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Abstract: In this paper a double system of exponents with degenerate coefficients is considered. Basicity of this 

system is studied in a generalized Lebesgue space  pL . Method of boundary value problems of the theory of 

analytic functions is applied.  In addition, a specific Riemann boundary value problem with degenerate coefficients 

is obtained. At first, this problem is studied in the Hardy classes with variable summability. The obtained results are 

applied to the study of basicity of considered double system of exponents in  pL , when the coefficients are 

assumed a degeneration at the ends of the segment    , . 
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1. Introduction 

Consider the system of exponents 
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with the degenerate coefficients 
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where    π,πtT
r

k 



1 ,   Rrkββtkt kπk   ,0,;;0,,0 0 , and      tαietAtA  , 

     tβietBtB   are complex valued functions on  ππ, . Interest in the study of basis 

properties of the system of the form (1):  

         ZntnsignniE  exp  

in    pLL pp 1,, , being a special case of (1), dates back to the well-known 

work of Paley R., Wiener N. [1] and N.Levinson [2]. The final results in this direction are 

obtained in [3-7]. The weighted case of Lebesgue space is considered in [8-10;25]. It should be 

noted that the system of exponents with degenerate coefficient have been first considered in [11]. 

Then the results of [11] were generalized with respect to the degenerate coefficient in [12]. The 

most general case with different coefficients of degeneration is considered in [13;14]. When the 

degeneration are missing, the final results on basicity of the system of the form (1) in pL  in the 

general case with respect to the coefficients  tA and  tB  have been obtained in [15;16;18-20]. 

In the present paper a double system of exponents with degenerate coefficients is considered. 

Basicity of this system is studied in a generalized Lebesgue space  pL . Method of boundary 

value problems of the theory of analytic functions is applied. In addition, a specific Riemann 

boundary value problem with degenerate coefficients is obtained. At first, this problem is studied 

in the Hardy classes with variable summability. The obtained results are applied to the study of 

basicity of considered double system of exponents in  pL , when the coefficients are assumed a 

degeneration at the ends of the segment   , . It should be noted that the boundary value 

problems and basicity problems associated with variable summability had previously been 

considered in [21-25]. The basicity of the system E  in Lebesgue space with variable 

summability was previously studied in [21-23; 31; 32]. 

 

2. Needful information and main assumptions  

We will use the usual notations. 

 

N will be a set of all positive integers;

 

Z    will be a set of 

all integers; NZ  }0{ ; R  will be the set of all real numbers; C will stand for the field of 

complex numbers; 

 

 )( is the complex conjugate ; nk  is the Kronecker symbol;  A is the 
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characteristic function of the set .A   1:  zCz  be the unit circle,    be the unit 

circumference.  

Let     ,1,: p  be some Lebesgue measurable function. By 0L  denote the class of all 

functions measurable on    ,  (with respect to Lebesgue measure).  Denote   

                                          
.dttffI

tp
def

p 







 

Let   

                                        .:0  fIf pLL  

With respect to the usual linear operations of addition and multiplication by a number,  L   is a 

linear space as  
 

  


 tpvraip
 ,

sup . With respect to the norm 
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
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p
,   

  L  is a Banach space, and we denote it by  )(pL . Let   

 

    .
ln

2

1
:,,,0);()(:

21
21
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


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
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C
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ttttCpppWL
def



 

Throughout this paper   q  will denote the conjugate of a function  p :     1
11


tqtp

. Denote  

 
 tpvraip

 ,
inf



  .  The following generalized Hölder inequality is true  

                                                   


 
qp

gfppcdttgtf




; , 

where   
 

pp
ppc

11
1; .  

It is easy to prove   

Statement 1. Let     ,,0,  ttpWLp ;   Rm
i 1 . The weight function  

  



m

i
i

itt
1

 ,  
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belongs to the space  pL , if the following inequalities   

  ,
1

i
i p 

 
 

mi ,1 ; 

are satisfied, where    m...21  .  

The following fact plays an important role in obtaining the main results. 

Property B 27. If      pptp 1: , then the class    ,0 C  (class of finite and 

indefinitely differentiable functions) is everywhere dense in  pL .  

By  S   we denote the singular integral 

                                                 
  




 




  td
t

f

i
Sf ,

2

1
. 

Let     ,0,:  . Define weight class     ,pL : 

                                                       ,pL :         p

def

p LffL  :, ,  

furnished with a norm       


p

def

p
ff 

,
. The validity of the following statement is established 

in  30. 

