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Abstract. In this paper, we establish the existence of coupled coincidence point and prove coincidence point

theorem for nonlinear contractive mappings in cone metric space over Banach algebras. Our results generalize

some known results in cone metric space. Moreover, we verify the T-stability of iteration sequence.
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1. Introduction

Cone metric spaces were introduced as a generalization of normal metric spaces by Huang

and Zhang in [1]. They presented the notion of convergence of sequences in cone metric spaces

and proved some fixed point theorems. Then after, many authors established the equivalence

between some fixed point results in metric and in cone metric spaces see [4-6]. But some
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authors appealed to the equivalence of some metric and cone metric fixed point results (see[6-

9]) Recently, Liu and Xu [2] introduced the concept of cone metric apace over Banach algebras,

replacing Banach spaces by Banach algebras as the underlying spaces of cone metric spaces.

They abstain some fixed point theorems of generalized Lipschitz mappings. Moreover they give

an example to illustrate that are more useful than the standard results in cone metric spaces.

Bhashkar and Lashmikantham in[4] introduced the concept of coupled fixed point of a map-

pings F : X×X→ X and investigated some fixed point theorems in partially ordered sets.Sabetghadam

et al. in[6] introduced this concept in cone metric spaces.Then after, Lakshmikantham and Ciric

in[12] proved coupled coincidence and coupled common fixed point theorems for nonlinear

contractive mappings in partially ordered complete metric space. Further, M.Abbas and M.Ali

Khan[5] introduce the concept of a w-compatible mappings to obtain couple coincidence point

and couple point of coincidence for nonlinear contractive mappings in cone metric space with

a cone having non-empty interior.

In this paper, we establish the existence of coupled coincidence point and prove coinci-

dence point theorem for nonlinear contractive mappings in cone metric space over Banach al-

gebras.Our results generalize some known results in cone metric space. Moreover, we verify

the T-stability of iteration sequence.Our results greatly extend the main work of [4-13].

2. Preliminaries

In this section, we give some necessary preliminaries on the Caputo derivative, which will be

used in the sequel.

Definition 2.1. (see[1]) Let A always be a Banach algebra.That is, A is a real Banach space

in which an operation of multiplication is defined, subject to the following properties, for all

x,y,z ∈ A,α ∈ R:

1. (xy)z = x(yz);

2. x(y+ z) = xy+ xz;

3. α(xy) = (αx)y = x(αy);

4. ‖x‖ ≤ ‖x‖‖y‖.
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Definition 2.2. (see[1]) Nonempty closed convex subset K ofA is called a cone, if for allλ,µ≥ 0

1. (θ,e) ⊂ K ,

2. K2 =KK ⊂ K,

3. K ∩ (−K) = �,

4. λK +µK ⊂K

On this basic, we define a partial ordering � with respect to K by x � y if and only if y− x ∈

K .We shall write x≺ y to indicate that x� y but x, y, while x� y will indicate that y− x ∈ intK ,

where intK stands for the interior of K .A cone K is called normal if there is a number M > 0

such that for all x,y ∈A, � � x � y implies ‖x‖ ≤ ‖y‖. The least positive number satisfying above

is called the normal constant of K . In the following we always suppose that A is a Banach

algebra with a unit e, K is a solid cone inA, and � is a partial ordering with respect to K.

Definition 2.3. (see[1])Let X be a non-empty set and A a Banach algebra.Suppose that the

mappings d : X ×X −→A satisfies: 1. θ ≺ d(x,y) for allx,y ∈ X with d(x,y) = θ if and only if

x = y; 2. d(x,y) = d(y, x) for all x,y ∈ X; 3. d(x,y) � d(x,z)+d(z,y)for all x,y,z ∈ X. Then d is

called a cone metric on X, and (X,d) is called a cone metric space over Banach algebra.

Definition 2.4. (see[17])Let (X,d) be a cone metric space, x ∈ X and xn is a sequence in X.

