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Abstract. This paper aims to present a general framework of the cubic, quintic and septic B-splines functions to
develop a numerical method for obtaining approximation solution numerical solution of the matrix differential
equations of second order with boundary conditions. Numerical examples are included to illustrate the practical
implementation of the proposed method. The results reveal that the proposed approach is very effective, convenient
and quite accurate to such considered problems compared with cubic splines with constant term method.
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Introduction
Given the matrix boundary value problem

Y (%)= £ (%Y (x),Y(x)) } a<x<b, [a, bR )

Y(a)=Y,Y'(a)=Y,
where V,.Y,.Y (x)eC™" and matrix function f:[a,b]xC™"xC™" —C™", are frequent in different
fields in physics and engineering. Equation (1) is similar to the statement of Newton’s law of

motion for coupled mechanical system. Models of this kind are frequently appear in molecular

dynamics, quantum mechanics and for scattering methods, where one solves scalar or vectorial
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problems with boundary value conditions [1- 6]. We define the Kronecker product of AeCc™"
and BeC™, denoted by A®B [7]
a,B ... a,B

A®B=| i . i (2
a.B - a B

ml mn

The column vector operator on a matrix AeC™" is given by [7]:

Ay A
Vec(A)=|: |, where A, =|: 3
A.n A‘nk
If yec™ and X eCc™9, then the derivative of a matrix with respect to a matrix is defined by [7]:
N Ay My
6Xll o aqu s - aer
2—1: i . i |, where aaY = : . 4)
X
oo B AP RCA*
Xy Xpq X X,

If XeCP, YeC™ and z eCc™", then the derivative of a matrix product with respect to another

matrix is given by [7]:

OXY  oX oY
=l e, ex]= (5)

where 1 and 1, denote the identity matrices of dimensions m and n, respectively.

If XeCP, YecC”™ and zeC™", then the chain rule is defined by [7]:

Vec(Y)|
az _ o[ Vec(Y)] e |10 oz (6)
X X o[ Vec(Y)]
and the derivative of a Kronecker product of matrices with respect to a matrix is given by [7]:

@:%@Y +[|m®ul]{2—;®x}[ln®u2] (7)

where U, and U, are permutation matrices.

If AcCc™", the frobenius norm of A is given by [8]:

= (S5 ®

The following relationship between the 2-norm and frobenius norm holds [8]:

A, <A <n[A], ©)
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Cubic B - splines are used in [9-13], matrix differential equations are discussed in [14-16] and B-
splines are presented in [17]. The paper is organized as follows: In section 2, we developed the
proposed method. In section 3, some numerical examples were discussed. Finally, in section 4,
we gave summary of the suggested method.

2. Analysis of B-splines method

Let X%, %, ..%  be (N+1) grid points in the interval [a b] , so

thatx =a+ih, i=0, 1 .., n %, =a, X, =b, h=(b—a)/N. Then B-splines are presented as follows:

2.1 Cubic B-splines

The cubic B-splines are

(X_ Xi_p )3 |:Xi_2, Xi—1:|’
h®+3h% (x—x)+3n(x—x ) =3(x=%4)"  [%a% ]
B, (x):h—l3 hg’+3h2(xi+l—x)+3h(xi+1—x)2 —3(xi+1—x)3 ERm (10)
(Xi+2 - X)3 |:Xi+17 Xi+2]’
0 elsewhere.

(i=-1,01,..,n+1).

pa
We consider the B-spline function to the solutions y(x) of the problem (1):

p;(x):Niprqi (x)gi(x); 1<p<n, 1<g<m (11)

i=—1
pq
where constants C; (x)’s are to be determined. To solve second order matrix boundary value
problems, the B, B’. and B”, at the nodal points are needed. Their coefficients are summarized

in Table 1.
Table 1. valuesof B, B, and B,".