Statement 2  30.  Let   pWLp 1,  and the weight     be defined by  

  



m

k
k

ktt
1

 , 

where      ,1 m
k   are different points,   Rm

k 1 .  

Then, singular operator S is acting boundedly from      ,pL   to      ,pL   if and only if  

                                                  
    mk

qp k
k

k

,1,
11







.                                    

More details on these and other facts one can see works [26-30].  

Define the weighted Hardy classes 
 ),(pH . By 

0pH  we denote the usual Hardy class of functions 

which are analytic inside  , where   ,10p  is some number. Assume 

 )(: ),(1),(   


 pp LfHfH ,  

where f  are non-tangential boundary values on   of  f . 



RIEMANN BOUNDARY VALUE PROBLEM                                                 136 

 

The weighted Hardy class 
 ),(pm H  of functions which are analytic in )(\   C , with 

their orders mk   at infinity is defined similarly to the classical one. Let  zf  be the analytic 

function in )(\   C , of finite order mk    at infinity, i.e.                                          

)()()( 21 zfzfzf  , 

where )(1 zf  is a polynomial of degree mk  , )(2 zf  is a regular part of Laurent series expansion 

of )(zf  in the neighborhood of an infinitely remote point. If the function  







z
fz

1
)( 2    

belongs to the class  
 ),(pH  ,  then we will say that the function  zf  belongs to the class 


 ),(pm H  . 

As the norms in these spaces we accept  

   




pp LH

ff 
,

,  

 ,pHf , 

   




ppm LH

ff 
,

,  

 ,pm Hf , 

where by f   is denoted non-tangential boundary values on   of f . 

Restrictions of functions from  

 ,pH  to the unit circumference we denote by  


 ,pL ,  i.e. 

     




  gfHgfL p,p ,: , . 

Let us note that if  

 ,pHf , then   

     ,, 


 pH

ff
p

,  where 
  ff  . 

A similar fact also holds with respect to space  

pm H . Assume 

    



  gfHgfL pmpm ,: . 

In obtaining the main result we also need the following  

Statement 3 [31].  Let   1,  pWLp , and the weigh    satisfy all the conditions of 

Statement 2. Then the system of exponents   0
int

ne   (  mne 
 int ) forms a basis for the weighted 

space  

 ,pH   (  


 ,pm H ). 

Assume the following main assumptions: 

1)  tAarg ,  tBarg  are piecewise Holder functions on   , :   :1

r
isS    
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  rss ...1  be the points of discontinuity of the function       tBtAtθ argarg   on 

  ,  and )0()0(  kkk ssh  , rk ,1 , )0()0(  h , )0()0(0  θθh  

are corresponding jumps at these points.   

2)     tBtA ,  are measurable on  ππ,  and the following inequality is fulfilled  

    
 

     



11

,

,sup tBtAvrai
ππ

; 

3) Let    TTST ;  and denote  

  


  ,,1,;;;0 rkββββ kππ . 

Assume 

   
 
 

















.,

,,0,,

ππ

kk
β

ββββπp

rkββtp
p  

Throughout this paper, q  will denote the conjugate of  p : 111  
ββ qp .  

 

3. Riemann boundary value problem with degenerate coefficients in generalized Hardy  

classes  

Consider the following non-homogeneous conjugate problem in classes    




    ,, pmp

HH : 

    
 

 












,0

,1,arg
~

)()()(

F

fFGF 
    (2) 

where     
    ππLf
tρ

tf
tf p ,,

~
  , the coefficient  τG  is defined by   

     
   tBtρ

tAtρ
eG it





  . 

By solution of the problem (2)  in    




    ,, pmp

HH  we mean the following:  to find a pair of 

functions      







 

 ;;
)();(

pmp
HHzFzF , whose non-tangential boundary values on the unit 

circumference   a.e. satisfy the relation (2), where     
p

ρω  . 

By   zZ  we denote the canonical solution ([17]) of the corresponding homogeneous problem 

   ,0)()()( FGF .        (3) 
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 zZ  has an expression     



3

1k
k zZzZ , where   zZk  is defined by the expression  

 
















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1

kzzX
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k

k
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  
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
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 

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




 



dt

ze

ze

t

t
zX

it

it

ln
4

1
exp)(1 , 

 
  











 






dt

ze

ze

tB

tA
zX

it

it

ln
4

1
exp)(2  , 

 











 










dt
ze

ze
t

i
zX

it

it

4
exp)(3 . 

