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Abstract. Isometric operator is a very significant subject in the study of space structure. In this paper, we will

give some results about the Tingley’s problem, and give sufficient conditions for isometric operator T0, which is

between classical 2-dimensional normed sequence spaces such as `(2)p and `
(2)
∞ , to have a linear extension in some

way.
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1. Introduction

In this paper, X and Y are both normed spaces, S(X) and S(Y ) are denoted the unit spheres

of X and Y respectively, and a mapping T : X → Y is said to be an isometric operator if

‖T x−Ty‖= ‖x− y‖,∀x,y ∈ X .
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The normed spaces X and Y are said to be isometric if there exists a surjective isometric

operator between X and Y . If X and Y are isometric, then they are essentially identical as metric

spaces. And we can obtain that Y is a strictly convex space if X is strictly convex.

As the advantageous tools in the research of normed linear spaces, isometric operator and

linear operator have a vital meaning in the functional analysis. Metric geometry, space structure,

equivalence theory and affine motion theory are all need the support of those two tools. In 1932,

Mazur and Ulam gave the famous Mazur-Ulam theorem in [1].

Theorem 1.1 [1] (Mazur-Ulam theorem)[1] Every surjective isometric operator T from normed

space X to normed space Y is an affine. And it is also linear if T (0) = 0.

This is to say that if the normed space X and Y are isometric, then they must be linearly

isometric to each other.

For all metric vector spaces, it is till open that whether the Mazur-Ulam theorem can holds.

In 1953, Charzynski got an important result when X and Y are both the finite dimensional and

have the same dimensions in [2].

Theorem 1.2 [2] X and Y are both the finite dimensional metric vector spaces, dim(X) =

dim(Y ) = n, and T : X → Y is an isometry with T (0) = 0, then T is linear.

From then on, many researchers which both at home and abroad have tried to popularized the

Mazur-Ulam theorem by different patterns, and have paid attention to weaken the condition of

the Mazur-Ulam theorem from different patterns. Through the research of the space structure,

many open problems were raised as well including the Alesandrov problem, the Aleksandrov-

Rassias problem and the Tingley’s problem. In the consideration of the into isometric operator,

Baker extended the Mazur-Ulam theorem to strictly convex normed spaces in [3], and obtained

the following conclusion :

Theorem 1.3 [3] X is a normed space and Y ia a strictly convex normed space, T : X → Y is an

into isometric operator with T (0) = 0, then T is linear.
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In [4], Mankiewicz extended the Mazur-Ulam theorem, and showing that an isometric opera-

tor which maps a connected subset of a normed space X onto an open subset of another normed

space Y can be extended to an affine operator on the whole space. Applying these results to the

unit balls of X and Y , we obtain that two normed spaces are linearly isometric if and only if

their unit balls are isomeric.

Clearly, we have an negatively example that the subsets of Banach spaces are isometric, but

not in any sense affine.

Example 1.4 A mapping T : R→ `
(2)
∞ (R2 with the max norm) given by

T (x) = (x,sinx),

then T is an isometry, but it is not affine.

Instead of connected subset, D.Tingley raised the following problem, which called Tingley’s

problem in [5].

Problem 1.5 [5] Suppose that T0 : S(X)→ S(Y ) is a surjective isometric operator, does there

exist a linear isometric operator T : X → Y such that T |S(X) = T0 ?

And Tingley has proved the following main result:

Theorem 1.6 [5] Let X and Y are both finite-dimensional normed spaces, if T0 : S(X)→ S(Y ) is

a surjective isometry, then T0(−x) =−T0(x), ∀x ∈ S(X).

In this case, we call the T0 preserves anti-polar points.

For this question, we only considerate the real normed space, because the Tingley’s problem

is negative when X and Y are complex normed spaces, like X = Y = C and T (x) = x̄ for all

x ∈ C with |x| = 1. It’s hard to make an affirmative answer because there is no linear or even

metrically convex structure on this unit sphere. Even for 2-dimensional normed space, Tingley’s

problem is not salved until recently.

