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Abstract. Let R be a ring, σ an automorphism of R such that aσ(a) ∈ N(R) if and only if a ∈ N(R), where N(R)

is the set of nilpotent elements of R and δ a σ -derivation of R such that δ (P)⊆ P, for all minimal prime ideal P of

R. We recall that a ring R is called an SI-ring if for a, b ∈ R, ab = 0 implies aRb = 0. In this paper we show that

if R is a commutative Noetherian SI-ring, which is also an algebra over Q and σ and δ be as above, then R[x;σ ,δ ]

is 2-primal.
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1. Introduction

All rings are associative with identity 1 6= 0. Let R be a ring, σ be an endomorphism of R

and δ be a σ -derivation of R. Then δ : R→ R is an additive map such that δ (ab) = δ (a)σ(b)+
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aδ (b), for all a, b ∈ R. For example let σ be an automorphism of a ring R and δ : R→ R any

map. Let φ : R→M2(R) be a defined by

φ(r) =

 σ(r) 0

δ (r) r

, for all r ∈ R.

Then δ is a σ -derivation of R if and only if φ is a homomorphism. In case σ is the identity map,

δ is called just a derivation of R. For example for any endomorphism τ of a ring R and for any

a ∈ R, ρ : R→ R defined as ρ(r) = ra−aτ(r) is a τ-derivation of R.

Now let R be a ring, σ an automorphism of R and δ a σ -derivation of R. Then R[x;σ ,δ ] =

{ f = Σn
i=0xiai, ai ∈ R, n ∈N} subject to the relation ax = xσ(a)+δ (a) for all a ∈ R. We denote

the Ore extension R[x;σ ,δ ] by O(R). In case σ is the identity map, we denote the ring of

differential operators R[x;δ ] by D(R). If δ is the zero map, we denote the skew polynomial ring

R[x;σ ] by S(R).

The field of rational numbers, the field of complex numbers and the set of positive integers

are denoted by Q, C and N respectively unless otherwise stated. Spec(R) denotes the set of

prime ideals of R. MinSpec(R) denotes the set of minimal prime ideals of R. For a ring R the

prime radical is denoted by P(R) and the set of nilpotent elements is denoted by N(R). In this

paper we will discuss SI-property over Ore extensions.

Definition 1.1 (Birkenmeier-Heatherly-Lee [4]). A ring R is 2-primal if and only if the set

of nilpotent elements and prime radical of R are same if and only if the prime radical is a

completely semi prime ideal.

An ideal I of a ring R is called completely semiprime if a2 ∈ I implies a ∈ I, where a ∈ R.

Example 1.2 1.A reduced ring is 2-primal. For a commutative ring P(R) and N(R) coincide, so

it is also 2-primal.

2. Let R = F [x] be the polynomial ring over the field F . Then R is 2-primal with P(R) = {0}.

3. Let R = M2(Q), the set of 2× 2 matrices over Q. Then R[x] is a prime ring with non-zero

nilpotent elements and, so can not be 2-primal.

They also introduced the concept of 2-primal ideal. Shin in [12], showed that every proper

ideal of a ring R is 2-primal if and only if every prime ideal of R is completely prime in Propo-

sition (1.13) of [12]. He also proved that a ring R is 2-primal if and only if every minimal
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prime ideal of R is completely prime in Proposition (1.11) of [12]. Birkenmeier-Heatherly-Lee

provided various examples relating to this equivalent condition in [4]. The 2-primal property of

O(R), where R is a local ring, σ is an automorphism of R and δ is a σ -derivation of R is also

discussed by Greg Marks in [9]. The study of 2-primal condition was continued by Hirano [5]

and Sun [11], etc.

This article concerns the study of weak σ -rigid SI- rings and their extensions in terms of

2-primal rings.

2. Weak σ -rigid rings and SI-rings

Definition 2.1(Krempa [6]). Let R be a ring and σ an endomorphism of R. Then σ is said to

be a rigid endomorphism if aσ(a) = 0 implies that a = 0, for a ∈ R. The ring R is said to be a

σ -rigid ring if there exists a σ -rigid endomorphism R.

For example let R =C, and σ : C→C be the map defined by σ(a+ ib) = a− ib, a, b ∈ R. Then

it can be seen that σ is a rigid endomorphism of R.

Definition 2.2 (Kwak [7]). Let R be a ring and σ an endomorphism of R. Then R is said to be

a σ(∗)-ring if aσ(a) ∈ P(R) implies a ∈ P(R) for a ∈ R.

