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Abstract. In this paper, standard results in fuzzy n-normed linear spaces are extended to 2-fuzzy n-normed linear
spaces. Also the equivalence of ¢-n-norms and the Riesz theorem are proved in the real of 2-fuzzy n-normed linear

spaces.
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1. Introduction

In 1989, Misiak [8,9] defined the concept of n-normed spaces and investigated the properties
of these spaces. The concept of fuzzy set was introduced by Zadeh [7] in 1965. Cheng [6] and
Bag and Samanta [5] introduced a concept of fuzzy norm on a linear space.

Recently, C. Park and C. Alaca [1] introduced the concept of 2-fuzzy n-normed linear spaces.
The authors gave the notion of @-n-norm on a linear space corresponding to the 2-fuzzy n-norme
by using some ideas of Bag and Samanta [5]. In [2], B. S. Reddy and H. Dutta investigated some
properties of linear n-normed spaces. Some fundamental properties in fuzzy 2-normed space in
terms of o-2-norms was discussed by Somasundaram and Beaula [10].
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In this paper, we introduce the concept of cauchy sequence, convergence and completeness
in fuzzy n-normed linear space in term of a-n-norms, and then we give some fundamental
properties of this space and obtain necessary and sufficient conditions for a-n-norms to be
equivalent when X is a 2-fuzzy n-normed linear space or F(X) is a fuzzy n-normed linear

space. Finally, we generalize the Riesz theorem to 2-fuzzy n-normed linear spaces.

2. Preliminaries

Definition 2.1. [8,9] Let X be areal linear space of dimension greater thann—1 and let |-, - - ,-||

be a real valued function on X" satisfying the following condition:

(1) [|x1,x2,- -+ ,xn|| = 0 if and only if x1,x,- - - ,x, are linearly dependent;

(2) ||x1,x2, -+ ,x,]| is invariant under any permutation;

(3) [Joexr,x2, -, x| = |et]|[x1,%2, -+ ,xu]|| for any a € R;

(4) [|xo +x1,20,++ ,x0|| < ||x0,%2,- -, X%n|| +||X1, %2, , X4 for all xp,xp,---,x, €X.

|-,--+,-|| is called an n-norm on X and the pair (X,||-,---,-||) is called an n-normed linear
space.

Definition 2.2. [1] Let X be a linear space over K (field of real or complex numbers). A fuzzy
subset N of X" x R is called a fuzzy n-norm on X if and only if :
(N1) For all t € R withz <0, N(xy,x2,- -+ ,x,,2) =0;

(N2) For all t € R with t > 0, N(xy,x2,--- ,x,,¢) = 1 if and only if x;,x;,--- ,x, are linearly

dependent;
(N3) N(x1,x2, - ,X,,t) is invariant under any permutation of xj,xp,- -, X,;
(N4) For all t € R witht > 0, N(x1,x2, - ,Axp, 1) = N(x1,X2,+ , Xn, ﬁ), if A #£0;

(N5) Forall s,r € R, N(x1,x2,- -+ ,xp +x/n,s+t) > min {N(x1,x2, ,Xpn,8), N(x1,x2, - ,x;l,t)};

(N6) N(x1,x2,--- ,Xpn,t) is a non-decreasing function of r € R and [lim,N(xl,xz, s X, t) = 1.
—>00

Then (X, N) is called a fuzzy n-normed linear space or f-n-NLS in short.

Theorem 2.3. [1] Let (X,N) be an f-n-NLS. Assume further that

(N7) N(x1,x2,+ ,xn,t) > 0 for all t > 0 implies that x1,x;,- - ,x, are linearly dependent.
Define
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X122, Xl a=inf{t : N(x1,x2,-++ ,xp,8) >0, & € (0,1)}. Then {||x1,x2, -+, Xn]|a : & €
(0,1)} is an ascending family of n-norms on X (or) a-n-norms on X corresponding to the
fuzzy n-norm on X.
Definition 2.4. [10] Let X be a non-empty set and F (X ) be the set of all fuzzy sets on X. For
U,V € F(X) and k € K the field of real numbers, define

U+V={(x+yAAu): (x,A)eU,(y,u)€V}.
and kU = {(kx,A) : (x,A) € U}.