1. xn converges to x whenever for every c � θ there is a natural number N such that

d(xn, x)� c for all n ≥ N.we denote this by lim
n→∞

xn = x or xn −→ x(n −→∝);

2. xn is a Cauchy sequence whenever for every c� θ there is a natural number N such that

d(xn, xm)� c for all n,m ≥ N;

3. (X,d) is a complete cone metric space if every Cauchy sequence is convergent.

Definition 2.5. (see[5])An element (x,y) ∈ X × X is called a coupled fixed point of mappings

F : X×X→ X if x = F(x,y) and y = F(y, x)

Definition 2.6. (see[5])An element (x,y) ∈ X×X is called

(1)a coupled coincidence point of mappings F : X×X→ X and g : X→ X if g(x) = F(x,y) and

g(y) = F(y, x), and (gx,gy) is called coupled point of coincidence;

(2)a common coupled fixed point of mappings F : X×X→ X and g : X→ X if x = g(x) = F(x,y)

and y = g(y) = F(y, x).
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Proposition 2.7. (see[18])LetA be a Banach algebra with a unite e, and x ∈ A.If the spectral

radius ρ(x) of x is less than 1, i.e.

ρ(x) = lim
n→∞
‖xn‖

1
n = in fn≥1‖xn‖

1
n < 1.

then e− x is invertible. Actually,

(e− x)−1 =

n∑
i=0

xi.

Lemma 2.8. (see[19]) Let u,v,w ∈ A, if u� v and v� w, then u� w.

Lemma 2.9. (see[19])LetA be a Banach algebra and an is a sequence inA.If an −→ θ(n−→∝),

then for any c� θ, there exists N such that for all n〉N, one has an ≤ c.

Lemma 2.10. (see[18])A be a Banach algebra with a unit e, x ∈ A, then the limit lim
n→∞
‖xn‖

1
n

exist and the spectral radius ρ(x) satisfies:

ρ(x) = lim
n→∞
‖xn‖

1
n = in fn≥1‖xn‖

1
n < 1.

If ρ(x) < |λ|, then λe− x is invertible inA, moreover,

(λe− x)−1 =

∞∑
i=0

xi

λi+1 .

Lemma 2.11. (see[18])A be a Banach algebra with a unit e, a,b ∈ A.If a commutes with b,

then

ρ(a+b) ≤ ρ(a)+ρ(b); ρ(ab) ≤ ρ(a)ρ(b).

Lemma 2.12. A be a Banach algebra with a unit e, xn is a sequence inA. If there exist x inA

have lim
n→∞

xn = x, where xn commutes with x, for any n > 0, then

lim
n→∞

ρ(xn) = ρ(x).

Proof: by lemma 2.11, we have

ρ(xn)−ρ(x) = ρ(xn− x+ x)−ρ(x) ≤ ρ(xn− x)+ρ(x)−ρ(x) = ρ(xn− x).

‖ρ(xn)−ρ(x)‖ ≤ ρ(xn− x) ≤ ‖xn− x‖.
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Because xn converges to x when x→∞, so

‖ρ(xn)−ρ(x)‖ → 0(n→∞).

that is

ρ(xn)→ ρ(x)(n→∞).

Lemma 2.13. A be a Banach algebra and x ∈ A. If ρ(x) ≤ 1, then lim
n→∞
‖xn‖ = 0.

Proof: Since ρ(x) = lim
n→∞
‖xn‖

1
n = in fn≥1‖xn‖

1
n < 1, there exist a > 0, such that lim

n→∞
‖xn‖

1
n < a ≤

1. When n is enough big, we have ‖xn‖
1
n ≤ a, then ‖xn‖ ≤ an. because a < 1, so an→ 0(n→∞),

then lim
n→∞
‖xn‖ = 0.

