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Abstract. In this paper, we introduce the notion of edge domination on S−valued graphs and study some proper-

ties.
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1. Introduction

In[5], the authors introduced the notion of S− valued graphs, where S is a semiring. In graph

theory, domination of graphs is the most powerful area of research for, it has several applications

in other areas of sciences. It was initicted by Berge [1]. In [6], the authors have studied the

vertex domination on S− valued graphs. In this paper we discuss the notion of edge domination

on S− valued graphs.
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2. Preliminaries

In this section we recall some basic definitions that are needed for our work.

Definition 2.1. [3] A semiring (S,+, ·) is an algebraic system with a non-empty set S together

with two binary operations + and · such that

(1) (S,+,0) is a monoid.

(2) (S, ·) is a semigroup.

(3) For all a,b,c ∈ S, a · (b+ c) = a ·b+a · c and (a+b) · c = a · c+b · c.

(4) 0 · x = x ·0 = 0 ∀ x ∈ S.

Definition 2.2. [3] Let (S,+, ·) be a semiring. � is said to be a Canonical Pre-order if for

a,b ∈ S, a� b if and only if there exists an element c ∈ S such that a+ c = b.

Definition 2.3. [1] A set F of edges in a graph G = (V,E) is called an edge dominating set in G

if for every edge e∈ E−F there exist an edge f ∈ F such that e and f have a vertex in common.

Definition 2.4. [1] A dominating set S is a minimal edge dominating set if no proper subset of

S is an edge dominating set in G.

Definition 2.5. [1]

A set M ⊆ E is an Independent edge set o f G i f f ,g ∈M, N( f )∩{g}= φ .

Definition 2.6. [1] A set M ⊆ E is an Independent edge dominating set of G if M is both an

independent edge set and a dominating edge set.

Definition 2.7. [5] Let G = (V,E ⊂ V ×V ) be a given graph with V,E 6= φ . For any semiring

(S,+, ·), a semiring-valued graph (or a S−valued graph), GS, is defined to be the graph GS =

(V,E,σ ,ψ) where σ : V → S and ψ : E→ S are defined to be

ψ(x,y) =

 min{σ(x),σ(y)} i f σ(x)� σ(y) or σ(y)� σ(x)

0 otherwise

for every unordered pair (x,y) of E ⊂V ×V. We call σ , a S−vertex set and ψ, a S−edge set of

S-valued graph GS.
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Definition 2.8. [4] Let GS = (V,E,σ ,ψ) be a S− valued graph. Let e ∈ E.The open neighbour-

hood of e, denoted byNS(e), is defined to be the set

NS(e) = {(ei,ψ(ei)) / e and ei ∈ E are ad jacent}

The closed neighbourhood of e, denoted byNS[e], is defined to be the set

NS[e] = NS(e)∪ (e,ψ(e))

Definition 2.9. [6]A vertex v in GS is said to be a weight dominating vertex if σ(u) � σ(v),

∀ u ∈ NS[v].

Definition 2.10. [6]A subset D ⊆ V is said to be a weight dominating vertex set if for each

v ∈ D,σ(u)� σ(v), ∀ u ∈ NS[v].

3. Edge Domination on S−Valued Graphs

In this section, we introduce the notion of edge domination in S−valued graph, analogous to

the notion in crisp graph theory, and prove some simple results.

Definition 3.1. An edge e in GS is said to be a weight dominating edge if ψ(ei) � ψ(e) ∀ei ∈

NS[e].

Example 3.2. Let (S = {0,a,b,c} ,+, ·) be a semiring with the following Cayley Tables:

+ 0 a b c

0 0 a b c

a a a a a

b b a b b

c c a b c

· 0 a b c

0 0 0 0 0

a 0 a a a

b 0 b b b

c 0 b b b

Let � be a canonical pre-order in S, given by

0� 0, 0� a, 0� b, 0� c, a� a, b� b, b� a, c� c, c� a, c� b
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Consider the S− graph GS,

v (b)1 e (b)1 v (a)2
e (b)2 v (b)3

e (b)3

v (a)4e (c)4
v (c)5

e (a)5e (c)6
e (c)7

Define σ : V → S by

σ(v1) = b,σ(v2) = a,σ(v3) = b,σ(v4) = a,σ(v5) = c

and ψ : E→ S by

ψ(e1) = ψ(e2) = ψ(e3) = b,ψ(e4) = ψ(e6) = ψ(e7) = c,ψ(e5) = a

Clearly the edge e5 o f GS is a weight dominating edge of GS.

