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Abstract. In this paper, we give a simplified proof of the characterization theorem of a one-sided
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1. Introduction

Let X be a compact Hausdorff space, C(X) be the space of real-valued continuous

functions on X. For each f ∈ C(X), define ‖f‖1 =

∫
X

|f |dµ, where µ is an admissible

measure defined on X, that is, µ(O) > 0 for every non-empty open set O ⊂ X. Let C1(X)

be the space C(X) equipped with the norm ‖ · ‖1.

Let F be a compact subset of C1(X) and M be a finite-dimensional linear subspace of

C1(X). Define

M(F ) = {g ∈M | g ≤ f for all f ∈ F} =
⋂
f∈F

{g ∈M | g ≤ f},
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where g ≤ f if and only if g(x) ≤ f(x) almost everywhere in X. Denote by d(F,M(F )) :=

inf
g∈M(F )

max
f∈F
‖f − g‖1 and CM(F ) = {g ∈ M(F ) | max

f∈F
‖f − g‖1 = d(F,M(F ))}. The

elements of CM(F )(F ) are called one-sided simultaneous best L1−approximants of F in

M . The set M(F ) is a closed convex subset of the finite dimensional subspace M of X. In

order to ensure that the set M(F ) is non-empty, it is enough to assume that M contains a

strictly positive function. In fact, M(F ) 6= ∅ if and only if M contains a positive function.

Every bounded set has a one-sided best simultaneous approximation in the closed convex

set M(F ) of M and the set function F → CM(F )(F ) is continuous on B[C1(X)] with a

condition that the sets M(·) are equal, where B[C1(X)] is the space of non-empty bounded

subsets in the space C1(X) and C[C1(X)] the family of non-empty compact subsets in

the space C1(X).

Definition. The Hausdorff metric on B[C1(X)] is defined by

H(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

The motivation is the one-sided best approximation of an element, studied by [1] and the

parametric approximation in [4].

2. Main results

Theorem 1. Let M and M(F ) be as defined above and g∗ ∈M(F ). Then g∗ ∈ CM(F )(F )

if and only if sup
g∈M(F )

∫
X

gdµ =

∫
X

g∗dµ.

Proof. Assume that g∗ ∈ CM(F )(F ). Then, for each g ∈ M(F ), max
f∈F
‖f − g∗‖1 ≤

max
f∈F
‖f − g‖1. Hence max

f∈F

∫
X

|f − g∗|dµ ≤ max
f∈F

∫
X

|f − g|dµ.

⇔ max

∫
X

(f − g∗)dµ ≤ max
f∈F

∫
X

(f − g)dµ

⇔ max
f∈F

∫
X

fdµ−
∫
X

g∗dµ ≤ max
f∈F

∫
X

fdµ−
∫
X

gdµ

⇔
∫
X

gdµ ≤
∫
X

g∗dµ. Thus sup
g∈M(F )

∫
X

gdµ =

∫
X

g∗dµ.

Conversely, let g∗ ∈ M(F ) and sup
g∈M(F )

∫
X

gdµ =

∫
X

g∗dµ. Then, for all g ∈ M(F ),

max
f∈F
‖f − g‖1 = max

f∈F

∫
X

|f − g|dµ = max
f∈F

∫
X

(f − g)dµ
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= max
f∈F

∫
X

fdµ−
∫
X

gdµ ≥ max
f∈F

∫
X

fdµ−
∫
X

g∗dµ = max
f∈F

∫
X

(f − g∗)dµ

= max
f∈F

∫
X

|f − g∗|dµ = max
f∈F
‖f − g∗‖1. Hence g∗ ∈ CM(F )(F ). �

Denote

Z(f − g) := {x ∈ X|f(x) = g(x)}.

Theorem 2. Let M be a finite-dimensional subspace of C1(X). Suppose

∫
X

gdµ 6= 0

for some g ∈ M and that there is a g0 ∈ M such that g0 < f on X for all f ∈ F . Let

g∗ ∈M(F ). Then g∗ ∈ CM(F )(F ) if and only if, for all g ∈M with g ≤ 0 on
⋃
f∈F

Z(f−g∗),

we have

∫
X

gdµ ≤ 0.

Proof. Let g∗ ∈ CM(F )(F ). Then, there is an h ∈ M such that

∫
X

hdµ > 0. If
⋃
f∈F

Z(f −

g∗) = ∅, then, there is an ε > 0 such that g∗ + εh ≤ f for each f ∈ F . Hence, g∗ + εh ∈

M(F ) and ∫
X

(g∗ + εh)dµ =

∫
X

g∗dµ+ ε

∫
X

hdµ >

∫
X

g∗dµ.

This contradicts the fact that g∗ ∈ CM(F )(F ). Therefore
⋃
f∈F

Z(f − g∗) 6= ∅.

Assume that there is a g ∈ M with g ≤ 0 on
⋃
f∈F

Z(f − g∗) and

∫
X

gdµ > 0. Now

by hypothesis, there is a g0 ∈ M such that g0 < f on X for each f ∈ F . Then,

ĝ = g∗ − g0 > 0 on
⋃
f∈F

Z(f − g∗). Hence, there is a δ > 0 such that g − δĝ < 0 on

⋃
f∈F

Z(f − g∗) and

∫
X

(g − δĝ)dµ =

∫
X

gdµ − δ

∫
X

ĝdµ > 0. For each f ∈ C1(X), let

J(f) := {x ∈ X | f(x) < 0}. Then
⋃
f∈F

(f − g∗) ⊂ J(g − δĝ). The set X \ J(g − δĝ)

is compact. Hence there is a constant m > 0 such that m ≤ f − g∗ on X \ J(g − δĝ)

and there is a constant M such that g − δĝ ≤ M on X. Let ε =
m

M
and ĥ = g − δĝ.