Example 2.3(Example (2) of [7]). Let R =

 F F

0 F

, where F is a field.

Then P(R) =

 0 F

0 0

. Let σ : R→ R defined by σ

( a b

0 c

)=
 a 0

0 c

. Then it can

be seen that σ is an endomorphism of R and R is a σ(∗)-ring.

We note that the above ring is not σ -rigid. For let 0 6= a ∈ F . Then 0 a

0 0

σ

( 0 a

0 0

)=
 0 0

0 0

, but

 0 a

0 0

 6=
 0 0

0 0

.

Ouyang in [10] introduced weak σ -rigid rings, where σ is an endomorphism of ring R. These

rings are related to 2-primal rings.

Definition 2.4 (Ouyang [10]). Let R be a ring and σ an endomorphism of R such that aσ(a) ∈

N(R) if and only if a ∈ N(R) for a ∈ R. Then R is called a weak σ -rigid ring.

Example 2.5 (Example (2.1) of Ouyang [10]). Let σ be an endomorphism of a ring R such that
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R is a σ -rigid ring. Let A =
{

a b c

0 a d

0 0 a

 | a, b, c, d ∈ R
}

be a subring of T3(R), the ring

of upper triangular matrices over R. Now σ can be extended to an endomorphism σ of A by

σ((ai j)) = (σ(ai j)). Then it can be seen that A is a weak σ -rigid ring.

Definition 2.6 (Shin [12]). Let R be a ring. Then R is called an SI-ring if for a, b ∈ R, ab = 0

implies aRb = 0.

Example 2.7 1. Let R =
{ a 0

0 b

, a, b ∈ Z
}

.

The only matrices A and B satisfying AB = 0 are of the type a 0

0 0

 and

 0 0

0 b

; a, b ∈ Z.

i.e., A =

 a 0

0 0

 and B =

 0 0

0 b

. Now for all K =

 c 0

0 d

 ∈ R,

AB =

 a 0

0 0

 0 0

0 b

 =

 0 0

0 0


implies AKB =

 a 0

0 0

 c 0

0 d

 0 0

0 b


=

 a 0

0 0

( c 0

0 d

 0 0

0 b

)

=

 a 0

0 0

 0 0

0 db


=

 0 0

0 0

 .

This implies R is an SI-ring.

2. Reduced rings (i.e., rings without nonzero nilpotent elements) are obviously SI-rings, right

(left) duo rings are SI-rings by ([12], Lemma 1.2). Shin showed that SI-rings are 2-primal in

([12], Theorem 1.5), and so reduced rings are 2-primal.

3. We take the rings in Example (5.3) of [12]. Let F = Z2(y) be the field of rational functions
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over Z2 with y an indeterminate. Consider the ring R = { f (x) ∈ F [x] | xy+ yx = 1}. Then

clearly R is a domain, so it is reduced and hence an SI-ring.

Now let R be a commutative Noetherian SI-ring, σ be an automorphism of R such that R is

a weak σ -rigid ring and δ be a σ -derivation of R such that δ (P)⊆ P, for all P ∈MinSpec(R).

Then O(R) is 2-primal if and only if O(P(R)) = P(O(R)). This is proved in Proposition 3.15.

3. Main results

Definition 3.1 Symmetric and almost symmetric rings: In Lambek [8], a ring R is called sym-

metric provided abc = 0 implies acb = 0 for any a,b,c ∈ R.

A ring R is called almost symmetric if it satisfies:

(S1) For each element a ∈ R, ar is an ideal of R, where ar = {b ∈ R : ab = 0}; and

(S2) For any a, b, c ∈ R, if a(bc)n = 0 for a positive integer n, then abmcm = 0 for some positive

integer m.

Remark 3.2 We define S1 condition for Ore extension O(R) as:

For each element f ∈ O(R), f r is an ideal of O(R), where f r = {g ∈ O(R) : f g = 0}.

Proposition 3.3 For any ring R, the following are equivalent:

(a): R is an SI-ring.

(b): Every minimal prime ideal is completely prime.

Proof. Since R is an SI-ring. So, by Proposition (1.5) of Shin [12] R is 2-primal implies that

P(R) coincides with the set of all nilpotent elements of R. Therefore, by Proposition (1.11) of

Shin [12] every minimal prime ideal is completely prime.

Proposition 3.4 Let R be a ring. Then R is an SI-ring implies that P(R) is completely semiprime.

Proof. Since R is an SI-ring. So, by Proposition (1.5) of Shin [12] R is 2-primal implies that

P(R) is completely semiprime.