Definition 3.3. A subset D ⊆ E is said to be a weight dominating edge set if for each e ∈

D,ψ(ei)� ψ(e), ∀ei ∈ NS[e].

Example 3.4. Consider the semiring (S = {0,a,b,c} ,+, ·) with canonical pre-order given in

example 3.2

Clearly S is an additively idempotent semiring,

Consider the underlying graph G of example 3.2

1v (c)1 e (c) v (a)2
e (b)2 v (b)3

e (b)3

v (a)4
e (a)4v (a)5

e (c)
7 e (a)6

e (a)5

Define σ : V → S by

σ(v1) = c,σ(v2) = σ(v4) = σ(v5) = a,σ(v3) = b
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and ψ : E→ S by

ψ(e1) = ψ(e7) = c,ψ(e2) = ψ(e3) = b,ψ(e4) = ψ(e5) = ψ(e6) = a

Clearly D = {e4,e5,e6} is a weight dominating edge set.

Further D1 = {e4,e5} ,D2 = {e4,e6} ,D3 = {e5,e6} ,D4 = {e4,e5,e6} are all weight dominating

edge sets.

Definition 3.5. If D is weight dominating edge set of GS, then the scalar cardinality of D is

defined by |D|S = ∑e∈D ψ(e)

In the above example 3.4 , the scalar cardinality of the weight dominating sets are respectively

given by |D1|S = a; |D2|S = a; |D3|S = a; |D4|S = a.

Definition 3.6. A subset D⊆ E is said to be a minimal weight dominating edge set if

(1) D is a weight dominating edge set.

(2) No proper subset of D is a weight dominating edge set.

In the above example 3.4 ,D1 = {e4,e5} ,D2 = {e4,e6} ,D3 = {e5,e6} are all minimal weight

dominating edge sets.

Definition 3.7. The edge S-domination number of GS denoted by γS
E(G

S) is defined by γS
E(G

S) =

(|D|S, |D|),where D is the minimal weight dominating edge set.

In the above example 3.4 ,D1 = {e4,e5} ,D2 = {e4,e6} ,D3 = {e5,e6} are all minimal weight

dominating edge sets with edge S− domination number

γ
S
E(G

S) = (|D1|S, |D1|) = (|D2|, |D2|) = (|D3|, |D3|) = (a,2)

Remark 3.8. Minimal weight dominating edge set in a S−valued graph need not be unique in

general. For, in example 3.4, D1 = {e4,e5} ,D2 = {e4,e6} ,

D3 = {e5,e6} are all minimal weight dominating edge sets.

Definition 3.9. A subset D⊆ E is said to be a maximal weight dominating edge set if

(1) D is a weight dominating edge set.



64 S. KIRUTHIGA DEEPA, S. MANGALA LAVANYA, AND M. CHANDRAMOULEESWARAN

(2) If there is no subset D′ of E such that D ⊂ D′ ⊂ E and D′ is a weight dominating edge

set.

In the above example 3.4,D4 = {e4,e5,e6} is a maximal weight S− dominating edge set.

Definition 3.10. A subset M ⊆ E is an independent edge set of GS if f ,g ∈M such that NS( f )∩

(g,ψ(g)) = φ .

Example 3.11. Consider the semiring (S = {0,a,b,c} ,+, ·) with canonical pre-order given in

example 3.2

v (a)1

v (b)2

v (c)3

v (a)4 v (b)5

v (a)6

7
e (b)1

e (c)
2

e (c)3

e (b)4

e (c)
5

e (c)6

v (b)

e (b)
7

e (c)
8

e (c)9

Define σ : V → S by

σ(v1) = σ(v4) = σ(v6) = a,σ(v2) = σ(v5) = σ(v7) = b,σ(v3) = c

and ψ : E→ S by

ψ(e1) = ψ(e4) = ψ(e7) = b,ψ(e2) = ψ(e3) = ψ(e5) = ψ(e6) = ψ(e8) = ψ(e9) = c

Consider the edge set D = {e1,e4,e7}

Clearly D is an independent edge set of GS.