And for this question, we always considerate the surjective operator, because for the into

isometric operator between unit spheres, it is not difficult to find the example that the into
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isometric operator between unit spheres can’t be linear extended. In [15], L. Zhang obtained an

counterexample which a operator from S1(`
(2)
∞ ) into S1(`

(3)
∞ ) shows that the isometric extension

problem fails.

Example 1.7 [15] Isometry T0 which from S1(`
(2)
∞ ) into S1(`

(3)
∞ ) is given by

T0[(ξ1,ξ2)] =



(1, 3
4ξ2,ξ2), ξ1 = 1,ξ2 ≥ 0;

(−1,ξ2,
3
4ξ2), ξ1 =−1,ξ2 ≥ 0;

(ξ1,1− 1
4ξ1,1), ξ2 = 1,ξ1 ≥ 0;

(ξ1,1,1+ 1
4ξ1), ξ2 = 1,ξ1 < 0;

(ξ1,ξ2,ξ2), ξ2 < 0.

then T0 is an isometry from S1(`
(2)
∞ ) to S1(`

(3)
∞ ), but it can’t be extended to an isometric operator

or linear operator on whole space `
(2)
∞ .

From now on, we can say that the question of whether an isometry from S(X) into S(Y ) can

be extended an isometric and linear operator for all Banach space X and Y is negative. Some

affirmative conclusions were obtained between the same type and different type of classical

Banach spaces which can be found in [7-13].

We notice that, for finite-dimensional normed spaces X and Y , if dim(X) > dim(Y ) then

there is no linear isometry from X to Y . Since when dim(X) = 1 is so trivial, in this paper, we

consider the Tingley’s problem between the 2-dimensional normed spaces, and we obtain that

when dim(Y ) = 2 the dimension of X should be less then or equal to 2, so we just consider the

problem when dim(X) = dim(Y ) = 2.

And for 2-dimensional normed spaces, Wang R D and Wang P has obtained an useful result

to help extending the isometry on unit spheres in [19].

Theorem 1.8 [19] Let X and Y are both two dimensional normed space , T0 : S(X)→ S(Y ) is a

surjective isometric operator. If

‖T0(y)− (‖T0(x)+To(y)‖−1)To(x)‖= ‖y− (‖x+ y‖−1)x‖,
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‖T0(x)− (‖T0(x)+To(y)‖−1)To(y)‖= ‖x− (‖x+ y‖−1)y‖,

for ∀x,y ∈ S(X), ‖x+ y‖ ≥ 1, then T0 can extended to be an linear isometric operator on X .

In this paper, we let 1 ≤ p ≤ ∞, so we consider the space `
(2)
p (Γ) and `

(2)
∞ (Γ) together by

symbol `(2)p (Γ) (1 ≤ p ≤ ∞). First, we give some metric property of the unit sphere of 2-

dimensional normed space `(2)p (Γ) (1≤ p≤ ∞). Then we study the Tingley’s problem between

`
(2)
p (Γ) (1 ≤ p ≤ ∞), we obtain that surjective isometric operator form S[`(2)p (Γ)] to S[`(2)p (Γ)]

can be extended to the whole space `
(2)
p (Γ) linearly.

2. Some Properties of the S[`(2)p (Γ)] (1≤ p≤ ∞)

By using the characteristics of norm of sequence spaces `p(Γ) (1≤ p < ∞) and `∞(Γ), Ding

G G obtained the representation theorem of the surjective isometric operator of unit spheres of

this type spaces in [13,14]. For Hilbert spaces, we have got a good answer about the Tingley’y

problem in [18], when p = 2, as a special case we also solved the extension of isometries

between two `
(2)
2 , so we no longer discuss this problem when p = 2.