Definition 2.5. [10] A fuzzy linear space X =X x (0,1] over the number field K where the
addition and scalar multiplication operation on X are defined by (x,A)+(y,t)=(x+y,A A 1),
k(x,A) = (kx, 1) is a fuzzy normed space if for every (x,1)€X there is associated a non-negative
real number, ||(x,A)]|, called the fuzzy norm of (x,A) such that

(1) ||(x,A)]|=0 iff x = O the zero element of X, A € (0,1];

(2) ||k(x,A)||=|k]]| (x,A)]| for all (x,A) € X and all k € K;

3) 15 2)+ 0 ) | < 1162 AR+ 1104 A )]l for all (x.4), (3. ) € Xs

) [|(x, Vedo)[| = Ael| (x, 4 || for all 4, € (0, 1].

Definition 2.6. [10] Let X be a non-empty set and F(X) be the set of all fuzzy sets on X.
If f€ F(X)then f={(x,u):x€X and u € (0,1]}. Clearly f is a bounded function with
|f(x)] < 1. Let K be the space of real numbers. Then F(X) is a linear space over the field K

where the addition and scalar multiplication are defined by

freg={0n)+n)}={(x+y,uAn): (x,u) € f,(»n) € g}

and
kf ={(kf;1): (x, 1) € f}-
where k € K.
The linear space F(X) is said to be a normed space if for every f € F(X), there is associated a

non-negative real number || f|| called the norm of f such that

(D||f|l = 0 if and only if f = 0. For

IF1l =0 <= {ll(x; )] : (x, ) € [} =0 = x =0, € (0,1] <= f =0.
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@) |[kf1l = [K[llf1l,k € K. For

1K1 = {leCe )]l = Ce, 1) € f k€ K} = {[K][loe, ] = (x, 1) € f} = [K[[]f]
O +&ll < lIf1I+llg|l for every f, g € F(X). For

If 8l = {leeu)+ )l xyeX, u,n e (0,1]}
= {IGuy), (wAm):xye X, pu,n € (0,1]}
< AllGuAm+I1Guam)l: G up) € f,(nn) € g}

= [If +sll

Then (F(X),||.||) is a normed linear space.
Definition 2.7. [10] A 2-fuzzy set on X is a fuzzy on F(X).

Definition 2.8. [1] Let X be a real vector space of dimension d > n(n € N) and F(X) be the
set of all fuzzy sets in X. Here we allow d to be infinite. Assume that a [0, 1] valued function
|-,--+,+]| on F(X)" satisfies the following properties

(D) | fisf25+ -+, full = 0if and only if fi, f>,- - -, f, are linearly dependent;

() || fi, f25+++ , ful| is invariant under any permutation;

G [lf1, fa5- s ASall=I A1 f2, -+ s Sl fOr any A € K,

@ Wf1: S s fovy 2l S Wfisfo s foor I 1 f2 s faa 2L

Then (F(X),||-,---,-||) is an n-normed linear space.

Definition 2.9. [1] Let F(X) be a linear space over K. A fuzzy subset N of F(X)" x R is called
a 2-fuzzy n-norm on X (fuzzy n-norm on F (X)) if and only if:

(N1) For all t € R witht <0, N(f1, f2,- ", fn,t) = 0;

(N2) For all r € R with t > 0, N(f1, /2, , fa,t) = 1 if and only if fi, f>,---, f,, are linearly
dependent;

(N3) N(f1,f2,-*, fa,t) is invariant under any permutation of fi, f>,--, fu;

(N4) Forallr e R witht > 0, N(f1, f2, -+ A fu,t) = N(f1, f2, - ,fn,&—|) for A #0and A € K,
(N5) For all s,t € R, N(f1, fa,-+, fu 4 fors+1) > min {N(f1, f2,- , s 8)s N(f1, for -+ s fns)
¥
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(N6) N(f1, /2, s fns-): (0,400) — (0,1) is continuous;
(N7) }L%N(flafzu e 7fi’l7l) =L

Then (F(X),N) is a fuzzy n-normed linear spaces or (X,N) is a 2-fuzzy n-normed linear space.