Theorem 3.5 Let R be a Noetherian (even commutative) SI-ring. Let σ be an automorphism of

R such that R is a weak σ -rigid ring. Then R is a σ(∗)-ring.

Proof. Let R be an SI-ring. Then R is 2-primal, so N(R) = P(R). Since R is a weak σ -rigid

ring, so aσ(a) ∈ N(R) implies that a ∈ N(R). Therefore, aσ(a) ∈ P(R) implies that a ∈ P(R).

Hence R is a σ(∗)-ring.
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Theorem 3.6 Let R be a commutative Noetherian ring. Then R is an SI-ring implies that N(R)

is completely semiprime.

Proof. The proof is obvious by Proposition () and Theorem (1.5) of Shin [12].

Corollary 3.7 Let R be a commutative Noetherian ring and σ be an automorphism of R. Then

R is a weak σ -rigid SI-ring if and only if for each minimal prime P of R, σ(P) = P and P is a

completely prime ideal of R.

Proof. Combining Theorem 3.5 and Theorem (5) of [3].

Theorem 3.8 Let R be an SI-ring. Then:

For any minimal prime ideal P of R with δ (P)⊆ P, O(P) is completely prime ideal of O(R).

Proof. Since R is an SI-ring, so every minimal prime ideal of R is completely prime by Propo-

sition 3.3. This implies P is completely prime ideal of R with δ (P) ⊆ P. Which implies that

O(P) is a completely prime ideal of O(R) by Proposition (2.2) of [1].

Proposition 3.9 Let R be a ring and f r be an ideal of O(R) for all f ∈ O(R). Then O(R) is an

SI-ring implies O(R)/P(O(R)) is also an SI-ring.

Proof. Let O(R) be an SI-ring. We have to show that O(R)/P(O(R)) is an SI-ring. Let f +

P(O(R)), g+P(O(R)) ∈O(R)/P(O(R)) be such that ( f +P(O(R)))(g+P(O(R))) = P(O(R)).

This implies that f g+P(O(R))=P(O(R)), i.e., f g∈P(O(R)). Now, O(R) is SI-ring. Therefore

for j, k ∈O(R) such that jk = 0 implies j(O(R))k = 0, i.e., jlk = 0, for all l ∈O(R)......(1) Now

for all h + P(O(R)) ∈ O(R)/P(O(R)); ( f + P(O(R)))(h + P(O(R)))(g + P(O(R))) = f hg +

P(O(R)). Since for all f ∈ O(R), f r is given to be an ideal of O(R), where f r = {g ∈ O(R) :

f g = 0}. This implies by (1) that f hg = 0 so that ( f +P(O(R)))(h+P(O(R)))(g+P(O(R))) =

P(O(R)); for all h+P(O(R)) ∈ O(R)/P(O(R)). Hence, O(R)/P(O(R)) is an SI-ring.

Theorem 3.10 Let R be a ring and f r be an ideal of O(R) for all f ∈ O(R). Then O(R) is an

SI-ring implies O(R)/P(O(R)) is a 2-primal ring.

Proof. It is enough to show that O(R)/P(O(R)) is an SI-ring. Rest is obvious by Theorem (1.5)

of Shin [12].

Corollary 3.11 Let R be a ring and f r be an ideal of O(R) for all f ∈O(R). Then O(R)/P(O(R))

is a 2-primal ring.

Proof. For this it is enough to show that O(R) is an SI-ring (by Lemma (1.2) of [12]). Rest is
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obvious by above Theorem 3.10.

Theorem 3.12 Let R be commutative Noetherian SI-ring. Let σ be an automorphism of R

such that R is a weak σ -rigid ring and δ be a σ -derivation of R such that δ (P) ⊆ P, for all

P ∈MinSpec(R). Then O(P) is completely prime ideal of O(R).

Proof. Since R is weak σ -rigid SI-ring, so we have σ(P) = P and P is completely prime ideal

of R by Corollary 3.7. So, P is completely prime ideal of R and δ (P)⊆ P. Therefore, O(P) is a

completely prime ideal of O(R) by Theorem 3.8.

Theorem 3.13 Let R be a commutative Noetherian SI-ring. Let σ be an automorphism of R

such that R is a weak σ -rigid ring and δ be a σ -derivation of R such that δ (P(R))⊆ P(R). Then

δ (P)* P implies σ(P) 6= P.