Theorem 2.1 [13,14] Suppose that

T0 : S[`p(Γ)]→ S[`p(∆)] (1≤ p≤ ∞, p 6= 2)

is an surjective isometric operator. Then there exist a 1-1 permutation mapping π : ∆→ Γ and

the number set {θσ}σ∈∆ with | θσ |= 1 for all σ ∈ ∆, such that

T0(x) = ∑
σ∈∆

θσ ·ξπ(σ)dσ , ∀x = ∑
γ∈Γ

ξγeγ ∈ S[`p(Γ)].

With the representation theorem of the surjective isometric operator, we can easily get the

affirmative answer to the Tingley’s question in the `p type space, but we can get more explicit

representation theorem of the surjective isometric operator on `
(2)
p by letting the index sets

Γ = ∆ = {1,2} in the third chapter.

Definition 2.2 For ∀x,y ∈ `
(2)
p (1≤ p≤ ∞, p 6= 2), we say that x is orthogonal to y (denoted by

x⊥y) if

‖x‖ ≤ ‖x+λy‖
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hold for all scalars λ .

Definition 2.3 For ∀x,y ∈ `
(2)
p (1≤ p≤ ∞, p 6= 2), we say that {e1,e2} is a normalized orthog-

onal basis of `(2)p if

‖e1‖= ‖e2‖= 1 and e1⊥e2.

Let e1 = (1,0),e2 = (0,1) ∈ S[`(2)p ] (1 ≤ p ≤ ∞, p 6= 2), it is easy to prove that {e1,e2} is a

normalized orthogonal basis, and for ∀x = (ξ1,ξ2) ∈ `
(2)
p , we can let x = ξ1e1 +ξ2e2.

Definition 2.4 For ∀x,y ∈ `
(2)
p (1≤ p≤ ∞, p 6= 2), {e1,e2} is a normalized orthogonal basis of

`
(2)
p , for ∀x = (ξ1,ξ2) = ξ1e1 +ξ2e2 ∈ `

(2)
p , |θ1|= |θ2|= 1, we remember θ1ξ1e1 +θ2ξ2e2 as x̃,

remember θ2ξ2e1 +θ1ξ1e2 as x̄.

Proposition 2.5 For `(2)p (1≤ p≤ ∞, p 6= 2), x̃, x̄ ∈ S[`(2)p ] if and only if x ∈ S[`(2)p ], and

‖x‖= ‖x̃‖= ‖x̄‖.

Proof. For `(2)p (1≤ p≤ ∞, p 6= 2), ∀x = (ξ1,ξ2),

When 1≤ p < ∞,

x ∈ S[`(2)p ] ⇔ ‖x‖= 1 ⇔ |ξ1|p + |ξ2|p = 1 ⇔ |θ1ξ1|p + |θ2ξ2|p = 1

⇔ ‖x̃‖= ‖x‖= 1 ⇔ x̃, x̄ ∈ S[`(2)p ];

When p = ∞,

x ∈ S[`(2)p ] ⇔ ‖x‖= 1 ⇔ max{|ξ1|, |ξ2|}= 1 ⇔ max{|θ1ξ1|, |θ2ξ2|}= 1

⇔ ‖x̃‖= ‖x‖= 1 ⇔ x̃, x̄ ∈ S[`(2)p ].

�

3. The Extensions of Isometries between the 2-dimensional Normed Spaces

In this section, we considerate the extension of isometries between the 2-dimensional normed

sequence spaces `(2)p (1≤ p≤ ∞, p 6= 2).
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Proposition 3.1 For `(2)p , when 1≤ p < ∞, p 6= 2, ∀x,y ∈ S[`(2)p ], then

supp(x)∩ supp(y) =∅ ⇔ ‖x± y‖p = ‖x‖p +‖y‖p.

Proof. For ∀x,y ∈ S[`(2)p ], let x = (ξ1,ξ2) y = (η1,η2).
′⇒′

If supp(x)∩ supp(y) =∅, without loss of generality, let supp(x) = {1}, and supp(y) = {2}.

