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 Abstract: We study a batch arrival single service channel queuing system where the server (service channel) 

provides two stages of general service to customers, the first essential service followed by the second optional 

service.  It is assumed that the service channel is subject to breakdowns and on the occurrence of a breakdown, the 

service channel waits for the repairs to start and this waiting time (termed as the set-up time or delay time for repairs) 

is assumed general.  Further, the repair times are also assumed general. We employ the supplementary variable 

technique using four supplementary variables, one each for the elapsed service time of the first essential service, the 

elapsed service time of the second optional service, the elapsed delay time and the elapsed repair time. In addition, 

we add an important assumption that during breakdown periods, the arriving batches are admitted into the system 

based on a policy of restricted admissibility. We derive queue size distribution for this system at a random epoch 

under the steady state conditions. Further, we derive some important performance measures of this system. This 

extends many models studied earlier by several authors. Finally, a few interesting particular cases are discussed.  

Keywords: first essential service; second optional service; random breakdowns; delay time; repair time; restricted 

admissibility; queue size distribution at a random epoch; steady state. 
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1 Introduction 

Server breakdowns are common in many queueing situations. During the repair times of the 

service facility, the units or the customers have to wait until the system becomes operable again. 
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Consequently, such breakdowns have a definite effect on the system, particularly on the queue 

length and customers’ waiting time in the system. Among some earlier papers on service 

interruptions, we refer the reader to [1], [3] and [6]. Recently, [5] and [12] have studied some 

queueing systems with service interruptions and the present author [11] has studied a queueing 

system with time-homogeneous server breakdowns and deterministic repair time. Most of these 

and other systems assume single (one by one) arrivals and they further assume that as soon as the 

service channel fails, the repairs start instantly. However, in the present paper, we deal with a 

bulk input queue   1/)(/ 21 OptionalGGM X   with random breakdowns and delayed repairs, in 

which we assume that the service channel has to wait for the repairs to start, which is a much 

more realistic assumption in many real-life queueing situations. This delay in starting repairs 

may occur due to the non-availability of the repair people or the necessary apparatus needed for 

the repairs. This type of delay time was earlier introduced by one of the present authors, [7] in an 

M/M/1 queue with random breakdowns, general delay time and exponential repair time. 

Recently, [2] studied a queueing system with random breakdowns and delay times. However, in 

the present paper we attempt a wider generalization of the models studied by[7] and [2].  Not 

only that, we also generalize [8] in which he introduced the idea of second optional service but 

assumed single arrivals and assumed the second optional service times to be exponential.  In this 

paper, we assume that system receives input of customers in batches of variable size and that the 

arriving customers are provided the first essential service (FES) followed by the second optional 

service (SOS).  However, we assume that the service times of FES, the service times of the SOS, 

the delay time for the repairs to start and the repair time of the service facility, all the four 

random variables, follow a general arbitrary distribution. We employ the supplementary variable 

technique by introducing four independent supplementary variables, one each for these four 

variables. We further assume that service facility may only fail while it is working unlike Madan 

[10] who assumed that it may fail even when it is idle.  

Another very important assumption in this work is the policy of restricted admissibility of 

arriving groups during breakdown periods. [9] Introduced restricted admissibility of arrivals in a 

vacation queue. In that paper, they assume that not all arriving batches are allowed to join the 

system as a policy to control overflow of the input into the system. Subsequently, [10] studied a 

vacation queue with restricted admissibility and assumed different restricted policies for the case 

when the server is present in the system and the case when the server is on vacation. Earlier, [4] 
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studied a queueing system with control policies different from the ones studied by [9] and [10].  

In the present paper, unlike [9] and [10], we employ the policy of restricted admissibility of 

batches only during the breakdown periods of the server. This is indeed a very valid and a 

realistic assumption, which would help alleviate the system’s overall congestion.   