Proof. Suppose δ (P) * P, i.e., let a ∈ P be such that δ (a) /∈ P. To show σ(P) 6= P. Suppose

σ(P) = P. Then by Corollary 3.7 P is completely prime ideal of R. Therefore for any a ∈ P

there exits b /∈ P such that ab ∈ P(R) by Corollary (1.10) of Shin [12]. Now δ (P(R))⊆ P(R),

and therefore δ (ab) ∈ P(R) i.e., δ (a)σ(b) + aδ (b) ∈ P(R) ⊆ P. Now aδ (a) ∈ P implies

δ (a)σ(b) ∈ P implies either δ (a) ∈ P or σ(b) ∈ P.

Case I: If δ (a) ∈ P, a contradiction.

Case II: If σ(b) ∈ P, but b /∈ P implies σ(b) /∈ σ(P) = P, a contradiction.

Therefore, σ(P) 6= P.

Proposition 3.14 Let R be a commutative Noetherian SI-ring. Let σ be an automorphism of

R such that R is a weak σ -rigid ring and δ be a σ -derivation of R such that δ (P) ⊆ P, for all

P ∈MinSpec(R). Then O(R) is 2-primal if and only if O(P(R)) = P(O(R)).

Proof. Let O(R) be 2-primal. Now R is weak σ -rigid SI-ring implies σ(P) = P by Corollary

3.7. Then by Theorem 3.12 P(O(R))⊆ O(P(R)). Let f (x) = Σn
j=0x ja j ∈ O(P(R)). Now R is a

2-primal subring of O(R) by Theorem (1.5) of Shin [12], which implies that a j is nilpotent and

thus a j ∈ N(O(R)) = P(O(R)), and so we have x ja j ∈ P(O(R)) for each j, 0 ≤ j ≤ n, which

implies that f (x) ∈ P(O(R)). Hence O(P(R)) = P(O(R)).

Conversely suppose O(P(R)) = P(O(R)). We will show that O(R) is 2-primal. Let g(x) =

Σn
i=0xibi ∈ O(R), bn 6= 0, be such that (g(x))2 ∈ P(O(R)) = O(P(R)). We will show that

g(x) ∈ P(O(R)). Now leading coefficient σ2n−1(bn)bn ∈ P(R) ⊆ P, for all P ∈ MinSpec(R).
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Now since R is weak σ -rigid SI-ring we have σ(P) = P and P is completely prime by Corol-

lary (). Therefore we have bn ∈ P, for all P ∈ MinSpec(R), i.e., bn ∈ P(R). Now since

δ (P) ⊆ P for all P ∈ MinSpec(R), we get (Σn−1
i=o xibi)

2 ∈ P(O(R)) = O(P(R)) and as above

we get bn−1 ∈ P(R). With the same process in a finite number of steps we get bi ∈ P(R) for

all i, 0 ≤ i ≤ n. Thus we have g(x) ∈ O(P(R)), i.e., g(x) ∈ P(O(R)). Therefore P(O(R)) is a

completely semiprime ideal of O(R). Hence O(R) is 2-primal.

Corollary 3.15 Let R be a ring and f r be an ideal of O(R) for all f ∈ O(R). Then O(P(R)) =

P(O(R)).

Proof. Since O(R) is an SI-ring by Lemma (1.2) of [12], so it is 2-primal by Theorem (1.5) of

[12]. Rest is obvious by Proposition 3.14.

Theorem 3.16 Let R be a commutative Noetherian SI-ring, which is also an algebra over Q.

Let σ be an automorphism of R such that R is a weak σ -rigid ring and δ be a σ -derivation of R

such that δ (P)⊆ P, for all P ∈MinSpec(R). Then O(R) is 2-primal.

Proof. Let P1 ∈ MinSpec(R). Now R is weak σ -rigid SI-ring, so Corollary () implies that

σ(P1) = P1. Therefore Theorem (2.3) of [2] implies that O(P1) ∈MinSpec(O(R)). Similarly

for any P ∈ MinSpec(O(R)) such that σ(P∩R) = P∩R, Theorem (2.3) of [2] implies that

P∩R ∈MinSpec(R). Therefore, O(P(R)) = P(O(R)), and now the result is obvious by using

above Proposition 3.14.

Some results for S(R) = R[x;σ ]

Proposition 3.14 and Theorem 3.16 also holds for the ring S(R).

Theorem 3.17 Let R be a Noetherian ring and σ an automorphism of R. Let S(R) = R[x;σ ] be

as usual. Then:

(1) If P ∈ MinSpec(S(R)), then P = (P∩R)S(R) and there exists U ∈ MinSpec(R) such

that P∩R =U0.

(2) If U ∈MinSpec(R), then U0S(R) ∈MinSpec(S(R)).