3. Main Results

Theorem 3.1. Let (X,Y) be a cone metric space over Banach algebraA andK be a solid cone

in A.Suppose that the mappings F : X → X and g : X → X satisfies the following contractive

condition:

d(F(x,y),F(u,v)) ≤ k1d(gx,gu)+ k2d(F(x,y),gx)+ k3d(gu,gv)

+k4d(F(u,v),gu)+ k5d(F(u,v),gu)+ k6d(F(u,v),gx)

for all x,y,u,v ∈ X, where ki ∈ K(i = 1, · · · ,6) are generalized Lipschitz constants with ρ(k1)+

ρ(k3)+ρ(k2+ k4+ k5+ k6) < 1, if k1,k3 commutes with k2+ k4+ k5+ k6, then there exists two se-

quence gxn,gyn in X such that they are two Cauchy sequence.Moreover, if d(gxn,gxm)+d(gyn,gym)

converges to some non-zero element inA, for any two different Cauchy sequence gxn,gyn, then

A is a non-normal cone.

Proof: Let x0,y0 be any two arbitrary in X, set g(x1) = F(x0,y0) and g(y1) = F(y0, x0),
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g(xn+1) = F(xn,yn) and g(yn+1) = F(yn, xn), then we have

d(gxn,gxn+1) = d(F(xn−1,yn−1),F(xn,yn))

≤ k1d(gxn−1,gxn)+ k2d(F(xn−1,yn−1),gxn−1)+ k3d(gyn−1,gyn)

+ k4d(F(xn,yn),gxn)+ k5d(F(xn−1,yn−1),gxn)+ k6d(F(xn,yn),gxn−1)

= k1d(gxn−1,gxn)+ k2d(gxn,gxn−1)+ k3d(gyn−1,gyn)

+ k4d(gxn+1,gxn)+ k5d(gxn,gxn)+ k6d(gxn+1,gxn−1)

≤ k1d(gxn−1,gxn)+ k2d(gxn,gxn−1)+ k3d(gyn−1,gyn)

+ k4d(gxn+1,gxn)+ k6d(gxn+1,gxn)+ k6d(gxn,gxn−1)

= (k1+ k2+ k6)d(gxn−1,gxn)+ k3d(gyn−1,gyn)+ (k4+ k6)d(gxn,gxn+1).

From which it follows

(1− k4− k6)d(gxn,gxn+1) ≤ (k1+ k2+ k6)d(gxn−1,gxn)+ k3d(gyn−1,gyn).(3.1)

Similarly

(1− k4− k6)d(gyn,gyn+1) ≤ (k1+ k2+ k6)d(gyn−1,gyn)+ k3d(gxn−1,gxn).(3.2)

We also have

d(gxn+1,gxn) = d(F(xn,yn),F(xn−1,yn−1))

≤ k1d(gxn,gxn−1)+ k2d(F(xn,yn),gxn−1)+ k3d(gyn,gyn−1)

+ k4d(F(xn−1,yn−1),gxn−1)+ k5d(F(xn,yn),gxn−1)+ k6d(F(xn−1,yn−1),gxn)

= k1d(gxn,gxn−1)+ k2d(gxn+1,gxn)+ k3d(gyn,gyn−1)

+ k4d(gxn,gxn−1)+ k5d(gxn+1,gxn−1)+ k6d(gxn,gxn)

≤ k1d(gxn,gxn−1)+ k2d(gxn+1,gxn)+ k3d(gyn,gyn−1)

+ k4d(gxn,gxn−1)+ k5d(gxn+1,gxn)+ k5d(gxn,gxn−1)

= (k1+ k4+ k5)d(gxn,gxn−1)+ k3d(gyn,gyn−1)+ (k2+ k6)d(gxn+1,gxn).
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that is

(1− k2− k5)d(gxn+1,gxn) ≤ (k1+ k4+ k5)d(gxn−1,gxn)+ k3d(gyn,gyn−1).(3.3)

Similarly

(1− k2− k5)d(gyn+1,gyn) ≤ (k1+ k4+ k5)d(gyn−1,gyn)+ k3d(gxn,gxn−1).(3.4)