So x = (ξ1,0) y = (0,η2), then

‖x± y‖p = ‖(ξ1,±η2)‖p =| ξ1 |p + | η2 |p= ‖x‖p +‖y‖p.

′⇐′

If ‖x± y‖p = ‖x‖p +‖y‖p, then ‖x+ y‖p +‖x− y‖p = 2(‖x‖p +‖y‖p),

|ξ1 +ξ2|p + |η1 +η2|p + |ξ1−ξ2|p + |η1−η2|p = 2(|ξ1|p + |ξ2|p + |η1|p + |η2|p).(∗)

Following the famous complex inequalities ( f or ∀ξ 6= 0,η 6= 0)

| ξ +η |p + | ξ −η |p< 2(| ξ |p + | η |p),(1≤ p < 2)

and

| ξ +η |p + | ξ −η |p> 2(| ξ |p + | η |p),(p > 2)

with the (∗), we can obtain that

ξ1 ·η1 = ξ2 ·η2 = 0,

then supp(x)∩ supp(y) =∅.

�

Proposition 3.2 For `(2)p , when p = ∞, ∀x,y ∈ S[`(2)∞ ], then

supp(x)∩ supp(y) =∅ ⇔ ‖x± y‖= max{‖x‖,‖y‖}.

Proof. For ∀x,y ∈ S[`(2)∞ ], let x = (ξ1,ξ2) y = (η1,η2).
′⇒′
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If supp(x)∩ supp(y) =∅, without loss of generality, let supp(x) = {1}, and supp(y) = {2},

that is x = (ξ1,0), y = (0,η2), then

‖x± y‖= ‖(ξ1,±η2)‖= max{| ξ1 |, | ±η2 |}= max{‖x‖,‖y‖}.

′⇐′

For ∀x,y ∈ S[`(2)∞ ], if ‖x± y‖= max{‖x‖,‖y‖}, that is

‖x± y‖= ‖(ξ1±η1,ξ2±η2)‖

= max{‖x‖,‖y‖}

= max{max{|ξ1|, |ξ2|},max{|η1|, |η2|}}

= max{|ξ1|, |ξ2|, |η1|, |η2|}

= 1,

max{|ξ1 +η1|, |ξ2 +η2|}= max{‖x‖,‖y‖}= max{|ξ1|, |ξ2|, |η1|, |η2|}, (∗∗)

and

max{|ξ1−η1|, |ξ2−η2|}= max{‖x‖,‖y‖}= max{|ξ1|, |ξ2|, |η1|, |η2|}, (∗∗∗)

If supp(x)∩ supp(y) 6=∅.

Case I supp(x)∩ supp(y) has only one point.

Without loss of generality,let η2 = 0, that is supp(x)∩ supp(y) = {1}, x = (ξ1,ξ2), y =

(η1,0).

‖y‖= 1 because y ∈ S[`(2)∞ ], that is

max{|η1|, |0|}= |η1|= 1.

It is clearly that

max{|ξ1 +η1|, |ξ1−η1|}> |η1|= 1,

but following the (∗∗) and (∗∗∗), we obtain that

max{|ξ1 +η1|, |ξ2 +η2|}= max{|ξ1−η1|, |ξ2−η2|}= max{|ξ1|, |ξ2|, |η1|, |η2|}= 1,

it is contradictory.
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Case II supp(x) ∩ supp(y) has two points, namely that supp(x) ∩ supp(y) = {1,2},

ξ1,ξ2,η1,η2 are all not equal to 0.

In this case, it is clearly that

max{|ξ1 +η1|, |ξ1−η1|}> |ξ1|, max{|ξ1 +η1|, |ξ1−η1|}> |η1|,

max{|ξ2 +η2|, |ξ1−η1|}> |ξ2|, max{|ξ2 +η2|, |ξ1−η1|}> |η2|,

but this is contradictory with the (∗∗) and (∗∗∗).