Note that the sign  "+" ("-") corresponds to the case z 1  ( 1z ). 

As it is established in [17] we have the relation 

     




 1

2
iteZ  , 

where  


  is an ordinary norm in  ππL , . Regarding the boundary values  iteZ 
1  the 

following expression is valid  

   
 

2

1

1 







 




tρ

tρ
eZ it . 

It directly follows from Sokhotskii-Plemelj formula [17].  

Let  )()()( 10 tθtθtθ   be a Jordan decomposition of function  )(tθ  on a continuous part of  

)(0 tθ  and on the jump function )(1 tθ . Assume )0()0(  πθπθhπ .  It is clear that  

   01 hhhπ  , where 

      )0()0( 11
1  πθπθh ,   )()( 00

0 πθπθh  . 

Denote   

   

 







 








 

 




ds
st

ctgs
t

tu

h

2
)(

4

1
exp

2
sin)( 0

2

0

0











. 
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According to the results of the monograph [17], the function  tu 1
0
  is integrable with any degree 

of   ,0p  on  ππ, .  For the solution of the homogeneous problem we obtain the relation  

 
 

 
 τZ

τF

τZ

τF








 ,  a.e.   . 

To obtain the general solution of the homogeneous problem (3), let us show that the boundary 

values of a piecewise analytic function )(z : 

 
 
 
 























,1,

,1,

)(

z
zZ

zF

z
zZ

zF

z  

belong to ),(1 ππL  .  Since, by definition of the solution, the expression    tρeF it   belongs to 

  ),( ππLp  ,  then it is sufficient to show that the expression   

           1

0

 teZtY it   , 

belongs to the space   ),( qL . We have     


 
3

1k

it
k

it eZeZ . Using Sokhotskii-Plemelj 

formulas it is easy to obtain the following expression for the boundary values  iteZ 
3 : 

             tutueZ it
03 




 2

2
sin

h

t








 

 , 

where 







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 
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k

h k

stt
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1

22

2
sin

2
sin)(

0


.  

Taking into account above expression for  tY0 , we  obtain 

          tututY 11
00 ~       2
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 , 

(the symbol ~ denotes an asymptotic equivalence) in other words 
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00 ~       2

1

1

222

2
sin

2
sin

2
sin

0
















 







 













tt
sttt r

k

h

k

hh k

 


. 
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Thus  

  ~0 tY      2

12
0

2
sin











tt
t

h




, as  0t , 

and as a result  

  ~0 tY 22
000
 


ββ

π

h

t , as  0t . 

Similarly, we have  

  ~0 tY      2

12

2
sin









 

tt
t

h

 


, as t , 

and as a result  

  ~0 tY












22

πππ ββ

π

h

πt , as t , 

  ~0 tY













 


22

πππ ββ

π

h

πt , as t . 

Paying attention to Statement 1, we obtain from these representations that  tY0  belongs  to the 

space     ,qL ,  when the inequalities  

       



  rk

tq
βrk

sqπ

h

k
k

k

k ,1,
2

;,1,
1

2
; 

     


  qqq

2
;

2
;

0

2
0  


 ; 

    








q

h

q

h 1

22
;

0

1

22
000 









; 

 





q

h 1

22









 , 

are fulfilled. When these inequalities are fulfilled, then the function  z  belongs to the Hardy 

class 
1H . Then, from the uniqueness theorem [17] we obtain that     zPz m  is a polynomial 

of order m , i.e.      zPzZzF m . 

Let us show that        zFzFzF  ;  belongs to the class     




   ωpmωp

HH
;;

. It is sufficient to 

prove that    1
0

tY  belongs to space    ππLp , . It is clear that the following relations hold  
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  ~
1

0


tY π

hββ

t 22
000 

 

, as 0t ; 

  ~
1

0


tY 

 

 22

h

t


 

 , as t ; 

  ~
1

0


tY 

 

 22

h

t


 





 , as t . 

From these representations follows that the function    1
0

tY  belongs to the space    ππLp , ,  

if the inequalities  

    ;,1,
1

2
;,1,

2
rk

sp

h
rk

tp k

k

k
k  





  

    πp

ββ

π

h

p

ββ

π

h πππ 1

22
;

0

1

22
000 









. 