Let δn = d(gxn,gxn+1)+d(gyn,gyn+1), now, from (3.1) and (3.2), we obtain

(1− k4− k6)δn ≤ (k1+ k2+ k3+ k6)δn−1.(3.5)

Respectively (3.3) and (3.4)

(1− k2− k5)δn ≤ (k1+ k3+ k4+ k5)δn−1.(3.6)

So we have

(2− k2− k4− k5− k6)δn ≤ (2k1+2k3+ k2+ k4+ k5+ k6)δn−1.(3.7)

In (3.7) put k = k2+ k4+ k5+ k6, then

(2e− k)δn ≤ (2k1+2k3+ k)δn−1.(3.8)

Since ρ(k) ≤ ρ(k1)+ρ(k3)+ρ(k) < 1 < 2, then by Lemma2.10, it follows that (2e−k) is invertible.

Furthermore

(2e− k)−1 =

∞∑
i=0

ki

2i+1 .

By multiplying in both side of (3.8) by (2e− k)−1, we arrive at

δn ≤ (2e− k)−1(2k1+2k3+ k)δn−1.

Denote h = (2e− k)−1(2k1+2k3+ k), then by (3.7)we get

δn ≤ hδn−1 ≤ h2
δn−2 ≤ · · · ≤ hn

δ0.

by lemma2.10, we conclude that

ρ(
n∑

i=0

ki

2i+1 ) ≤
n∑

i=0

ρ(
ki

2i+1 ) ≤
n∑

i=0

[ρ(k)]i

2i+1 .
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which implies by lemma 2.12 that

ρ(
∞∑

i=0

ki

2i+1 ) ≤
∞∑

i=0

[ρ(k)]i

2i+1 .

Since k1 commutes with k, it follows that

(2e− k)−1(2k1+2k3+ k) = (
∞∑

i=0

ki

2i+1 )(2k1+2k3+ k)

= 2(
∞∑

i=0

ki

2i+1 )k1+2(
∞∑

i=0

ki

2i+1 )k3+

∞∑
i=0

ki+1

2i+1

= (2k1+2k3+ k)(
∞∑

i=0

ki

2i+1 )

= (2k1+2k3+ k)(2e− k)−1.

that is to say, (2e− k)−1 commutes with (2k1+2k3+ k), then by lemma 2.11, we gain

ρ(h) = ρ((2e− k)−1(2k1+2k3+ k))

≤ ρ(
∞∑

i=0

ki

2i+1 )[2ρ(k1)+2ρ(k3)+ρ(k)]

≤

∞∑
i=0

[ρ(k)]i

2i+1 [2ρ(k1)+2ρ(k3)+ρ(k)]

=
1

2−ρ(k)
[2ρ(k1)+2ρ(k3)+ρ(k)] < 1.

Which establishes that e−h is invertible and ‖hn‖ → 0(n→∞). We have

d(gxm,gxn) ≤ d(gxm,gxm−1)+d(gxm−1,gxm−2)+ · · ·+d(gxn+1,gxn).(3.9)

and

d(gym,gyn) ≤ d(gym,gym−1)+d(gym−1,gym−2)+ · · ·+d(gyn+1,gyn).(3.10)
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Therefore

d(gxm,gxn)+d(gym,gyn) ≤ δm−1+δm−2+ · · ·+δn

≤ (hm−1+hm−2+ · · ·+hn)δ0

= (hm−n−1+hm−n−2+ · · ·+h+ e)hn
δ0

= (
∞∑

i=0

hi)hn
δ0 = (e−h)−1hn

δ0.

Owing to

‖(e−h)−1hn
δ0‖ ≤ ‖(e−h)−1‖‖hn‖‖δ0‖(n→∞).