Then g∗ + εĥ ∈ M(F ). Taking integral, we obtain

∫
X

g∗dµ <

∫
X

ĥdµ, which contradicts

g∗ ∈ Cm(F )(F ).

Conversely, let g ∈ M(F ). Now for all x ∈
⋃
f∈F

Z(f − g∗), there is an f ∈ F such that

f(x) = g∗(x). Hence g(x) ≤ g∗(x). Therefore g−g∗ ≤ 0 on
⋃
f∈F

Z(f−g∗). By assumption
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X

(g − g∗)dµ ≤ 0 which implies that

∫
X

gdµ ≤
∫
X

g∗dµ. Thus, sup
g∈M(F )

∫
X

gdµ =

∫
X

g∗dµ

and hence g∗ ∈ CM(F )(F ). �

Lemma 3. [2] Let M be an n−dimensional subspace of C(X) and assume that

∫
X

gdµ 6= 0

for some g ∈M . Let K be a closed subset of X with the property that, if g ∈M satisfies

g(x) ≤ 0 for all x ∈ K, then

∫
X

gdµ < 0. Then there exist points x1, x2, . . . , xk ∈

K, 1 ≤ k ≤ n and positive numbers λ1, λ2, . . . , λk such that

∫
X

gdµ =
k∑

i=1

λig(xi) for

each g ∈M .

Theorem 4. Let M be an n−dimensional linear subspace of C1(X) such that

∫
X

gdµ 6= 0

for some g ∈ M . Assume that there is a g0 ∈ M such that g0 < f for each f ∈ F .

Then g∗ ∈ CM(F )(F ) if and only if, there are 1 ≤ k ≤ n distinct points x1, x2, . . . , xk ∈⋃
f∈F

Z(f − g∗) and k positive numbers λ1, λ2, . . . , λk such that

∫
X

gdµ =
k∑

i=1

λig(xi) for

each g ∈M .

Proof. Assume g∗ ∈ CM(F )(F ). Then, by the above theorem, for each g ∈ M with

g ≤ 0 on
⋃
f∈F

Z(f − g∗), we have

∫
X

gdµ ≤ 0. Let K =
⋃
f∈F

Z(f − g∗), then by the

lemma, there are points x1, x2, . . . , xk ∈ K and positive numbers λ1, λ2, . . . , λk such that∫
X

gdµ =
k∑

i=1

λig(xi) for each g ∈M .

Conversely, assume there are k distinct points x1, x2, . . . , xk ∈
⋃
f∈F

Z(f−g∗) and k positive

numbers λ1, λ2, . . . , λk such that

∫
X

gdµ =
k∑

i=1

λig(xi) for each g ∈ M . Then for each

g ∈M(F ),

∫
X

gdµ =
k∑

i=1

λig(xi)

≤
k∑

i=1

λif(xi) for all f ∈ F =
k∑

i=1

λig
∗(xi) =

∫
X

g∗dµ. That is∫
X

gdµ =

∫
X

g∗dµ for each g ∈ M(F ). Hence sup
g∈M(F )

∫
X

gdµ =

∫
X

g∗dµ. Therefore

g∗ ∈ CM(F )(F ). �
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Theorem 5. Let M be a finite-dimensional subspace of C1(X). For any F,G ∈ B[C1(X)]

with M(F ) = M(G) and any ε > 0, there exists δ > 0 such that H(F,G) < δ implies

H(CM(F )(F ), CM(G)(G)) < 2ε.

Proof. For any ε > 0, let 0 < δ <
ε

2
< min(d(F,M(F )), d(G,M(G))) where F,G ∈

B[C1(X)] withM(F ) = M(G). AssumeH(F,G) < δ. Then, for any x ∈ C1(X), |d(x, F )−

d(x,G)| ≤ δ. In fact, for any u ∈ F , there exists v ∈ G such that ‖u − v‖ < δ. Then

‖u− v‖ − ‖x− v‖ ≤ ‖u− v‖ < δ. Then ‖u− x‖ ≤ ‖x− v‖+ δ.

Thus d(x, F ) ≤ d(x,G)+δ. Similarly, d(x,G) ≤ d(x, F )+δ. For any x ∈ CM(G)(G), d(x, F ) ≤

d(x,G)+δ. Thus d(M(F ), F ) ≤ d(M(G), G)+δ. Hence |d(M(F ), F )−d(M(G), G)| ≤ δ.

For any z ∈ CM(F )(F ),

d(z,G) ≤ d(z, F ) + δ = d(M(F ), F ) + δ

≤ d(M(G), G) + 2δ

≤ d(M(G), G)(1 + ε).

There exists w ∈ CM(G)(G) with ‖z − w‖ ≤ 2ε,

so sup
z∈CM(F )(F )

inf
w∈CM(G)(G)

‖z − w‖ ≤ 2ε. Hence H(CM(F )(F ), CM(G)(G)) ≤ 2ε. �

References

[1] A.M Pinkus, On L1−Approximation,Cambridge University Press, 1988.

[2] Sung Ho Park and Hyang Joo Rhee, One-Sided Best Simultaneous L1−Approximation For a Compact

Set, Bull. Korean. Math Soc, 35 (1998) No. 1 pp.127-129.

[3] Mun Bae Lee, Sung Ho Park and Hyang Joo Rhee, Continuity of One-Sided Best Simultaneous

Approximations, Bull. Korean Math. Soc 37 (2000) No.4 pp.743-753.

[4] S. C Mabizela, Parametric Approximation, Doctoral Dissertation, The Pennsylvania State University,

University Park, 1991.