2 Description of the Model and Definitions 

We consider a batch arrival queueing system, where arrivals occur according to a compound 

Poisson process with the batch size random variable ‘I’. The server provides FES, one by one, to 

all customers on a first come, first served basis. On completion of the FES, a customer opts for 

the SOS with probability p  and leaves the system with probability p1 . The two service time 

random variables 1S  and 2S of a customer follow a general probability law with respective 

distribution functions (DF) )(1 xG  and )(2 xG , Laplace-Stieltjes Transforms (LST) )(*
1 G  and 

)(*
2 G  and  finite moments )( 1

kSE  and )( 2

kSE , 1k , respectively.  It is further assumed 

that the server is subject to random breakdowns such that dt  is the first order probability that 

the service channel will fail during the short interval of time ],( dttt  . We assume that as a 

result of a random breakdown, the unit whose service (FES or SOS) gets interrupted, instantly 

goes back to the head of the queue.  As soon as the server breaks down, it has to wait for the 

repairs to start. We define this waiting time as the delay time and assume that the delay time 

random variable D  follows a general probability law with DF )(xD , LST )(* D  and finite 

moments )( KDE , .1k   Next, we assume that the repair time random variable R of the service 

channel also follows a general probability law with DF )(xR , LST )(* R  and finite moments 

)( KRE , .1k  Let c (0  c 1) be the probability that an arriving batch will be allowed to join 

the system during the period of time when the server is under breakdown state, either waiting for 

repairs to start or under repairs.  

Next, we define  batch arrival rate, X batch size (a random variable),  

ka  Prob [ kX  ], 





1

)(
k

k
k azzX , the PGF of X, and )]1)...(1([][ ][  kXXXEXE k , the k-

th factorial moment of X. 

Further, it may be noted that since )(1 xG , )(2 xG , )(xD  and )(xR  are distribution functions, we 

have 1)(,0)0( 11  GG , 1)(,0)0( 22  GG , 1)(,0)0(  DD  and 1)(,0)0(  RR . 
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Further, since )(1 xG , )(2 xG , )(xD  and )(xR  are continuous at x=0, therefore, 

)(1

)(
)(

1

1
1 xG

xdG
dxx


 , 

)(1

)(
)(

2

2
2 xG

xdG
dxx


  

)(1

)(
)(

xD

xdD
dxx


  and 

)(1

)(
)(

xR

xdR
dxx


  are the 

first order differential functions (hazard rates) of )(1 xG , )(2 xG , )(xD  and )(xR , respectively.    

   Next, we define  

);()1( txWn = probability that at time t, there are n )1(  customers in the system, including one 

customer being provided FES since the elapsed service time x, 

);()2( txWn = probability that at time t, there are n )1( customers in the system, including one 

customer being provided SOS since the elapsed service time x, 

);( txF D
n = probability that at time t, there are n )1(  customers in the queue, the server is in the 

failed state and waiting for repairs to start with elapsed waiting time x,  

);( txF R
n = probability that at time t, there are n )1(  customers in the queue and the server is 

under repairs with elapsed repair time x,  

)(tQ = probability that at time t, the system is empty and server is idle (but available in the 

system for service). 

  Now we shall analyze the limiting behavior of this queueing process at a random epoch with the 

help of Kolmogorov forward equations provided the following limits exist and are independent 

of the initial state:  




t
Q lim )(tQ , 




tn dxxW lim)()1( ,),()1( dxtxWn  




tn dxxW lim)()2( ,),()2( dxtxWn 


t

D

n dxxF lim)( ,),( dxtxF D

n     and    




t

R

n dxxF lim)(  ,),( dxtxF R

n  where ,0x  and 1n . 

3 Steady State Equations Governing the System 

Then following the usual probability reasoning, we have, for ,0x  and 1n , the following set 

of Kolmogorov forward equations under the steady state conditions: 

  



n

k
knknn xWaxWxxW

dx

d

1

)1()1(

1

)1( ),()()()(                 (1) 

  



n

k
knknn xWaxWxxW

dx

d

1

)2()2(

2

)2( ),()()()(                 (2) 
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  



n

k

D
knk

D
n

D
n

D
n xFacxFcxFxxF

dx

d

1

),()()1()()()(                          (3) 

  



n

k

R
knk

R
n

R
n

R
n xFacxFcxFxxF

dx

d

1

),()()1()()()(              (4)     