Proof. See Theorem (2) of [3].

Proposition 3.18 Let R be a ring and f r be an ideal of S(R) for all f ∈ S(R). Then S(R) is an

SI-ring implies S(R)/P(S(R)) is also an SI-ring.
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Proof. Let S(R) be an SI-ring. We have to show that S(R)/P(S(R)) is an SI-ring. Let

f +P(S(R)), g+P(S(R))∈ S(R)/P(S(R)) be such that ( f +P(S(R)))(g+P(S(R))) = P(S(R)).

This implies that f g+P(S(R)) = P(S(R)), i.e., f g ∈ P(S(R)). Now, S(R) is an SI-ring. There-

fore for j, k ∈ S(R) such that jk = 0 implies j(S(R))k = 0, i.e., jlk = 0, for all l ∈ S(R)....(2)

Now for all h+P(S(R)) ∈ S(R)/P(S(R)); ( f +P(S(R)))(h+P(S(R)))(g+P(S(R))) = f hg+

P(S(R)). Since for all f ∈ S(R), f r is given to be an ideal of S(R), where f r = {g ∈ S(R) :

f g = 0}. This implies by (2) that f hg = 0 so that ( f +P(S(R)))(h+P(S(R)))(g+P(S(R))) =

P(S(R)); for all h+P(S(R)) ∈ S(R)/P(S(R)). Hence, S(R)/P(S(R)) is an SI-ring.

Theorem 3.19 Let R be a ring and f r be an ideal of S(R) for all f ∈ S(R). Then S(R) is an

SI-ring implies S(R)/P(S(R)) is a 2-primal ring.

Proof. It is enough to show that S(R)/P(S(R)) is an SI-ring. Rest is obvious by Theorem (1.5)

of Shin [12].

Proposition 3.20 Let R be a commutative Noetherian SI-ring. Let σ be an automorphism of R

such that R is a weak σ -rigid ring. Let P ∈MinSpec(R) then P(S(R)) = P[x;σ ] is a completely

prime ideal of S(R) = R[x;σ ].

Proof. Let P ∈MinSpec(R). So σ(P) = P by Corollary 3.7. Also R is σ(∗)-ring by Theorem

3.5, so by Proposition (4) of [3] P(S(R)) is a completely prime ideal of S(R).

Proposition 3.21 Let R be a commutative Noetherian SI-ring. Let σ be an automorphism of R

such that R is a weak σ -rigid ring. Then S(R) is 2-primal if and only if S(P(R)) = P(S(R)).

Proof. Let S(R) be 2-primal. Then by Proposition (), P(S(R))⊆ S(P(R)). Let f (x)=Σn
j=0x ja j ∈

S(P(R)). Now R is a 2-primal subring of S(R) by Theorem (1.5) of Shin [12], which implies

that a j is nilpotent and thus a j ∈ N(S(R)) = P(S(R)), and so we have x ja j ∈ P(S(R)) for each

j, 0≤ j ≤ n, which implies that f (x) ∈ P(S(R)). Hence S(P(R)) = P(S(R)).

Conversely suppose S(P(R)) = P(S(R)). We will show that S(R) is 2-primal. Let g(x) =

Σn
i=0xibi ∈ S(R), bn 6= 0, be such that (g(x))2 ∈ P(S(R)) = S(P(R)). We will show that g(x) ∈

P(S(R)). Now leading coefficient σ2n−1(bn)bn ∈ P(R) ⊆ P, for all P ∈ MinSpec(R). Now

since R is weak σ -rigid SI-ring we have σ(P) = P and P is completely prime by Corollary 3.7.

Therefore we have bn ∈ P, for all P ∈MinSpec(R), i.e., bn ∈ P(R). Now since σ(P) = P for all

P ∈MinSpec(R), we get (Σn−1
i=o xibi)

2 ∈ P(S(R)) = S(P(R)) and as above we get bn−1 ∈ P(R).
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With the same process in a finite number of steps we get bi ∈ P(R) for all i, 0≤ i≤ n. Thus we

have g(x) ∈ S(P(R)), i.e., g(x) ∈ P(S(R)). Therefore P(S(R)) is a completely semiprime ideal

of S(R). Hence S(R) is 2-primal.

Theorem 3.22 Let R be a commutative Noetherian SI-ring. Let σ be an automorphism of R

such that R is a weak σ -rigid ring. Then S(R) is 2-primal.

Proof. We use Theorem 3.17 to get that S(P(R)) = P(S(R)), and now the result is obvious by

using Proposition 3.21.
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