Theorem 2.10. [1]Let (F(X),N) be a fuzzy n-normed linear space. Assume that
(N8) N(f1, /2, s fust) > 0 for all t > 0 implies that fi, f>,--- , f, are linearly dependent.
Define
1fv f2s s falla=inf{e : N(fi, fa, -+ fust) 2,0 € (0, 1) }.
Then {||-, -+ ,||lo : @ € (0,1)} is an ascending family of n-norms on F(X). The n-norms are
called a-n-norms on F (X) corresponding to the fuzzy n-norms.

Hereafter we use the notion fuzzy n-norm on F(X) instead of 2-fuzzy n-normed linear space

on X.

3. Convergence and completeness for 2-fuzzy n-normed linear space

In this section, we shall discuss some elementary properties for sequence in a fuzzy n-normed

linear space with respect to o-n-norms on F(X).

Definition 3.1. A sequence { f;} in a fuzzy n-normed linear space (F(X),N) is called a cauchy
sequence ifk}rilglm | fx — fin, @2, @3, -, @, ]| o = O with respect to a-n-norm for all @, -+, @, €
F(X).

Theorem 3.2. Let (F(X),N) be a fuzzy n-normed linear space.

(@) If { f1} is a cauchy sequence in (F(X),N) with respect to a-n-norm, then {|| fi, @, -,
Opl|o : @2,, -, @0, € F(X)} is a cauchy sequence of non-negative reals.

(b) If {fx} and {gi} are cauchy sequence in (F(X),N) with respect to a-n-norm and {0} is
a real cauchy sequence, then {fi + gi} and {oyfi} are cauchy sequences in (F(X),N) with

respect to o.-n-norm where oy, € [0, 1].

Proof. (a)

||fk7(u27"' 7a)n”06 = ||fk_ﬁn+fmva)27 7(Dn||oc

IN

||fk_fﬂha)27"' 7a)n||06+ ||fm7w27 7a)n||06'
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Also
||fk70~)27"' 7a)n||06 - ||fm7w27 7wn||06 S ||fk_fm70‘)27 7wn||06-

Similarly, we have

||fm;a)27 ;wnHa_ ka?a)b"' 7wnHOt < ka_fm;a)z, 76071”(17

that is
fie 02, Onllee = L fim, @2, Onllal < [l fi = fin, @2, Ol ar-
Therefore, {||f, @>,, -+, 0] o} is a real cauchy sequence, since we have klim | fx — fim, @2,
JM—yoo
,a)nHa:().
(b)
|(fx+8x) = (fn+8m), 02, ,Oplla = ’|(fk_fm)+(gk_gm)7w27"' 7wnHa

< Nfie—fm @2, Onll o+ |18k — 8ms @2, -+, Oy |

— 0 (k,m—> ).

Therefore { fi. + g} is a cauchy sequence on (F(X),N) with respect to @-n-norm.

| fc — Cmfims @2, sl = || O fc — O fin+ O fin — Omfin, @2, , O]
< Sk — O fons @2, -+, Ol + || Ok Sfrn — O foms @2, -+, O |
= ol fc = foms @25+ Onll o + | — ||| fin, @2, -+, O]

— 0

Since {04} and {||f, @>, -, 0,||o } are real cauchy sequences. Therefore, { oy fi } is a cauchy

sequence in (F(X),N) with respect to a-n-norm.

Definition 3.3. A sequence { f;} in a fuzzy n-normed linear space (F(X),N) is said to converge
to fif ||fx — f, 02,3, -+, @y||q — O as k — oo with respect to @-n-norm for all @y, -+, ®, €
F(X).
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Theorem 3.4. In the fuzzy n-normed linear space (F(X),N).
@ if fr = fand gx — g, then fy+gr — f+gask — oo,
(b) if fx — f and o4 — «, then oy fy — a f.

(c)ifdim(F(X),N)>n, fx — f and fi — g then f = g convergence is with respect to 0,-n-norm.

Proof.
(a)
[(fe+8k) = (f+8), @, 0ulla = [[(fi—f)+(gx—8), @, 0l
S ka_fva)Za"'7a)nHOC+”gk_g7a)27“'7wnHOC—>0
Therefore, i, + g — f + &.
lowfx—af, @, )l = |Okfx—f+of—af,a, -

< ”akfk_akfaaba"' 7a)nHOC+Hakf_afaa)27"' 7a)nHOC

= |ak|||fk_fva)27 ,wn’|a+|ak—a|||f,(02,"' 7wnHOC — 0.