We have (e−h)−1hnδ0→ 0, (n→∞), so by using lemma 2.8, 2.9

d(gxn,gxn+1)+d(gyn,gyn+1) is a Cauchy sequence. Since d(gxm,gxn)≤ d(gxm,gxn)+d(gym,gyn)

and d(gym,gyn) ≤ d(gxm,gxn)+ d(gym,gyn), then again by (p4), gxn and gyn are Cauchy se-

quences in g(X).

Since gxn and gyn are Cauchy sequences, there is N such that d(gxn,gxm)�C and d(gyn,gym)�

C, for all n,m > N, it is clear that

d(gxn,gyn) ≤ d(gxn,gxm)+d(gxm,gym)+d(gym,gyn) ≤ d(gxm,gym)+2C.

d(gxm,gym) ≤ d(gxm,gxn)+d(gxn,gyn)+d(gyn,gym) ≤ d(gxn,gyn)+2C.

d(gxm,gym)+2C−d(gxn,gyn) ≤ d(gxn,gyn)+2C+2C−d(gxn,gyn) = 4C.

by virtue of the normality of K , then we have

‖d(gxm,gym)+2C−d(gxn,gyn)‖ ≤ 4M‖C‖.

Hence, it ensures us that

‖d(gxm,gym)−d(gxn,gyn)‖ ≤ ‖(gxm,gym)+2C−d(gxn,gyn)‖ · ‖2C‖

≤ (4M+2)‖C‖ ≤ ε.

Which implies that d(gxn,gyn)is Cauchy sequence and hence convergent. Next, set lim
n→∞

d(gxn,gyn)=

a, it is evident that 0 ≤ a. Finally, we claim that a = 0. Actually, if there exists n0 ∈ N such that
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xn0 = yn0 , the claim is clear. Whithout loss of generality, we supposed that gxn ) gyn, for all

n ∈ N. Notice that

d(gxn+1,gyn+1) = d(F(xn,yn),F(yn, xn))

≤ k1d(gxn,gyn)+ k2d(F(xn,yn),gxn)+ k3d(gyn,gxn)

+ k4d(F(yn, xn),gyn)+ k5d(F(xn,yn),gyn)+ k6d(F(yn, xn),gxn)

= (k1+ k3)d(gxn,gyn)+ k2d(gxn+1,gxn)+ k4d(gyn+1,gyn)

+ k5d(gxn+1,gyn+1)+ k5d(gyn+1,gyn)+ k6d(gyn+1,gxn+1)+ k6d(gxn+1,gxn)

≤ (k1+ k3)d(gxn,gyn)+ (k2+ k6)d(gxn+1,gxn)+ (k4+ k5)d(gyn+1,gyn)

+ (k5+ k6)d(gxn+1,gyn+1).

Taking the limit as n→∞, we obtain that

a ≤ (k1+ k3+ k5+ k6)a.

set λ = k1+ k3+ k5+ k6, then it follows that

a ≤ λa ≤ λ2a ≤ · · · ≤ λna.

Because λ ≤ k1+ k3+ k lead to λn ≤ (k1+ k3+ k)n

moreover, by lemma 2.13, ρ(k1 + k3 + k) ≤ ρ(k1)+ ρ(k3)+ ρ(k) < 1 lead to (k1 + k3 + k)n →

0(n→∞). We claim that for each C� θ, there exists n0(C) such that λn� C, such that for all

n > n0(C).Consequently, a = θ, so we obtain a contradiction. The proof is completed.

Theorem 3.2. Let (X,Y) be a cone metric space over Banach algebraA andK be a solid cone

in A.Suppose that the mappings F : X → X and g : X → X satisfies the following contractive

condition:

d(F(x,y),F(u,v)) ≤ k1d(gx,gu)+ k2d(F(x,y),gx)+ k3d(gu,gv)

+k4d(F(u,v),gu)+ k5d(F(u,v),gu)+ k6d(F(u,v),gx)

for all x,y,u,v ∈ X, where ki ∈ K(i = 1, · · · ,6) are generalized Lipschitz constants with ρ(k1)+

ρ(k3)+ ρ(k2 + k4 + k5 + k6) < 1, if k1,k3 commutes with k2 + k4 + k5 + k6, then F and g have
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a couple coincidence point in X.Moreover, for arbitrary x,y ∈ X, iterative sequence Fn(x,y)

converges to the fixed point.Further, F has a property P.

