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Abstract. In this paper, the concepts of (L,M)-fuzzy soft topological spaces, (L,M)-fuzzy soft base and (L,M)-

fuzzy soft filter spaces were introduced and their properties were studied, where L be a completely distributive

lattice with 0 and 1 elements and M be a strictly two-sided, commutative quantale lattice. Also, the relationships

between these concepts were investigated.
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1. Introduction

In 1999, D. Molodtsov [29] initiated the theory of soft sets as a new mathematical tool for

dealing with uncertainties. Also, he applied this theory to several directions (see, for example,

[30],[31],[32]). The soft set theory has been applied to many different fields (see, for exam-

ple, [1],[2],[6],[7],[10],[11], [21],[27],[33],[44],[39],[45]). Later, some researchers (see, for
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example, [3], [8], [19], [20], [28], [34], [40], [46]) introduced and studied the notion of soft

topological spaces.

Šostak introduced a new definition of fuzzy topology in 1985 [41], which we will call”fuzzy

topology on Šostak sense.” According to Šostak [41], these definitions, a fuzzy topology is a

crisp subfamily of family of fuzzy sets and fuzziness in the concept of openness of a fuzzy set

has not been considered, which seems to be a drawback in the process of fuzzification of the

concept of topological spaces.

In this paper, we introduce the concepts of (L,M)-fuzzy soft topological spaces and (L,M)-

fuzzy soft filter spaces in Šostak sense. We study their properties and discuss the relationships

between these concepts.

2. Preliminaries

Definition 2.1 [13]. Let (L,≤) be a poset.

(1) L is called a lattice, if a∨b ∈ L,a∧b ∈ L for any a,b ∈ L.

(2) L is called a complete lattice, if ∨S ∈ L,∧S ∈ L for any S⊆ L.

(3) L is called distributive, if a∨ (b∧ c) = (a∨b)∧ (a∨ c), a∧ (b∨ c) = (a∧b)∨ (a∧ c) for

any a,b,c ∈ L.

(4) L is called a complete distributive lattice (resp. a distributive lattice), if L is a complete

lattice (resp. a lattice) and distributive.

Definition 2.2 [13]. Let L be a lattice with top element 1L and bottom element 0L and let

a,b ∈ L. Then b is called a complement element of a, if a∨ b = 1L,a∧ b = 0L. If a ∈ L has a

complement element, then it is unique. We denote the complement element of a by a′.

Definition 2.3 [13]. Let (L,≤) be a poset. Then

(1) L is called a Boolean lattice, if (i) L is a distributive lattice; (ii) L has 0L and 1L; (iii) each

a ∈ L has the complement a′ ∈ L.

(2) L is called a complete Boolean lattice, if (i) L is a complete distributive lattice; (ii) L has

0L and 1L; (iii) each a ∈ L has the complement a′ ∈ L.
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Definition 2.4 [14],[15],[35],[42]. A triple (L,≤,�) is called a strictly two-sided commuta-

tive quantale ( stsc-quantale, for short) if and only if it satisfies the following conditions:

(L1) (L,≤,∨,∧,1,0) is a completely distributive lattice where 1 is the universal upper bound

and 0 is the universal lower bound.

(L2) (L,�) is a commutative semigroup.

(L3) x = x�1 for each x ∈ L.

(L4) � is distributive over arbitrary joins, i.e.(
∨

i∈Γ ai)�b =
∨

i∈Γ(ai�b).

Let (L,≤,�) be a stsc-quantale. Then for each x,y∈ L we define (x�y)≤ z⇐⇒ x≤ (y→ z).

The it satisfies Galois correspondence. i.e. (x� y)≤ z if and only if x≤ (y→ z).

Definition 2.5 [37]. Let E be a set of parameters, X be an initial universe. A pair ( f ,E) is

called a fuzzy soft set over X , if f is a mapping given by f : E → IX . We also denote ( f ,E) by

fE . The set of all fuzzy soft set is denoted by FS(X ,E).

Definition 2.6 [26]. A fuzzy soft set fE on X is called a null fuzzy soft set and denoted by

0̃ if fe = 0, for each e ∈ E.