Xi_o Xi_1 X Xi 1 Xiso
B. 0 1 4 1 0
B/ 0 -3/h 0 3/h 0
B/ 0 6/h —12/h? 6/h’ 0

By substituting (11) in (1), we find
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3€ 00809~ 1| £E 008y 00 £C B0 @)
and boundary conditions can be written as
_Nigi (x) §1i (x)= ’;?a; X=a,
(13)

N+1 Pd pq

ZCi(X)Bi(X)zgab; x=b.

i=—1

The spline solution of equation (1) is obtained by solving the following matrix equation. The
value of the spline functions at the points {xi}i’i0 are determined using Table 1 and substitute into
equations (12) and (13). Then a system q(N+3)xq(N+3); 1<g<m of linear equations can be

written as follows
AE =F. (14)
Where,

11 11 11 nm nm nm T
E=|:C1, Co, ..., Cnu1, ..., C, Co, ..., CN+1:|

1 ou 1 1 moom nm m "
Fz[ya, f(X): oo F(X)s Yor oo Yar F(X)s oo F(Xy), yb}

2.2 Quintic B-splines
The quintic B-splines are

(X=X )5 (%30 % 2 )
(x—xifa)5 —6(x—x,72)5 [ X 20 %1 )
(x=x_5) —6(x—x_, ) +15(x=%_)" [ X% |
B (X)= % (%15 = X)" =6(%,, = %) +15(x;,, —x)° ER (15)
(%15 = X)" =6(%., —X)° [ X1 X2 |
(X5 —X)° [ X2 %3 s
0 elsewhere,
(i=-10,L..,n+1).
Let y()=3C (0B (x); 1<p<nicq<m (16)

i=—2

pa
be the B-spline function to the solutions y(x) of the problem (1),
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where constants C; (x)’s are to be determined. To solve second order matrix boundary value

problems, the B, B’. and B”, at the nodal points are needed. Their coefficients are summarized

in Table 2.

Table 2. valuesof B, B, and B,".

X|—3 X|—2 Xi—l X; Xi+1 Xi+2 Xi+3
B, 0 1 26 66 26 1 0
B, 0 -5/h ~50/h 0 50/h 5/h 0
B/ 0 20/h? 40/ h? ~120/h? 40/’ 20/h? 0
By substituting (16) in (1), we find
N+2 Pd Pq” N+2 Pd Pq N+2 Pd Pq,
SE 0081001« £ 00819, £E 08100 @)
, boundary conditions can be written as
N+2 P4 Pq pq
ZCi (x) Bi (X)=Yy.; x=a,
=2 (18)
N+2 P4 Pq pq
-—ZzCi (x)Bj(x)=y,; x=b.
and we need an extra conditions:
N+2 Pd Dq, pq
ZCi (X)Bi (x)=Y.: x=a,
=2 (19)
N+2 Pd Pq, pq
> G (x)B{(x)=y\: x=b.

i=—2

The spline solution of equation (1) is obtained by solving the following matrix equation. The

value of the spline functions at the points {x } are determined using Table 2 and substitute into

equations (17 - 19). Then a system q(N+5)xq(N+5); 1<qg<m of linear equations can be written

as follows

Where,

AE =F.

(20)
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11 11 11 nm nm nm U
E=|:C2, Cfl, ey CN+2, ey sz, Cf1, ceey CN+2:|

Yoo YVar (%) o T (X)) Yoo Yo ooor Yar Yo F %) con F(X)0 Vou Y5

|:11 1 11 11 1 11 nm nm nm nm nm nm :|T

2.3 Septic B-splines

The septic B-splines are

(x=%)' KR
(x=X_,) —8(x=x_5) (X5 %5 |
(x=%_4) =8(x=%_5) +28(x-x_,)’ [X20%1 )
(x=%_y) —8(x—%_5) +28(x~x_,) ~56(x=%4)"  [X1.% )
B (X):h% (Xi+4 _X)7 _8(Xi+3_x)7 +28(Xi+2 _X)7 _56(Xi+1_x)7 [Xi’XHl]’ (21)
(X =X)" =8(x.5 =X)" +28(x,, =)' [Xi10 Xz |
(Xea = %) =8(Xa =X)' By
(%4 =%)' Exs
0 elsewhere,
(i=-1,01,..,n+1).
The B-spline function to the solutions g;(x) of the problem (1) is given as
] N+3 P9 pq
y(x):Z;Ci(X)Bi(X); 1<p<n, 1<q<m (22)