�

Corollary 3.3 For `(2)p (1≤ p≤∞, p 6= 2), T0 : S[`(2)p ]→ S[`(2)p ] is a surjective isometry, ∀x,y∈

S[`(2)p ], then

supp(x)∩ supp(y) =∅ ⇔ supp[T0(x)]∩ supp[T0(y)] =∅.

Proof. For ∀x,y ∈ S[`(2)p ], T0(x),T0(y) ∈ S[`(2)p ], let x = (ξ1,ξ2) y = (η1,η2).
′⇒′ When 1≤ p < ∞, and p 6= 2, if supp(x)∩ supp(y) =∅, then by the proposition 3.1,

we have

‖x± y‖p = ‖x‖p +‖y‖p = 2,

and

‖T0(x)±T0(y)‖p = ‖x± y‖p = ‖x‖p +‖y‖p = 2 = ‖T0(x)‖p +‖T0(y)‖p,

then

supp[T0(x)]∩ supp[T0(y)] =∅.

When p = ∞, for `(2)∞ , if supp(x)∩ supp(y) =∅, then following the proposition 3.2, we have

‖x± y‖= max{‖x‖,‖y‖}= 1,

and

‖T0(x)±T0(y)‖= ‖x± y‖= max{‖x‖,‖y‖}= 1 = max{‖T0(x)‖,‖T0(y)‖},

then

supp[T0(x)]∩ supp[T0(y)] =∅.
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′ ⇐′ When 1 ≤ p < ∞, and p 6= 2, if supp[T0(x)]∩ supp[T0(y)] = ∅, then following the

proposition 3.1, we have

‖T0(x)±T0(y)‖p = ‖T0(x)‖p +‖T0(y)‖p = 2,

and

‖x± y‖p = ‖T0(x)±T0(y)‖p = ‖T0(x)‖p +‖T0(y)‖p = 2 = ‖x‖p +‖y‖p,

then

supp(x)∩ supp(y) =∅.

When p = ∞, for `(2)∞ , if supp[T0(x)]∩ supp[T0(y)] = ∅, then following the proposition 3.2,

we have

‖T0(x)±T0(y)‖= max{‖T0(x)‖,‖T0(y)‖}= 1,

and

‖x± y‖= ‖T0(x)±T0(y)‖= max{‖T0(x)‖,‖T0(y)‖}= 1 = max{‖x‖,‖y‖},

then

supp(x)∩ supp(y) =∅.

�

Theorem 3.4 For `
(2)
p (1 ≤ p ≤ ∞, p 6= 2), T0 : S[`(2)p ] → S[`(2)p ] is a surjective isometry,

e1 = (1,0), e2 = (0,1), {e1,e2} is a normalized orthogonal basis of `(2)p , then

T0(e1) = ẽ1, T0(e2) = ẽ2

or

T0(e1) = ē1, T0(e2) = ē2.

Proof. For e1,e2 ∈ S[`(2)p ], T0 is a surjective isometry on S[`(2)p ], so

T0(e1), T2(e2) ∈ S[`(2)p ].

Following the proposition 3.1, 3.2 and 3.3, we obtain that

supp(e1)∩ supp(e2) =∅ ⇒ supp[T0(e1)]∩ supp[T0(e2)] =∅,
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and ‖T0(e1)‖= ‖T0(e2)‖= 1, so {|T0(e1)|, |T0(e2)|}= {|e1|, |e2|}, then there are |θ1|= |θ2|= 1

and

T0(e1) = θ1e1 = ẽ1, T0(e2) = θ2e2 = ẽ2

or

T0(e1) = θ1e2 = ē1, T0(e2) = θ2e1 = ē2.