 0

2
0 p

 ;  πp
βπ

2
 ;    p

2


 ; 

  πp

ββ

π

h πππ 1

22









 , 

are fulfilled. As a result, we obtain that when these inequalities are fulfilled, then  zF   belongs 

to the class    




   ωpmωp

HH
;;

, and thus, it is the general solution of the problem (3).  

Consequently, the following theorem is true.  

Theorem 1.  Let   1,  pWLp   and the functions  tA  and  tB  satisfy the conditions 1)-3). 

If the following inequalities are fulfilled  

      
 

,
22

;,1,
1

2

1

qp
rk

sp

h

sq k

k

k

; 

   πp

ββ

π

h

πq
πππ 1

22

1









 ;             (4) 

    0

1

220

1 000

p

ββ

π

h

q







; 

   πp

ββ

π

h

πq
πππ 1

22

1







,       



RIEMANN BOUNDARY VALUE PROBLEM                                                 142 

 

then the general solution of the homogeneous conjugate problem (3) in classes 

   




   ωpmωp

HH
;;

  has the form      zPzZzF m , where  zPm  is an arbitrary polynomial of 

order   m .  

From this theorem, we get the following 

Corollary 1. Let all the conditions of Theorem 1 be fulfilled. Then the homogeneous problem (3) 

has only the trivial solution in classes     






 -;; ωpmωp
HH  under the condition   0F . 

Now, let us consider the non-homogeneous conjugate problem (2) in classes    






 -;; ωpmωp
HH . 

It is obvious that if it is solvable, then under condition   0F  the solution is unique. Let us 

consider the function  zF1 : 

   
21

zZ
zF   

 


 

π

π
σiσi ze

σd

eZ

σf

1

~
, 

where   zZ  is the canonical solution of the  homogeneous problem  (3). Let  

         ,arg0 ZZ . 

Thus  

         
   









π

π
σtiσi

it
it

ze

σd

eZ

σf

π

eZ
tftρeF

12 0

0
1 . 

It is clear that, the following holds  

         ZZ arg~arg . 

Taking into account this relation from inequality (4) we obtain that the weight  τZ0  satisfies all 

the conditions of Statement 2 [30].  Therefore, the expression 

    
2

0
iteZ

tfK   
   




π

π
σtiσi ze

σd

eZ

σf

10

, 

belongs to the space    ,pL , more precisely the operator  K  continuously acts  

   ,pL .  As a result, we obtain the validity of the following  

Theorem 2.  Let all the conditions of Theorem 1 be fulfilled. Then under the condition   0F  

the non-homogeneous conjugate problem (2) is solvable for     , pLf , and it has a 
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unique solution in classes    






 -;; ωpmωp
HH , and the solution  zF is expressed by Cauchy type 

integral  

    
2

zZ
zF   

     


 










tii ze

d

eZ

f

1
, 

where  zZ  is an appropriate canonical solution of the homogeneous problem. 

4. Basicity of the system of exponents in  pL  

Now, we turn to the study of the basicity of the system (1) in     ππLp , . Take 

   ππLf p ,   and consider the non-homogeneous conjugate problem in classes 

   






 -;; ωpmωp
HH : 

  

 
 

 
















.0

,,
arg

arg
)()()(

F

τ
τρ

τf
τFτGτF

    (5) 

As has already been shown, if all conditions of Theorem 2 are fulfilled, the problem (5) has a 

unique solution for     ππLf p ,  . Consequently,     1HzF  и   


  11 HzF .  On the other 

hand, it is clear that     
 

ωp

it LeF
,

, and, as a result,    






ωp

it LeF
,

,    






ωp

it LeF
,1 . 

Require the fulfilment of the following inequalities 

    .,
11

 β
q

β
p ββ

          (6)

   

If the inequalities (6) hold,  then all conditions of the Statement 3 are fulfilled, i.e. the system  

  0
int

ne  (   1
int




ne ) forms a basis for  

 ωp

L
;

 (  


 -;1 ωp
L ). Consequently,  the function  iteF   

(  iteF  )  can be expanded in a biorthogonal series with respect to the system   0
int

ne  (  1
int




ne ) 

in space   

 ωp

L
;

 (  

 -;1 ωp

L ).  

Expanding  the function   iteF   (  iteF  )  in relation (5)  with respect to the systems   0
int

ne  

(  1
int




ne ) , respectively we obtain that  the function  f   is expanded in series with respect to the 

system (1) in  pL .  The fact that this series is unique follows from the (only) trivial solvability 

of the corresponding homogeneous problem (3), under the condition   0F . Combining the 
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inequalities (4), (6) we obtain the following results regarding the basicity of the system (1)  in 

 pL . 