 
 


0 0

2
)2(

11
)1(

1 )()()()1( dxxWdxxxWpQ  .               (5) 

   The above set of equations is to be solved under the following boundary conditions at  

x = 0 and for 1n : 








 
00

2

)2(

1
0

1

)1(

1

)1( ,)()()()()()()1()0( dxxxFdxxxWdxxxWpQaW R

nnnnn             (6)  





0

1

)1()2( )()()0( dxxxWpW nn  ,                                (7)                          

 )2()1()0( nn

D

n WWF  ,   where       



0

)()( 2,1,)( jdxxWW j
n

j
n ,                                (8) 





0

)()()0( dxxxFF D

n

R

n  ,                                                                                                  (9) 

and the normalizing condition  

1)()()(
1 0 1 01 0

)(
2

1

  




 









 n n

R

n

D

n
n

j

n
j

dxxFdxxFdxxWQ .                            (10) 

4 Queue Size Distribution at a Random Epoch 

   Next, we define the following Probability Generating Functions for 1|| z : 

0),(),(
1

)1()1( 




xxWzzxW
n

n

n ;    





1

)1()1( ),0(),0(
n

n

nWzzW      









1

)1(

0

)1()1( ),()(
n

n

nWzdxzxWzW ,                   (11a) 

0),(),(
1

)2()2( 




xxWzzxW
n

n

n ;    





1

)2()2( )0(),0(
n

n

nWzzW ,  









1

)2(

0

)2()2( ),()(
n

n

nWzdxzxWzW ,                   (11b) 
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0),(),(
1






xxFzzxF
n

D

n

nD ;    





1

)0(),0(
n

D

n

nD FzzF ,  





0

),()( dxzxFzF DD ,                                                              (11c) 

0),(),(
1






xxFzzxF
n

R

n

nR ;    





1

)0(),0(
n

R

n

nR FzzF ,   





0

),()( dxzxFzF RR .                                                             (11d) 

   We multiply equations (1) to (4) as well as the boundary conditions (6) to (9) by suitable 

powers of z, sum over all possible values of n, use (5) and use (11). Thus we obtain the 

following results: 

 

)()()()()()()1(

)(1
1)(

)(
***

2

*

1

*

1

*

1

)1(

kRkDmzmGmpGmGpz

Q
m

mG
zXz

zW









 






,                (12) 

 

)()()()()()()1(

)(1
)(1)(

)(
***

2

*

1

*

1

*

2*

1

)2(

kRkDmzmGmpGmGpz

Q
m

mG
mGzXzp

zW









 






,               (13) 

 

)()()()()()()1(

)(1
)(1)(

)(
***

2

*

1

*

1

*

kRkDmzmGmpGmGpz

Q
k

kD
mzXz

zF D










 






,              (14) 

 

)()()()()()()1(

)(1
)()(1)(

)(
***

2

*

1

*

1

*
*

kRkDmzmGmpGmGpz

Q
k

kR
kDmzXz

zF R










 






.         (15) 

Where     )(1 zXm ,  )(1 zXck   , 

      )()(1 1

0

)(1*
1 xdGezXG xzX


   is the Laplace-Steiltjes transform of the first 

essential service time,       )()(1 2

0

)(1*
2 xdGezXG xzX


   is the Laplace-Steiltjes 
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transform of the second optional service time,       )()(1
0

)(1* xdDezXcD xzXc


   is the 

Laplace-Steiltjes transform of the waiting time before repairs to start, and 

      )()(1
0

)(1* xdRezXcR xzXc


   is the Laplace-Steiltjes transform of the repair time.  