Definition 2.7 [4]. A fuzzy soft set fE on X is called an absolute fuzzy soft set and denoted by

1̃ if fe = 1, for each e ∈ E.

Definition 2.8 [25]. Let E be a set of parameters, X be an initial universe, L be a complete

Boolean lattice and A ⊆ E. An L-fuzzy soft set fA over (X ,E) is a mapping fA : E → LX such

that fA(e) = 0 for all e 6∈ A. The set of all L-fuzzy soft set over (X ,E) is denoted by L-FS(X ,E).

In other words, an L-fuzzy soft set fE over X is a parameterized family of L-fuzzy sets in the

universe X . If L = [0,1], then every L-fuzzy soft set is a fuzzy soft set.

Definition 2.9 [25]. Let fA,gB ∈ L-FS(X ,E). Then
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(1) fA is said to by fuzzy soft subset of gB, denoted by fA v gB if fA(e)⊆ gB(e) for all e ∈ E,

that is fA(e)(x)≤ gB(e)(x) for all e ∈ E, and for all x ∈ X .

Two L-fuzzy soft sets fA and gB over (X ,E) are said to be equal, denoted by fA ∼= gB if

fA v gB and gB v fA.

(2) The union of fA and gB is also L-fuzzy soft set hC, defined by hC(e) ∼= fA(e)∨gB(e) for

all e ∈ E, where C = A∪B. Here we write hC = fAtgB.

(3) The intersection of fA and gB is also L-fuzzy soft set hC, defined by hC(e)∼= fA(e)∧gB(e)

for all e ∈ E, where C = A∩B. Here we write hC = fAugB.

Definition 2.10 [38]. The fuzzy soft set fA ∈ FS(X ,E) is called fuzzy soft point if A = {e} ⊆ E

and fA(e) is a fuzzy point in X i.e. there exists x ∈ X such that fA(e)(x) = t (0 < t ≤ 1) and

fA(e)(y) = 0 for all y ∈ X \{x}. We denote this fuzzy soft point fA = et
x = {(e,xt)} and the set

of all fuzzy soft point by SPe
t (X ,E).

Definition 2.11 [38]. Let et
x, fA ∈ FS(X ,E). we say that et

x∈̃ fA read as et
x belongs to the fuzzy

soft set fA if for the element e ∈ A, t ≤ fA(e)(x).

Definition 2.12 [5]. Let (X ,E) and (Y,E∗) be classes of fuzzy soft sets over X and Y with

attributes from E and E∗ respectively. Let ρ : X→Y and ψ : E→ E∗ be mapping. Then a fuzzy

soft mapping f = (ρ,ψ) : (X ,E)→ (Y,E∗) would be defined as follows

For a fuzzy soft set FA in (X ,E), f (FA) is a fuzzy soft set in (Y,E∗) obtained as follows: for

β ∈ ψ(E)⊆ E∗ and y ∈ Y,

f (FA)(β )(y) =


∨x∈ρ−1(y)

(
∨α∈ψ−1(β ) FA(α)

)
(x),

if ρ−1(y) 6= φ , ψ−1(β ) 6= φ ,

0, if otherwise.

f (FA) is called fuzzy soft image of the fuzzy soft set FA.

Definition 2.13 [5]. Let (X ,E) and (Y,E∗) be classes of fuzzy soft sets over X and Y with

attributes from E and E∗ respectively. Let ρ : X→Y, ψ : E→ E∗ be mappings and f = (ρ,ψ) :
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(X ,E)→ (Y,E∗) a fuzzy soft mapping. Then for a fuzzy soft set gB in (Y,E∗) f−1(gB) is a

fuzzy soft set in (X ,E) obtained as follows: for α ∈ ψ−1(E∗)⊆ E and x ∈ E,

f−1(gB)(α)(x) = gB(ψ(α))(ρ(x)).

f−1(gB) is called a fuzzy soft inverse image of the fuzzy soft set gB.

3. (L,M)-fuzzy soft topological spaces

Let L be a completely distributive lattice with 0 and 1 elements and M be a strictly two-sided,

commutative quantale lattice.