Since || fi — f, @2, -+ , 0] — 0 and | — | — 0, it follows that o f — o f.

(c) For any an,---,m, € F(X)

||f_g7a)27"'7wn||06 = |’fk_fk+f_g7a)27"'7wn”a
< ka_gva)Za"'awn|’a+||_(fk_f)7a)27"'7wnHOt

= ka—g,a)z,"',(OnHa‘i‘ka—f,(Dz,-“,(Dn”a—>0-

Since f; — f and f; — g. Hence f — g, @, - -, w, are linearly dependent for all @,,---,®, €
F(X). Since dim(F(X),N) > n, the possibility if f — g can be linearly dependent for all
W, ,0, € F(X) implies that f — g = 0 which implies that ' = g.
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Theorem 3.5. Let (F(X),N) be fuzzy n-normed linear space. If {fi} is a cauchy sequence

in F(X). Then {||fx — f,@,--+ ,04]|a} is a cauchy sequence of non-negative reals for each
feFX).
Proof.

||fk_f7ab7'”7a)n||a - ||fk_fm+fm_faw277wn”a

S ka_fmywb'”7wnH(x+Hfm_f;w27“'7wnH(x

Therefore

||fk_f7a)27”' 7wn||a_||fm_f7a)27 7wn||06 S ||fk_fm70‘)27"' 7a)n||06

Also

’”fk_fva)%'“ 7COnHoc_”fm_f,w27"‘ 70)11”“’ < ka_fmawZ7"' ,(UnHoc-

Hence, || fy — f, @2, -+, 0|l is a cauchy sequence of non-negative reals for each f € F(X)
since Wm_ | fi = fin, @2, @3, Onlla =0.

Theorem 3.6. Let (F(X),N) be a fuzzy n-normed linear space. If for all @, , o, € F(X),
lim || fe—f, 0,03, onlla =0, then lim || fi, @, @3, 0nlla = ||f, @2, Ona-

Proof. Since

|||fk7a)27"' 7wn||06_ |f7ah7 7wn||06| S ||fk_f7ah7 7(0}1”067

it follows that

|”fk;0~b7"',a)nHOC_Hf7(02,"‘,0)nH(X’_)O (k—)oo)

Hence
klgIolonkaa)baB?”' 7wnHOC = ”f;a)b 7wn||06~

Definition 3.7. The fuzzy n-normed linear space (F(X),N) in which every cauchy sequence

converges is called a complete fuzzy n-normed linear space. The fuzzy n-normed linear space
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(F(X),N) is a fuzzy n-Banach space with respect to -n-norm for it is a complete fuzzy n-

normed linear space with respect to o-n-norm.

4. The equivalence of a-n-norms in fuzzy n-normed linear spaces

In this section, we prove necessary and sufficient conditions for ¢-r-norms to be equivalent
on a fuzzy n-normed linear space F (X). Let X be a real vector space of dimensiond > n(n € N),

and let F(X) be the set of all fuzzy sets in X.

Definition 4.1. Two o-n-norms ||-,---,-||} and |-,---,-||3 on a fuzzy n-normed linear space

F(X) are said to be equivalent if there exist constants 3 > 0,y > 0 such that

Blor, @, onlly < |01, @, 0|5 < V@1, @0, 0|y YO @, 0, € F(X).

Theorem 4.2. Two a-n-norms ||-,--- ,-||, and ||-,--- ,-||%, are equivalent on a fuzzy n-normed
linear space F(X) if and only if every cauchy sequence with respect to one of the a.-n-norms is

a cauchy sequence with respect to other o-n-norm.