Pq
where constants C, (x) ’s are to be determined. In order to solve second order matrix boundary

value problems, the B, B’, and B”, at the nodal points are needed. Their coefficients are

summarized in Table 3.

”

Table 3. valuesof B, B, and B,".

i-4 Xi—3 Xi—Z Xi—l Xi Xi+1 Xi+2 i+3 i+4

B. 0 1 120 1191 2416 1191 120 1 0

0 —7/h -392/h -1715/h 0 1715/h 392/h 7/h 0

!
I
4

m

: 0 -210/h®> -1680/h®>  3990/h* 0 -3990/h* 1680/h® 210/h® 0

B
B, 0 42/h*  1008/h*  630/h*  -3360/h*>  630/h®  1008/h* 42/h* O
B
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By substituting (22) in (1), we find

N+3 Pg PCI” N+3 Pd pq N+3 P9 Pq’
Zéci () B{'(x)=f| x, Z%Ci (%) B; (x). ;Ci () By (x) (23)
, boundary conditions can be written as
N+3 Pd pa pq
2 Ci(x)B;(x)=y.: x=a,
=3 (24)
N+3 Pd pa pq
Z i(x)Bi(x)=yb x=b
i=-3
and we need an extra conditions:
N+3 Pd Pq, pq
_ (B (x)=V.; x=a
=3 (25)
3 Pq Pq' pq’
2.Ci (9B (x)=Yy: x=b
N+3 P9 pq”
2. Ci(0)B)=y": x=a
=3 (26)
N+3 Pd Pq

The spline solution of equation (1) is obtained by solving the following matrix equation. The
value of the spline functions at the points {Xi}iN:o are determined using Table 3 and substitute into
equations (23 - 26). Then a system q(N+7)xq(N+7); 1<q<m of linear equations can be written

as follows
AE

I
m

(27)
Where,

11 11 11 nm nm nm U
E=|:C3, sz, ey CN+3, . C73, sz, ey CN+3:|

11 11 11 11 11 11 11
F=

11
Yoo YVar Y F(%0): o F(X0) Yoo Yoo Y0 oo Yar YVar Y0 £ (%) coon F(Xy)s Vou Yoo Y

3. Numerical examples
In this section, we present some examples of matrix differential equations of second order. We

take h=0.1 on the interval [0, 1] and the results are generated with Mathematica using Find Root

function to solve the emerging algebraic equations. At each point, we evaluated the difference
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between approximate solution and exact solution, and then take the Frobenius norm of this
difference.

Example 1. A non-linear differential vector system [16]

Let

1—cos(x)+sin(y3, (x))+cos(yz, (x))
Y"(x)= 1 1

4+(yy (x))2 5—(sin(x))2

, 0<x<1. (28)

cos(x)

This example has an exact solution Y(x)=[
TX

J. Thus, we can compare our numerical

estimates with this solution to obtain the exact errors of the approximation which summarized in

Table 4.

Table 4. Approximation for Example 1.