Further, it is easy to see that at z=1 the right hand side expressions in equations (12) to (15) are 

all of zero/zero form. Therefore, applying L’Hopital’s rule, we get 

  )()()()()(1

)(1
)(

)()1(

*

1

)1(

1

)1(

REDEXEXE

Q
G

XE

zWLimW
z 








 


 




,      (16) 

This is the steady state probability that at any random epoch, the server is busy providing first 

essential service,  

  )()()()()(1

)(1
)()(

)()1(

*

2*

1

)2(

1

)2(

REDEXEXE

Q
G

GXEp

zWLimW
z 








 


 





,      (17) 

This is the steady state probability that at any random epoch, the server is busy providing second 

optional service,  

  )()()()()(1

)()()(
)()1(

1 REDEXEXE

QDEXE
zFLimF D

z

D





 


,       (18) 

This is the steady state probability that at any random epoch, the server is in the failed state and 

waiting for repairs to start, 

  )()()()()(1

)()()(
)()1(

1 REDEXEXE

QREXE
zFLimF R

z

R





 


,       (19) 

This is the steady state probability that at any random epoch, the server is in the failed state and 

under repairs. 

   Next, the normalizing condition in (10) is equivalent to  

1)1()1()1()1( )2()1(  RD FFWWQ .            (20) 

Utilizing (4.6) to (4.9) in (4.10), we obtain on simplifying 
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  
)(1

)()()()()(1








REDEXEXE

Q .          (21) 

   We note that (21) yields the following stability condition under which the steady state exists:  

:0    1)()()()()(   REDEXEXE .          (22) 

  

   Finally, replacing the value of Q found in (21) in the numerators of equations (12) to (15), we 

have explicitly determined all the probability generating functions. Similarly, equations (16) to 

(19) can be simplified as follows. 

)(1

)(1
)(

)()1(

*
1

)1(

1

)1(
















 




G
XE

zWLimW
z

,           (23) 

)(1

)(1
)()(

)()1(

*
2*

1
)2(

1

)2(















 




G
GXEp

zWLimW
z

,          (24) 

)(1

)()()(
)()1(

1 








DEXE
zFLimF D

z

D ,            (25) 

)(1

)()()(
)()1(

1 








REXE
zFLimF R

z

R ,            (26) 

   We may note that  , the utilization factor of the system is the proportion of time the system is 

busy providing the first essential service or the second optional service. Therefore, by adding 

(4.6) and (4.7) and using the value of Q from (4.11), we obtain 

)(1

)()(








XE

.                 (27) 

   Now, we define the probability generating function of the queue size distribution at a random 

epoch irrespective of the state of the system as follows: 

)()()()()( )2()1( zFzFzWzWQzP
RD  .                       (28) 

This can be obtained by adding equations (12) to (15) and (21) and simplifying.  

5 The Average System Size 

Let L  denote the mean system size at a random epoch. Then using the PGF )(zP  in equation 

(28) and after somewhat heavy algebra and simplification, we obtain  
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|
1

)(



z

zP
dz

d
L       

  =
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      )()(2
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0
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REDEREDE
XE


 
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+
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 0

0

1)(2

)1(







XE

XXE
,            (29) 

where    )()()()()(0   REDEXEXE  and  )1( XXE  is the second factorial 

moment of batch size of arrivals. 

6 Some Particular Cases 

Case 1:  We assume single Poisson arrivals with no restricted admissibility and that FES, SOS, 

Delay Time and Repair Time all have exponential distributions. 

In this case we have, c=1, 1)( XE , 
1
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1
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With these substitutions in the main results we can obtain the corresponding to this case. In 

addition, we find the following probabilities: 
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This is the steady state probability that at any random epoch the server is busy providing first 

essential service,  
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This is the steady state probability that at any random epoch  the server is busy providing second 

optional  service,  
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This is the steady state probability that at any random epoch  the server is in the failed state and 

waiting for repairs to start, 
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This is the steady state probability that at any random epoch  the server is in the failed state and 

under repairs. 

Further, we have  
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Further, since both service times are exponential, we have  
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where    
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Case 2: No Second Optional Service 

In this case, we put 0p  in the main results.  

Case 3: No Delay 

In this case, we have   1* kD  and 0)( DE .  

Case 4: No Breakdowns 

In this case, we let 0  and consequently, 1)(* iG , for 2,1i , and 
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With these substitutions in the main results we can derive results of this particular case.  

Case 5: No Second Optional Service, No Breakdowns 

In this case we put 0p  and 0)( 2 SE  in the results of case 4 or we put 0  in the results of 

case 2.  