Proof. Suppose that two a-n-norms ||-,---,-||L, and ||-,---,-||% are equivalent on a fuzzy n-

normed linear space F(X). Then there exists constants > 0, ¥ > 0 such that

Blon, @, @l < o, @, @nl/% < V|0, @, @4l Yor, e, 0, € F(X)

For a sequence {f;} in F(X), we have

(1) ﬁ||fk_fm7a)27 7wnH(lx < ”fk_fmaa)Z? 7wn||(2x < Y||fk_fm7a)27"' 7wnH(lx

for all ap,---,®, € F(X) and k,m € N. The second inequality shows that if { f;} is a cauchy
sequence with respect to ||-,---,-||}, if and only if it is a cauchy sequence with respect to
|-,---,-||%. For the converse part, suppose that the &-n-norms are not equivalent. Then without
loss of generality we can assume the following two cases:

(a)There does not exist B such that

BH(DI:COZ;"’ 7(071”(1)6 < ||(01,(D2,"' 70)””%6 vw17a)27"' , Wy EF(X>'
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(b)There does not exist ¥ such that

||CO1,(1)2,"' 7a)nH%g S Y|’a)170h7"' JCOHH(IX V(X)],COZ,"' , W GF(X)

In case (a) for k = 1,2,---, there exist { f; } in F(X) such that

1
(2) z”fkaa)bva)n”éc> ka?a)b,wnH%x

Let g = ol fx. foreachk e N

I S S
\/§||fk7a)27"'7
Then ||g, @2, , 0u]|5 = 1 — 0 as k — o.

and using (b)we get

1 k
Hgkva)la"' awn”(lx = ”2 ka,a)z,"' 7wnH(lx > == \/];—> °°(k_>°°)~
o

1
\/I;ka;a)Z;"';wn \/];
Note that every convergent sequence in a fuzzy n-normed linear space F(X) is a cauchy se-
quence. {gi} is a cauchy sequence with sespect to ||-,-- - , ||, but not with respect to |-, -~ , || L.

Similarly, we can prove the case (b). Hence the proof of the theorem is complete.

Corollary 4.3.  Let ||-,---,-||} and ||-,---,-||3 be two equivalent a-n-norms on a fuzzy n-
normed linear space F(X). Then fi — f with respect to ||-,--- ,-||}, if and only if fi — f with
respect to ||-,- -+ ,-||%.

Proof.By replacing ' fy — f,, with’f; — f’ in (a) of Theorem 4.2, we get the result.

5. The Riesz theorem in fuzzy n-normed linear spaces

Definition 5.1. A subset Y of F(X) is said to be a fuzzy n-compact subset with respect to ot-n-
norm if for every sequence {yi} in Y, there exists a subsequence {y,, } of {y;} which converges

to an elementy €Y.

Lemma 5.2. Let F(X) be a fuzzy n-normed linear space, and let Y be a fuzzy n-compact
subspace of F(X). For fi, -, fu € F(X), infyey||fi =¥, - s fa—Y||a = O then there exists an

element yo € Y such that || fi — Yo, , fu — Yolla = 0.

Proof. For each positive integer k, there exists an element y; € Y such that

1

||f1 — Yk 7fn_kaOC S z
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Since {y,} is a sequence in a fuzzy n-compact space Y, we can consider that {y; } is a convergent

sequence in Y without loss of generality. Let y; — yg as k — oo for some yg € Y. For every € > 0,

there exists a positive integer K such that if k > K, then § < w1 and [[yx —yo, @2, -+, @yl <

ooy forall @ € F(X)(i=2,---,n). For k > K, we have

11 =0, f2=y0, s fa=Yollae = lyk=Yo+f1 =Y, 2=Yo s fu—Yolla
< vk =y0,/2=y0, s fuo = Yol
+ A=Y 2 =y0, s fu = Yol
< vk =yo,f2=Y0, s Ju—Yolla
+ A =Yk =y, 5 =y0 5 o= Yolla
+ i =Yoo=V f3=Yo s fo—Yolla
< vk =yo,f2=Y0, s Ju—Yolla
+ A =YYk = Y0, /3= Y0, s fu = ol
+ i =Yk o =YYk = Y0, s fo = Yol
+ i =Yoo=V f3 =Yk s o —Yolla
< vk =yo,f2=Y0, s Ju—Yolla
+ Nt =YYk — Y0, /3 =Y0, s fu = Yoll
+ i =Y o =Yk Yk =05+ s fn = Yolla

+ i =Yoo=V 35—

+ A=Y fo =Y 35—V

IA

+ i =YYk —Y0. /3= Y0,

H)’k—}’O,fz—yO,"' 7fn_

Yk — Y0, fa—Yolla
Jna1 =Y fo—Yolla
yO”(x

7fn_y0||06
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+ ||f1_yk7f2_yk7yk_y07”'7fn_y0||06