Proof: by using Theorem 3.1, we known gxn and gyn are two Cauchy sequences in g(X), so

there exists x and y in X such that gxn→ gx and gyn→ gy.Now, we prove that F(x,y) = gx and

F(y, x) = gy.For that we have

d(F(x,y),gx) ≤ d(F(x,y),gxn+1)+d(gxn+1,gx) = d(F(x,y),F(xn,yn))+d(gxn+1,gx)

≤ k1d(gx,gxn)+ k2d(F(x,y),gx)+ k3d(gy,gyn)+ k4d(F(xn,yn),gxn)

+ k5d(F(x,y),gxn)+ k6d(F(xn,yn),gx)+d(gxn+1,gx)

= k1d(gx,gxn)+ k2d(F(x,y),gx)+ k3d(gy,gyn)+ k4d(gxn+1,gxn)

+ k5d(F(x,y),gxn)+ k6d(gxn+1,gx)+d(gxn+1,gx)

≤ k1d(gx,gxn)+ k2d(F(x,y),gx)+ k3d(gy,gyn)+ k4d(gxn+1,gx)+ k4d(gx,gxn)

+ k5d(F(x,y),gx)+ k5d(gx,gxn)+ k6d(gxn+1,gx)+d(gxn+1,gx).

which implies that

(e− k2− k5)d(F(x,y),gx) ≤ (k1+ k4+ k5)d(gxn,gx)+ (e+ k4+ k6)d(gxn+1,gx)(3.11)

+ k3d(gyn,gy).

On the other hand, we have

d(F(x,y),gx) ≤ d(gxn+1,F(x,y))+d(gxn+1,gx) = d(F(xn,yn),F(x,y))+d(gxn+1,gx)

≤ k1d(gxn,gx)+ k2d(F(xn,yn),gxn)+ k3d(gyn,gy)+ k4d(F(x,y),gx)

+ k5d(F(xn,yn),gx)+ k6d(F(x,y),gxn)+d(gxn+1,gx)

= k1d(gxn,gx)+ k2d(gxn+1,gxn)+ k3d(gyn,gy)+ k4d(F(x,y),gx)

+ k5d(gxn+1,gx)+ k6d(F(x,y),gxn)+d(gxn+1,gx)

≤ k1d(gxn,gx)+ k2d(gxn+1,gx)+ k2d(gx,gxn)+ k3d(gyn,gy)+ k4d(F(x,y),gx)

+ k5d(gxn+1,gx)+ k6d(F(x,y),gx)+ k6d(gx,gxn)+d(gxn+1,gx).
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which implies that

(e− k4− k6)d(F(x,y),gx) ≤ (k1+ k2+ k6)d(gxn,gx)+ (e+ k2+ k5)d(gxn+1,gx)(3.12)

+ k3d(gyn,gy).

Combining (3.11) and (3.12) yields that

(2e− k2− k4− k5− k6)d(F(x,y),gx) ≤ (2k1+ k2+ k4+ k5+ k6)d(gxn,gx)(3.13)

+ (2e+ k2+ k4++k5+ k6)d(gxn+1,gx)+2k3d(gyn,gy).

Put k = k2+ k4++k5+ k6, then

(2e− k)d(F(x,y),gx) ≤ (2k1+ k)d(gxn,gx)+ (2e+ k)d(gxn+1,gx)+2k3d(gyn,gy).

Consequently, we obtain that

d(F(x,y),gx) ≤ (2e− k)−1(2k1+ k)d(gxn,gx)+ (2e− k)−1(2e+ k)d(gxn+1,gx)

+ (2e− k)−12k3d(gyn,gy).