7 Numerical Examples 

We provide some numerical examples to check the validity of our results obtained in Case 1 and 

to see the effect of various parameters involved in our model (namely, the breakdown rate  , the 

delay parameter   and the completion of repair parameter  ) on the utilization factor  and on 
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the probabilities of various steady states of the system, namely the probabilities of the idle state, 

the working state and the breakdown state waiting for repair to start and under repair. We assume 

the fixed values of the arrival rate 1 , the service rates 21   and 42  , and arbitrarily 

choose values of the other various parameters such that the stability condition (6.8) of the 

particular case 1 is not violated. We obtain the following numerical values which depict results 

as expected. 

 

Table 1: Effect of   on the utilization factor and on the probabilities of steady states. 

  1  2  p       

1 2 4 0.5 0.5 5 0.647 

  qL  L  Q  )1()1(W )1()2(W )1(DF )1(RF  

6 1.33 2.15 0.23 0.53 0.12 0.05 0.06 

8 1.20 2.01 0.25 0.53 0.12 0.04 0.06 

10 1.14 1.94 0.26 0.53 0.12 0.03 0.06 

12 1.10 1.90 0.26 0.53 0.12 0.03 0.06 

14 1.07 1.87 0.27 0.53 0.12 0.02 0.06 

16 1.05 1.85 0.27 0.53 0.12 0.02 0.06 

 

Table 2: Effect of   on the utilization factor and on the probabilities of steady states. 

  1  2  p     

1 2 4 0.5 4 5 

  qL  L  Q  )1()1(W )1()2(W )1(DF )1(RF    

0 0.75 1.38 0.38 0.50 0.13 0.00 0.00 0.625 

0.1 0.84 1.52 0.34 0.51 0.12 0.02 0.01 0.630 

0.2 0.97 1.69 0.31 0.51 0.12 0.03 0.03 0.634 

0.3 1.13 1.90 0.28 0.52 0.12 0.05 0.04 0.639 

0.4 1.36 2.16 0.24 0.52 0.12 0.06 0.05 0.643 

0.5 1.67 2.51 0.21 0.53 0.12 0.08 0.06 0.647 
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Table 3: Effect of   on the utilization factor and on the probabilities of steady states. 

  1  2  p       

1 2 4 0.5 0.2 2 0.634 

  
qL  L  Q  )1()1(W )1()2(W )1(DF )1(RF  

1 3.75 4.60 0.18 0.51 0.12 0.06 0.13 

2 1.81 2.60 0.24 0.51 0.12 0.06 0.06 

3 1.47 2.24 0.26 0.51 0.12 0.06 0.04 

4 1.34 2.10 0.27 0.51 0.12 0.06 0.03 

5 1.27 2.03 0.28 0.51 0.12 0.06 0.03 

6 1.23 1.98 0.28 0.51 0.12 0.06 0.02 

 

Table 4: Effect of p on the utilization factor and on the probabilities of steady states. 

  1  2        

1 2 4 0.5 6 4 

p 
qL  L  Q  )1()1(W )1()2(W )1(DF )1(RF    

0 0.71 1.40 0.40 0.50 0.00 0.04 0.06 0.500 

0.2 0.92 1.67 0.33 0.51 0.05 0.05 0.07 0.557 

0.4 1.26 2.06 0.26 0.52 0.09 0.05 0.08 0.616 

0.6 1.90 2.77 0.18 0.54 0.14 0.06 0.08 0.679 

0.8 3.60 4.53 0.10 0.55 0.20 0.06 0.09 0.744 

1 21.24 22.23 0.02 0.56 0.25 0.07 0.10 0.813 

 

One can easily notice that when   increases for fixed values of   and , the probability of the 

idle state Q increases and the average queue length L decreases. Similarly, as   increases for 

fixed values of   and  . However, when   increases for fixed values of   and  , the 

probability of the idle state Q decreases, the average queue length L increases and the utilization 

factor  increases. Clearly, the utilization factor  increases as p increases for fixed values of , 

  and  . On the other hand, it is independent of the delay parameter   and the completion of 

repair parameter . 
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