+ A=Y 2 =Y 5= Yk Yk — Y0, fn = Yol
+ Nt =Y o =Yk 3 =Yk s a1 = Vi Yk — Yol
+ Nt =Y o =Yk 3= Yk s a1 = Vi S = Vil
= vk —y0,/2=y0, s fu = Yolla

+ A =505k = 0,5 =05+, fu = Yol e

+ /i =Y0, 2= Y0, Yk — Y0, + fn — Yol

+ i —=y0, 2=Y0.3—0, Yk — Y0, fu — Yolla
+ ||fi =0, f2—Y0,/3—=Y0, s fue1 — Y0, Yk — Y0l

+ A=Y o=V 3= Yk s fae1 — Vi frn — Vil

1< € 1 £ L £ c
n n n —
n+1 &k n+1 K n+1 n+1

Since € is arbitrary, || fi —yo,- -, fu — Yolla = O.

Theorem 5.3. Let Y and Z be subspaces of fuzzy n-normed linear spaces (F(X),N), and let Y
be a fuzzy n-compact proper subset of Z with dimension greater than n— 1. For each 6 € (0,1),
there exist an element (f1,---, fn) € Z" such that ||f1,-- , falla =1 [fi—=y s fu—Yla >0
forallyeY.

Proof. Let hy,--- ,h, € ZNY " be linearly independent. Let

a—= infyethl =¥,y =Yl

Assume that a = 0. By Lemma 1, there is an element yg € Y such that

(1) ||h1_)’07"‘»hn_)’0||a:0
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If yo = 0, then ||A},- -+ ,hy||q = 0. This implies that inf{z : N(hy,hp,-- ,hy,t) > a} = 0. Then

hy,--- ,h, are linearly dependent. This leads to a contradiction. So yq is non-zero. Hence
hi,--- ,hy,yo are linear independent. But from definition and from (1) that 41 —yg,--- ,h, — yo
are linearly dependent. This exist real numbers Qy,- - - , @, not all zero such that

or(h —yo) + -+ &y (hy —y0) =0

This we have
ohi+ -+ Ophy + (= 1) (a1 + -+ + &) yo =0

Then hy,---,hy,,yo are linear dependent, which is a contradiction. Hence a > 0. For each

0 € (0, 1), there exists an element yo € ¥ such that

a
a S ||h1 — Yo, " 7hn_}’0||a S 5

Foreach j=1,---,n,let

hj—yo

fj: 1
||h1 — Yo, 7hi’l _)’O”gc
That it is obvious that || f1,- -, fulla = 1

hi —yo hn = o
Hfl_yf"?fn_yHOC = H T W £ l—YHa
th—)’Or",hn—YO”gc ||h1—)’07"'>hn—YO||'&
1

|1 —y0, - s hn — Yol

1
||h1 - ()’0"’)’th — Y0, 7hn_y0||&)7 )

1
hy— (Yo +y|lhi =0, s hn —yoll&) ||«
1

a
th — Yo, " 7hn_y0HOC

v

=0

a
a
0

for all y € Y. This completes the proof.

Definition 5.4. A subset Y of the fuzzy n-normed linear space (F(X),N) is called a fuzzy
partially n-closed subset if for linear independent elements fi,---,f, € F(X) there exists a

sequence yi in Y such that || f1 —y, -, fo — Yk|la — 0 as k — oo, then f; € Y for some j.

Theorem 5.5. Let Y, Z be subspaces of the fuzzy n-normed linear space F(X), and let Y be a

fuzzy partially n-closed subset of Z. Assume that dimZ > n. For each 0 € (0, 1), there exists an
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element (f1,---, fu) € Z" such that
”fl?"' 7fn||06 =1

Hfl_%,fn—yﬂaze

forallyeY.

Proof. Let hy,--- ,h, € Z—Y be linearly independent. Let

a= il’lfngHl’ll =Y ,hn_yH(x

Assume that a = 0. Then there is a sequence {y;} in Y such that ||} — yg, -+, by — Y|l — O as
k — oo. Since Y is fuzzy partially n-closed, h; € Y for some j, which is a contradiction. Hence

a > 0. The rest of the proof is the same as in the proof of Theorem 5.3.
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