In view of gxn→ gx,gyn→ gy(n→∞), then for each C � θ, there exists Nm, (m = 1,2,3) such

that for all n> Nm have d(gxn,gx)� (2e−k)C
3(2k1+k) ,d(gxn+1,gx)� (2e−k)C

3(2e+k) and d(gxn+1,gx)� (2e−k)C
3(2k3) ,

for all n > minN1,N2,N3, thus

d(F(x,y),gx) �
C
3
+

C
3
+

C
3
=C.

It follows that d(F(x,y),gx) = θ, and hence F(x,y) = gx.Similarly, F(y, x) = gy.Hence (x,y) is

coupled coincidence point of the mappings F and g. In the following we shall show the couple

coincidence point is unique.Suppose that (x,y), (x∗,y∗) ∈ X×X with g(x) = F(x,y),g(y) = F(y, x)

and g(x∗) = F(x∗,y∗),g(y∗) = F(y∗, x∗), then

d(gx,gx∗) = d(F(x,y),F(x∗,y∗))

≤ k1d(gx,gx∗)+ k2d(F(x,y),gx)+ k3d(gy,gy∗)

+ k4d(F(x∗,y∗),gx∗)+ k5d(F(x,y),gx∗)+ k6d(F(x∗,y∗),gx)

= (k1+ k5+ k6)d(gx,gx∗)+ k3d(gy,gy∗).
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similarly

d(gy,gy∗) ≤ (k1+ k5+ k6)d(gy,gy∗)+ k3d(gx,gx∗).

Thus

d(gx,gx∗)+d(gy,gy∗) ≤ (k1+ k3+ k5+ k6)[d(gx,gx∗)+d(gy,gy∗)].

Denote h = k1+ k3+ k5+ k6, then

d(gx,gx∗)+d(gy,gy∗) ≤ h[d(gx,gx∗)+d(gy,gy∗)] ≤ · · · ≤ hnd(gx,gx∗)+d(gy,gy∗).(3.14)

By the proof of Theorem 3.1, we claim that, for each c� θ, there exists N such that hn� c for

all n > N. Consequently, d(gx,gx∗)+d(gy,gy∗) = θ, that is x = x∗,y = y∗.

Theorem 3.3. Let (X,Y) be a cone metric space over Banach algebraA andK be a solid cone

in A.Suppose that the mappings F : X → X and g : X → X satisfies the following contractive

condition:

d(F(x,y),F(u,v)) ≤ k1d(gx,gu)+ k2d(F(x,y),gx)+ k3d(gu,gv)

+k4d(F(u,v),gu)+ k5d(F(u,v),gu)+ k6d(F(u,v),gx)

for all x,y,u,v ∈ X, where ki ∈ K(i = 1, · · · ,6) are generalized Lipschitz constants with ρ(k1)+

ρ(k3)+ρ(k2+k4+k5+k6) < 1, if k1,k3 commutes with k2+k4+k5+k6, then Picards iteration is

T-stable.

Proof:by utilizing Theorem 3.1 and 3.2, we obtain that F and g have a couple coincidence

point u and v in X.Assume that gxn satisfies the following condition:for each c� θ, there exists
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N such that for all n > N, d(F)� c. we have

d(gxn+1,gx) = d(F(xn,yn),F(x,y))

≤ k1d(gxn,gx)+ k2d(F(xn,yn),gxn)+ k3d(gyn,gy)

+ k4d(F(x,y),gx)+ k5d(F(xn,yn),gx)+ k6d(F(x,y),gxn)

= k1d(gxn,gx)+ k2d(gxn+1,gxn)+ k3d(gyn,gy)

+ k4d(gx,gx)+ k5d(gxn+1,gx)+ k6d(gx,gxn)

≤ k1d(gxn,gx)+ k2d(gxn+1,gx)+ k2d(gx,gxn)+ k3d(gyn,gy)