�

Corollary 3.5 For `
(2)
p (1 ≤ p ≤ ∞, p 6= 2), T0 : S[`(2)p ] → S[`(2)p ] is a surjective isometry,

{e1,e2} is a normalized orthogonal basis of `(2)p , then

T0(x) = x̃ or T0(x) = x̄ f or∀x ∈ S[`(2)p ].

Proof. For ∀x = (ξ1,ξ2) ∈ S[`(2)p ], let x 6=±e, T0(x) = x
′
= (ξ

′
1,ξ

′
2) ∈ S[`(2)p ], so T0(x) 6=±e,

by the theorem 3.4, there are only two cases.

Case I T0(e1) = ẽ1, T0(e2) = ẽ2.

When 1≤ p < ∞, p 6= 2, x,x
′ ∈ S[`(2)p ], that is

‖x‖p = 1 = |ξ1|p + |ξ2|p ⇒ 0 < |ξ1|< 1, 0 < |ξ2|< 1,

‖x
′
‖p = 1 = |ξ

′
1|p + |ξ

′
2|p ⇒ 0 < |ξ

′
1|< 1, 0 < |ξ

′
2|< 1.

Then

‖T0(x)±T0(e1)‖p = ‖x± e1‖p = ‖x
′
± ẽ1‖p = ‖x

′
±θ1e1‖p, (3)

‖T0(x)±T0(e2)‖p = ‖x± e2‖p = ‖x
′
± ẽ2‖p = ‖x

′
±θ2e2‖p, (4)

that is

‖(ξ1±1,ξ2)‖p = ‖(ξ
′
1±θ1,ξ

′
2)‖p,

‖(ξ1,ξ2±1)‖p = ‖(ξ
′
1,ξ

′
2±θ2)‖p.

‖x± e1‖p = ‖(ξ1±1,ξ2)‖p

= |ξ1±1|p + |ξ2|p

= |ξ1±1|p +1−|ξ1|p,
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‖x
′
± ẽ1‖p = ‖(ξ

′
1±θ1,ξ

′
2)‖p

= |ξ
′
1±θ1|p + |ξ

′
2|p

= |ξ
′
1±θ1|p +1−|ξ

′
1|p,

so by the (3) we get

|ξ1 +1|p−|ξ1|p = |ξ
′
1 +θ1|p−|ξ

′
1|p, (5)

|ξ1−1|p−|ξ1|p = |ξ
′
1−θ1|p−|ξ

′
1|p. (6)

When θ1 = 1, by (5) and f (t) = |t + 1|p−|t|p is a strictly increasing mapping when −1 <

t < 1, we obtain that ξ
′
1 = ξ1 = θ1ξ1, and similarly we obtain that ξ

′
2 = ξ2 = θ2ξ2 when θ2 = 1.

When θ1 =−1, by (5) we get

|ξ1 +1|p−|ξ1|p = |ξ
′
1−1|p−|ξ

′
1|p = |1−ξ

′
1|p−|ξ

′
1|p,

by f (t) = |t + 1|p−|t|p we obtain that ξ
′
1 < 0 and ξ

′
1 = −ξ1 = θ1ξ1, and similarly we obtain

that ξ
′
2 =−ξ2 = θ2ξ2 when θ2 =−1, that is

T0(x) = x̃.

When p = ∞, for `(2)∞ , x,x
′ ∈ S[`(2)∞ ], that is

‖x‖= 1 = max{|ξ1, |ξ2|} ⇒ 0 < |ξ1| ≤ 1, 0 < |ξ2| ≤ 1,

‖x
′
‖= 1 = max{|ξ

′
1|, |ξ

′
2|} ⇒ 0 < |ξ

′
1| ≤ 1, 0 < |ξ

′
2| ≤ 1.