Further D1 = {e1,e4} ,D2 = {e1,e7} ,D3 = {e4,e7} ,D4 = {e1,e4,e7} are all independent edge
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sets of GS.

Definition 3.12. A subset M ⊆ E is said to be a minimal independent edge set if

(1) M is an independent edge set.

(2) No proper subset of M is an independent edge set.

In the above example 3.12,D1 = {e1,e4} ,D2 = {e1,e7} ,D3 = {e4,e7} are all minimal inde-

pendent edge sets.

Definition 3.13. A subset M ⊆ E is said to be a maximal independent edge set if

(1) M is an independent edge set.

(2) If there is no subset M′ of E such that M ⊂M′ ⊂ E and M′ is an independent edge set.

In the above example 3.12,D4 = {e1,e4,e7} is a maximal independent edge set.

Definition 3.14. A subset M ⊆ E is said to be an independent weight dominating edge set if M

is both independent edge set and a weight dominating edge set.

Example 3.15. Consider the semiring (S = {0,a,b,c} ,+, ·) with canonical pre-order given in

example 3.2

Consider the S−graph GS,

v (b)1
e (b)1 v (a)2 2e (b) v (b)3

e (b)3 v (a)4

e (b)4

v (b)5

e (a)5

v (a)6

e (b)6e (a)
7

v (a)7

e (b)8

Define σ : V → S by

σ(v1) = σ(v3) = σ(v5) = b,σ(v2) = σ(v4) = σ(v6) = σ(v7) = a
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and ψ : E→ S by

ψ(e1) = ψ(e2) = ψ(e3) = ψ(e4) = ψ(e6) = ψ(e8) = b,ψ(e5) = ψ(e7) = a

Consider the edge set D = {e5,e7}

Clearly D = {e5,e7} is an independent weight dominating edge set.

Theorem 3.16. A weight dominating edge set D of a graph GS is a minimal weight dominating

edge set of G iff every edge e ∈ D satisfies atleast one of the following properties:

(1) there exist an edge f ∈ E−D, such that NS( f )∩ (D×S) = {(e,ψ(e))}

(2) e is adjacent to no edge of D.

Proof : Let e ∈ D. Assume that e is adjacent to no edge of D, then D−{e} cannot be a weight

dominating edge set. ⇒ D is a minimal weight dominating edge set.

On the other hand, if for any e ∈ D there exist a f ∈ E −D such that NS( f )∩ (D× S) =

{(e,ψ(e))}

Then f is adjacent to e ∈ D and no other edge of D.

In this case also, D−{e} cannot be a weight dominating edge set of GS.

Hence D is a minimal weight dominating edge set.

Conversely, assume that D is a minimal weight dominating edge set of GS.

Then for each e ∈ D, D−{e} is not a weight dominating edge set of GS.

∴ there exist an edge, f ∈ E− (D−{e}) that is adjacent to no edge of (D−{e}).

If f = e, then e is adjacent to no edge of D.

If f 6= e, then D is a weight dominating edge set and f /∈ D⇒ f is adjacent to atleast one edge

of D. However f is not adjacent to any edge of D−{e} .

⇒ NS( f )∩D×S = {(e,ψ(e))} .

Remark 3.17. The above theorem can be rephrased as follows:

A weight dominating edge set D of a graph GS is a minimal weight dominating edge set of GS

iff for every edge e ∈ D,

(1) either the edge e, dominates some edge of E−D such that no other edge of D dominates.

(2) or no other edge of D,dominates e.
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Theorem 3.18. A set D ⊆ E of GS is an independent weight dominating edge set iff D is a

maximal independent edge set in GS.

Proof: Clearly every maximal independent edge set D in GS is a weight dominating independent

edge set.

Conversely, assume that D is an independent weight dominating edge set.

Then D is independent and every edge not in D is adjacent to a edge of D and therefore D is a

maximal independent edge set in GS.

Theorem 3.19. Every maximal independent edge set of edges D in GS is a minimal weight

dominating edge set.

Proof : Let D be a maximal independent edge set of edges in GS. Then by theorem 3.18 , D is

a weight dominating edge set.

Since D is independent, every edge of D is adjacent to no edge of D.

Thus, every edge of D satisfies the second condition of theorem 3.16. Hence D is a minimal

weight dominating edge set in GS.
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