+ k4d(gx,gx)+ k5d(gxn+1,gx)+ k6d(gx,gxn)

≤ (k1+ k2+ k6)d(gxn,gx)+ (k2+ k5)d(gxn+1,gx)+ k3d(gy,gyn).

from which it follows

(e− k2− k5)d(gxn+1,gx) ≤ (k1+ k2+ k6)d(gxn,gx)+ k3d(gyn,gy).(3.15)

Similarly,

d(gxn+1,gx) = d(F(x,y),F(xn,yn))

≤ k1d(gx,gxn)+ k2d(F(x,y),gx)+ k3d(gy,gyn)

+ k4d(F(xn,yn),gx)+ k5d(F(x,y),gxn)+ k6d(F(xn,yn),gx)

= k1d(gx,gxn)+ k2d(gx,gx)+ k3d(gy,gyn)

+ k4d(gxn+1,gxn)+ k5d(gx,gxn)+ k6d(gxn+1),gx)

≤ k1d(gx,gxn)+ k3d(gy,gyn)+ k4d(gxn+1,gx)

+ k4d(gx,gxn)+ k5d(gx,gxn)+ k6d(gxn+1),gx)

≤ (k1+ k4+ k5)d(gxn,gx)+ (k4+ k6)d(gxn+1,gx)+ k3d(gy,gyn).

from which it follows

(e− k4− k6)d(gxn+1,gx) ≤ (k1+ k4+ k5)d(gxn,gx)+ k3d(gyn,gy).(3.16)
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Add up (3.15) and (3.16) yields that

(2e− k2− k5− k4− k6)d(gxn+1,gx) ≤ (2k1+ k4+ k5+ k2+ k6)d(gxn,gx)+2k3d(gyn,gy).(3.17)

Put k = k4+ k5+ k2+ k6, then

(2e− k)d(gxn+1,gx) ≤ (2k1+ k)d(gxn,gx)+2k3d(gyn,gy)

Based on the proof of Theorem 3.1, it is not hard to obtain that

d(gxn+1,gx) ≤ hd(gxn,gx)+2md(gyn,gy).

where h = (2e − k)−1(2k1 + k),m = (2e − k)−1k3, and ρ(h) < 1 Setting an = d(gxn+1,gx),cn =

d(gyn,gy), we can obtain that

an+1 ≤ han+mcn

for each c
m � θ, there exists N such that for all n > N, cn = d(gyn,gy)� c

m . Then making the

Lemma 2.10, we have an� c.That is to proof, the iteration is T-stable.The proof is over.

Corollary 3.4. Let (X,d) be a cone metric space over Banach algebraA andK be a solid cone

in A.Suppose that the mappings F : X → X and g : X → X satisfies the following contractive

condition:

d(F(x,y),F(u,v)) ≤ α[d(gx,gu)+d(F(x,y),gx)]+β[d(gu,gv)+d(F(u,v),gu)]

+ γ[d(F(u,v),gu)+d(F(u,v),gx)]

for all x,y,u,v ∈ X, where α,β,γ are generalized Lipschitz constants, then then F and g have

a unique couple coincidence point in X.Moreover, for arbitrary x,y ∈ X, iterative sequence

Fn(x,y) converges to the fixed point.Further, the iteration sequence is T-stable.

Corollary 3.5. Let (X,Y) be a cone metric space over Banach algebraA andK be a solid cone

in A.Suppose that the mappings F : X → X and g : X → X satisfies the following contractive

condition:

d(F(x,y),F(u,v)) ≤ αd(F(x,y), x)+βd(F(u,v),u)
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for all x,y,u,v ∈ X, where α,β are generalized Lipschitz constants with ρ(α)+ ρ(β) < 1, then

then F and g have a unique couple coincidence point in X.Moreover, for arbitrary x,y ∈ X, it-

erative sequence Fn(x,y) converges to the fixed point.Further, the iteration sequence is T-stable.
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