1
pnt

t

)(
j

∏
s=1

π
ks
s

)
be the decomposition of β into product of distinct prime

powers, with n, nt and ks are non negative integers for 1 ≤ t ≤ r and 1 ≤ s ≤ j. As γ|β , we

write γ = αn′
(

r
∏

t=1
pn′t

t

)(
j

∏
s=1

π
k′s
s

)
with 0 ≤ n′ ≤ n, 0 ≤ n′t ≤ nt and 0 ≤ k′s ≤ ks. Since φ

2
G is

multiplicative, then

φ
2
G(β ) = φ

2
G(α

n)

(
r

∏
t=1

φ
2
G (pnt

t )

)(
j

∏
s=1

φ
2
G

(
π

ks
s

))

and φ
2
G(γ) = φ

2
G(α

n′)

(
r

∏
t=1

φ
2
G

(
pn′t

t

))( j
∏

s=1
φ

2
G

(
π

k′s
s

))
. Using lemmas 4.1, 4.2 and 4.3, we get

φ
2
G(α

n′)|φ 2
G(α

n), φ
2
G(π

k′s
s )| φ 2

G(π
ks
s ) and φ

2
G(pn′t

t )|φ 2
G(pnt

t ). Hence the result. �

Note that for a non trivial ring R with identity, it is always true that |U(R)| < |R| and con-

sequently |U2(R)| < |U(R)|. In the next proposition, we aim to find a least upper bound for

φ
2
G(β ).

Proposition 4.1. φ
2
G(β )≤

φ G(β )

2
if β 6= α.

Proof. We consider the three cases according to the three different types of the Gaussian primes,

then we use the multiplicative property to complete the proof for any non zero, non unit Gauss-

ian integer β .

First, we consider the case where β = αn.

If n = 2, then φ
2
G(α

2) = 1. But φ G( α2) = 2, Consequently, φ
2
G(α

2) =
φ G(α

2)

2
.

If n = 3, then φ
2
G(α

3) = 2 and φ G(α
3) = 4. Again φ

2
G(α

3) =
φ G(α

3)

2
.

If n = 4, then φ
2
G(α

4) = 2 and φ G(α
4) = 8. Hence, φ

2
G(α

4) <
φ G(α

4)

2
.

If n ≥ 5, then φ
2
G(α

n) = 2n−4 and φ G(α
n) = 2n−1. Hence, φ

2
G( αn) <

φ G(α
n)

2
. Conse-

quently, φ
2
G( αn) ≤ φ G(α

n)

2
for n≥ 2.

Next, consider the case when β = pn.
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If n = 1, then φ
2
G(p) = φ(φ G(p)) = φ(p2−1). Since p2−1 is even, then φ(p2−1)≤ p2−1

2

and φ
2
G(p) = φ(p2−1)≤ p2−1

2
=

φ G(p)
2

.

If n > 1, then φ
2
G( pn) = (p−1)2 p2n−4φ(φ G(p))< p2n−2φ(p2−1). Then

φ
2
G( pn)<

p2n−2(p2−1)
2

=
φ G(pn)

2
. Consequently, φ

2
G( pn) ≤ φ G(pn)

2
.

Now, consider the case when β = πn.

Then φ
2
G(π

n)= φ(qn−1(q−1)). Since qn−1(q−1) is even, then φ(qn−1(q−1))≤ qn−1(q−1)
2

=

φ G(π
n)

2
. Therefore, φ

2
G(π

n)≤ φ G(π
n)

2
.

Finally, let β = αn
(

r
∏

t=1
pnt

t

)(
j

∏
s=1

π
ks
s

)
be the decomposition of β into product of distinct

prime powers, with n, nt , ks are non negative integers for 1≤ t ≤ r and 1≤ s≤ j. Then,

φ
2
G(β ) = φ

2
G(α

n)

(
r

∏
t=1

φ
2
G (pnt

t )

)(
j

∏
s=1

φ
2
G

(
π

ks
s

))
.

Using the above results, we can write

φ
2
G(α

n)

(
r

∏
t=1

φ
2
G (pnt

t )

)(
j

∏
s=1

φ
2
G

(
π

ks
s

))

≤
φ G(α

n)

(
r

∏
t=1

φ G (pnt
t )

)(
j

∏
s=1

φ G

(
π

ks
s

))
2i+ j+1

<

φ G(α
n)

(
r

∏
t=1

φ G (pnt
t )

)(
j

∏
s=1

φ G

(
π

ks
s

))
2

.

Consequently, φ
2
G( β )≤ φ G(β )

2
.

�

5. Conclusion

Using the decomposition of the generalized second group of units of a quotient ring of Gaussian

integers R = Z[i]/ < β >, we were able to generalize the Euler Phi function. The new gener-

alization, φ
2
G(β ), represents the order of the generalized second group of units of the ring R,

Φ2
G(β ). An explicit formula and a least upper bound for φ

2
G(β ) were given.
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