Cubic B-splines

errors

Quintic B-splines

errors

errors

Septic B-splines

[16]

Cubic splines errors

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0

3.41618x10°°
6.00216x10°°
7.77071x10°°
8.74294x10°°
8.94801x10°°
8.42278x107
7.21139x107
5.36475x10°°
2.94003x107°
0

0
3.85149x107°
8.70339x10°°
1.15496x10°
1.32375x10°®
1.35948x10°®
1.27541x10°®
1.07256x10°
7.77746x107°
3.33570x10°°
4.44089x107*°

1.96262x107"
1.20717 x10™*
2.54358x107*
3.10449x107*
3.55659x107*
3.60134x107*
3.42381x107*
2.88345x107*
2.26503x10 7"
1.04252x107*
457757x107"

0

4.16114x10°°
1.66032x10°°
3.72028x10°°
6.57658x10°
1.02012x10™*
1.45563x107*
1.96167x10™
2.52912x10™
3.15643x10™*
3.83638x10™

Example 2. Incomplete second - order differential system [16]

The problem

Where A:(; Sj and corresponding exact solution Y(x):{

Y"(x)+AY(x)=0, 0<x<1.

sin(x)

the exact errors of the approximation which summarized in Table 5.

0

xcos(x) sin(x)

(29)

}. Thus, we can find
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Table 5. Approximation for Example 2.
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X

Cubic B-splines

Quintic B-splines

Septic B-splines

Cubic splines errors

errors errors errors [16]
0 1.20185x107" 5.48450x107" 4.01297 x107" 0
0.1 7.86131x10°° 1.21289x10°° 4.88643x107 1.0072x10°®
0.2 1.51856x10™ 2.96468x10°° 1.11081x107* 6.3032x10°
0.3 2.14489x10™* 4.30700x10°® 1.49671x107 2.0059x10°
0.4 2.61535x10™* 5.34986x10°® 1.85289x107" 4.6213x10°°
0.5 2.88399x107* 5.92703x10°® 2.02749x107 8.8359x10°°
0.6 2.90988x10™* 5.96807 x10°® 2.07159x10 ™ 1.4964x107
0.7 2.65820x107* 5.35877x10°® 1.86006x107* 2.3267x10
08 2.10116x10™* 4.14174x10°® 1.56682 %107 3.3941x10™
0.9 1.21887x10™* 1.86540x10°° 7.56441x107* 4.7114x10™
1.0 2.11526 %1075 1.57009%107*° 1.11022x107% 6.2838x10
Example 3. Second - order polynomial matrix equation [16]
We consider the following problem
Y”(x)+AY'(x)+AY (x)=0, 0<x<1. (30)

X

where Ab=[_01 1] A=(O OJ and the exact solution Y(x):(eo

-2/ 01

-1+e" —xe*
) J Thus, we
e

summarized the exact errors at each point in Table 6.

Table 6. Approximation for Example 3.

Cubic B-splines Quintic B-splines Septic B-splines Cubic splines errors

errors errors errors [16]

0 2.22045x107° 3.45840x107% 4.73069x107%° 0

0.1 1.61317x10™* 2.77917x10°® 2.50356 x107* 1.53895x10°°
0.2 3.11539x10™* 6.85535x10°® 2.67982x107 6.67523x10°°
0.3 4.44650x10™* 1.00132x10°’ 3.61804x107 1.63924x107*
0.4 5.53169x10™* 1.26114x1077 4.54015x10 ™ 3.18789x10*
0.5 6.27861x10™* 1.42833x107" 5.06466x10™ 5.45654 x10™*
0.6 6.57397 x10™* 1.48247 %1077 5.33134x107" 8.61682x10™*
0.7 6.27962x107* 1.38157x10”’ 4.95015x10™ 1.28740x107°
0.8 5.22786x10~* 1.12056 x10~7 4.38239x10 1.84731x10°°
0.9 3.21599x10™* 5.34319x10°° 2.26900x10 ™ 2.57055x10°°
1.0 5.36709x107"° 1.35064 x107*° 1.47288x107" 3.49171x107°
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4. Conclusion

In this paper, we presented a numerical treatment for the second-order matrix differential
equations using B-spline functions of different types. The computational results are found to be
in good agreement with the exact solutions by finding frobenius norm and are compared with
Ref. [16] as shown in Tables 4, 5 and 6.
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