Theorem 3.  Let    1,  pWLp   and the functions   tA  and  tB  satisfy the conditions 1)-3). 

If the following inequalities are fulfilled 

;,
11

 β
q

β
p ββ

 

    ;,1
1

2

1
rk

spπ

h

sq k

k

k

      0

1

220

1 000

p

ββ

π

h

q







; 

   πp

ββ

π

h

πq
πππ 1

22

1







;    πp

ββ

π

h

πq
πππ 1

22

1









 , 

then the system of exponents (1) forms a basis for   pL . 

From these results, it is not difficult to deduce the following 

Statement 4. Let    1,  pWLp   and 1Lρ   be a weighted function of the power form and 

     pNnn L ,  be some system. Then this system forms a basis for  pL  if and only if the 

system   Nnn   forms a basis for the weighted space   ,pL ,  where      pρω . 

Remark 1. Taking ρρρ   ,  from the previous results, we  can obtain  similar results with 

respect to the basicity of the double system of  exponents      1;0
int ; 


kn

iktetBetA  with degenerate 

coefficients   A  and  B   in the weighted space   ωpL ,   with a norm    ωp ,
 , where      pρω . 

In this case in contrast to the work [10], it is assumed various orders of degeneracy at points 

t .   

5.  Examples  

Let us consider some particular cases of the obtained results. 

5.1. As the functions   tA  and  tB  take  

        ,; titi etBetA    

where  t  is a piecewise Hölder function on   ;  with the discontinuity points  

   
____

11 ,1,0,...: rkssss kr
r

k   . We have        ttAtBt  2argarg  . Thus 

     ;,1,002
___

rkssh kkk       ;0020  h  
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      2h . 

Regarding the degenerate coefficients accept the following relations  

.,,;,1,0 000

____

  






  rkk    

Let  

      tttt 0 . 

Applying Theorem 3 to the system 

      Zn
nsigntntiet 

 ,         (7) 

we obtain the following  

Statement 5. Let    1,  pWLp   and the following inequalities be satisfied 

 

 
   

 

 
   

 

 
   

 

 
   

 .
11

;
11

;
0

100

0

1

;,1,
1001

;;;,
11

0

____

0
































qp

qp

qp

rk
sq

ss

sp

qp

k

kk

k



























 

Then, the system (7) forms a basis for  pLp 1, . 

5.2. Consider the case       ;,  tsignttt . In this case, we have  

         .2;200    

So, the following statement is true.  

Statement 6. Let    1,  pWLp   and with respect to the parameters R ,  the following 

inequalities are true  

 


  ;;,
11

0qp
 , 

       ;2

1

22

1
;

02

1

202

1 0








 

pqqp
  
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    ,
2

1

22

1










pq
                  (8) 

where  

 
 








 .,

,,0 0


 


p

p
p  

Then the system of exponents  

     Zn
nsigntsigntnsignniet 

  , 

forms a basis for  pL . 

5.3. For 0  from the Example 5.2 we obtain  

Corollary  2. Let    1,  pWLp   and  (8) and the inequality  

       








pqpq 2

1

22

1
;

2

1

22

1
  , 

are fulfilled. Then the system of exponents 

     Zn
tnsignniet 

 , 

forms a basis for  pL . 

5.4. Let us take the weighted function   of the form  

  3210

1

   tttttt , 

where   .0,, 11  tt   Paying  attention to the Statement 3  from  Theorem 3 we obtain  

Corollary   3. Let   1,  pWLp  and the following inequalities be satisfied  

,3,2,
2

1

22

1

;3,0;11
___





k
pp

γ
α

q

kpγ

kkk

k

γγ

k

γ

γk

 

where   

 
 
 













,3,2,

,1,

,0,0

1

kp

ktp

kp

p
k


  

and 1
11


kk

qp 

. Then the system of exponents 
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   Zn
tnsignnie 

 , 

forms a basis for 
  ,pL . 

Note that the cases  32    and   constpxp   coincides with the results of  10;9 . 

5.5. Let us provide another interesting result, which follows directly from Statement 4. 

Corollary 4.  Let   1,  pWLp   and the following inequalities be satisfied  

3,0,11  kpkk . 

Then the system of exponents  

   ,Zn
tnsignntie 

  

forms a basis for  
  ,pL ,  for R .  
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