‖T0(x)±T0(e1)‖= ‖x± e1‖= ‖x
′
± ẽ1‖,

‖T0(x)±T0(e2)‖= ‖x± e2‖= ‖x
′
± ẽ2‖,

that is

‖(ξ1 +1,ξ2)‖= max{|ξ1 +1|, |ξ2|}= ‖(ξ
′
1 +θ1,ξ

′
2)‖= max{|ξ

′
1 +θ1|, |ξ

′
2|},

‖(ξ1−1,ξ2)‖= max{|ξ1−1|, |ξ2|}= ‖(ξ
′
1−θ1,ξ

′
2)‖= max{|ξ

′
1−θ1|, |ξ

′
2|},

‖(ξ1,ξ2 +1)‖= max{|ξ1|, |ξ2 +1|}= ‖(ξ
′
1,ξ

′
2 +θ2)‖= max{|ξ

′
1|, |ξ

′
2 +θ2|},
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and

‖(ξ1,ξ2−1)‖= max{|ξ1|, |ξ2−1|}= ‖(ξ
′
1,ξ

′
2−θ2)‖= max{|ξ

′
1|, |ξ

′
2−θ2|},

When ξ1 > 0, we have |ξ1 +1|> 1, |ξ2| ≤ 1 and |ξ ′2| ≤ 1, so

max{|ξ1 +1|, |ξ2|}= |ξ1 +1|= max{|ξ
′
1 +θ1|, |ξ

′
2|}= |ξ

′
1 +θ1|.

We can get |ξ1 + 1| = |ξ ′1 + θ1|, and by the mapping g(t) = |t + 1| is strictly increasing when

0≤ t ≤ 1, we obtain that ξ
′
1 = θ1ξ1.

Similarly we also obtain that ξ
′
2 = θ2ξ2 when ξ2 > 0.

When ξ1 < 0, we have |ξ1−1|> 1, |ξ2| ≤ 1 and |ξ ′2| ≤ 1, so

max{|ξ1−1|, |ξ2|}= |ξ1−1|= max{|ξ
′
1−θ1|, |ξ

′
2|}= |ξ

′
1−θ1|.

We can get |ξ1− 1| = |ξ ′1−θ1|, and by the mapping g(t) = |t− 1| is strictly decreasing when

−1≤ t ≤ 0, we obtain that ξ
′
1 = θ1ξ1.

Similarly we also obtain that ξ
′
2 = θ2ξ2 when ξ2 < 0, that is

T0(x) = x̃.

Case II T0(e1) = ē1, T0(e2) = ē2.

When 1≤ p < ∞, p 6= 2,

‖x+ e1‖p = |ξ1 +1|p +1−|ξ1|p,

‖x
′
+ ē1‖p = |ξ

′
2 +θ1|p +1−|ξ

′
2|p,

‖x− e1‖p = |ξ1−1|p +1−|ξ1|p,

‖x
′
− ē1‖p = |ξ

′
2−θ1|p +1−|ξ

′
2|p,

‖T0(x)+T0(e1)‖p = ‖x+ e1‖p = ‖x
′
+θ1e2‖p,

‖T0(x)−T0(e1)‖p = ‖x− e1‖p = ‖x
′
−θ1e2‖p,

like the above proof about case I, we obtain that ξ
′
2 = θ1ξ1, and similarly we also obtain that

ξ
′
1 = θ2ξ2, that is

T0(x) = x̄.
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When p = ∞, for `(2)∞ ,

‖T0(x)±T0(e1)‖= ‖x± e1‖= ‖x
′
±θ1e2‖,

‖T0(x)±T0(e2)‖= ‖x± e2‖= ‖x
′
±θ2e1‖,

that is

‖(ξ1 +1,ξ2)‖= max{|ξ1 +1|, |ξ2|}= ‖(ξ
′
1,ξ

′
2 +θ1)‖= max{|ξ

′
1|, |ξ

′
2 +θ1|},

‖(ξ1−1,ξ2)‖= max{|ξ1−1|, |ξ2|}= ‖(ξ
′
1,ξ

′
2−θ1)‖= max{|ξ

′
1|, |ξ

′
2−θ1|},

‖(ξ1,ξ2 +1)‖= max{|ξ1|, |ξ2 +1|}= ‖(ξ
′
1 +θ2,ξ

′
2)‖= max{|ξ

′
1 +θ2|, |ξ

′
2|},

and

‖(ξ1,ξ2−1)‖= max{|ξ1|, |ξ2−1|}= ‖(ξ
′
1−θ2,ξ

′
2)‖= max{|ξ

′
1−θ2|, |ξ

′
2|},

like the above proof about case I, we get ξ
′
1 = θ2ξ2 and ξ

′
2 = θ1ξ1, that is

T0(x) = x̄.

�

Theorem 3.6 For `(2)p (1 ≤ p ≤ ∞, p 6= 2), T0 : S[`(2)p ]→ S[`(2)p ] is a surjective isometry, then

T0 can be linearly extended to an real isometry from `
(2)
p to `

(2)
p .

Proof. For `(2)p , e1 = (1,0) , e2 = (0,1), {e1,e2} is a normalized orthogonal basis, for ∀x ∈

`
(2)
p , let

T (x) =


‖x‖T0(

x
‖x‖), if x 6= θ ;

θ , if x = θ .

For ∀x = (ξ1,ξ2),y = (η1,η2) ∈ `
(2)
p , x 6= 0, and y 6= 0, there are only two cases,

Case I T0(e1) = ẽ1, T0(e2) = ẽ2.

In this case, by theorem 3.5 and proposition 2.5, we obtain that

T0(
x
‖x‖

) =
x̃
‖x‖

=
x̃
‖x‖

, T0(
y
‖y‖

) =
ỹ
‖y‖

=
ỹ
‖y‖

,

T (x) = ‖x‖T0(
x
‖x‖

) = ‖x‖ · ˜
(

x
‖x‖

) = x̃,
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‖T (x)−T (y)‖= ‖‖x‖T0(
x
‖x‖

)−‖y‖T0(
y
‖y‖

)‖

= ‖‖x‖ · ˜
(

x
‖x‖

)−‖y‖ · ˜
(

y
‖y‖

)‖

= ‖x̃− ỹ‖

= ‖(̃x− y)‖

= ‖x− y‖,

T (αx+βy) = ‖αx+βy‖T0(
αx+βy
‖αx+βy‖

)

= ‖αx+βy‖ ·
˜

(
αx+βy
‖αx+βy‖

)

= ˜(αx+βy)

= α x̃+β ỹ

= αT (x)+βT (y),

then T is the linearly isometric extension of T0 to whole space `
(2)
p .

Case II T0(e1) = ē2, T0(e2) = ē1.

In this case, by theorem 3.5 and proposition 2.5, we obtain that

T0(
x
‖x‖

) = (
x
‖x‖

) =
1
‖x‖
· x̄, T0(

y
‖y‖

) = (
y
‖y‖

) =
1
‖y‖
· ȳ,

T (x) = ‖x‖T0(
x
‖x‖

) = ‖x‖ · ( 1
‖x‖

) · x̄ = x̄,

‖T (x)−T (y)‖= ‖‖x‖T0(
x
‖x‖

)−‖y‖T0(
y
‖y‖

)‖

= ‖‖x‖ · ( 1
‖x‖

) · x̄−‖y‖ · ( 1
‖y‖

) · ȳ‖

= ‖x̄− ȳ‖

= ‖(x− y)‖

= ‖x− y‖,
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T (αx+βy) = ‖αx+βy‖T0(
αx+βy
‖αx+βy‖

)

= ‖αx+βy‖ · ( 1
‖αx+βy‖

) ·αx+βy

= α x̄+β ȳ

= αT (x)+βT (y),

then T is the linearly isometric extension of T0 to whole space `
(2)
p .

�

Since T (θ) = θ , the linearity about the T can also be proved by the Mazur-Ulam theorem.
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