Definition 3.1. A map T : L-FS(X ,E)−→M is called an (L,M)-fuzzy soft topology on (X ,E)

if it satisfies the following conditions:

(LSO1) T (0̃) = T (1̃) = 1.

(LSO2) T ( fA1 u fA2)≥T ( fA1)�T ( fA2), for all fA1, fA2 ∈ L-FS(X ,E).

(LSO3) T (
⊔

i∈Λ fAi ≥
∧

i∈Λ)T ( fAi), for all fAi ∈ L-FS(X ,E).

The triple (X ,E,T ) is called (L,M)-fuzzy soft topological space.

Let T1 and T2 be (L,M)-fuzzy soft topologies on (X ,E). We say that T1 is finer than T2 (T2

is coarser than T1), denoted by T2 vT1, if T2( fA)≤T1( fA), for all fA ∈ L-FS(X ,E).

Let (X ,E,T1) and (Y,E∗,T2) be (L,M)-fuzzy soft topological spaces. A soft map φ :

(X ,E,T1)→ (Y,E∗,T2) is called LFS-continuous if and only if T2( fA) ≤ T1(φ
←( fA)), for

all fA ∈ L-FS(Y,E∗).

Remark 3.2. (1) If (L = [0,1],∧) and M = {0,1},(L,M)-fuzzy soft topological space is fuzzy

soft topological space [37].

(2) If (L = M = [0,1],�= ∧) then (L,M)-fuzzy soft topological space is fuzzy soft topolog-

ical space [4].



ON (L,M)-FUZZY SOFT TOPOLOGICAL SPACES 285

Definition 3.3. A map F : L-FS(X ,E) −→ M is called an (L,M)-fuzzy soft filter on (X ,E)

if it satisfies the following conditions:

(LSF1) F (0̃) = 0 and F (1̃) = 1.

(LSF2) F ( fA1 u fA2)≥F ( fA1)�F ( fA2), for all fA1, fA2 ∈ L-FS(X ,E).

(LSF3) If fA1 v fA2 we have F ( fA1)≤F ( fA2).

The triple (X ,E,F ) is called an (L,M)-fuzzy soft filter space.

Theorem 3.4. Let (X ,E,F ) be an (L,M)-fuzzy soft filter space. We define a mapping TF : L-

FS(X ,E)−→M as follows:

TF ( fA) =

 F ( fA), if fA 6∼= 0̃,

1, if fA ∼= 0̃.

Then (X ,E,TF ) is an (L,M)-fuzzy soft topological space.

Proof. We show the condition (LSO3). For fAi ∈ L-FS(X ,E), since fAi v
⊔

i∈Γ fAi for all

i ∈ Γ, we have F ( fAi)≤F (
⊔

i∈Γ fAi), so

∧
i∈Γ

TF ( fAi)≤TF (
⊔
i∈Γ

fAi).

Definition 3.5. A map B : L-FS(X ,E)→M is called an (L,M)-fuzzy soft base on (X ,E) if it

satisfies the following conditions:

(LSB1) B(0̃) = B(1̃) = 1.

(LSB2) B( fA1 u fA2)≥B( fA1)�B( fA2), for all fA1, fA2 ∈ L-FS(X ,E).

Theorem 3.6. Let B be an (L,M)-fuzzy soft base on (X ,E). Define a map TB : L-FS(X ,E)→

M as follows:

TB( fA) =
∨
{
∧
i∈Γ

B( fAi) : fA =
⊔
i∈Γ

fAi}.

Then TB is the coarsest (L,M)-fuzzy soft topology on (X ,E) such that TB( fA) ≥B( fA) for

all fA ∈ L-FS(X ,E).
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Proof. (1) It is trivial from the definition of TB.

(2) For all families { fAi : fA =
⊔

i∈∆ fAi} and {gB j : gB =
⊔

j∈Γ gB j} there exists a family

{ fAi ugB j} such that:

fAugB = (
⊔
i∈∆

fAi)u (
⊔
j∈Γ

gBi) =
⊔

i∈∆, j∈Γ

( fAi ugBi).

It implies

TB( fAugB)≥
∧

i∈∆, j∈Γ

B( fAi ugBi)

≥
∧

i∈∆, j∈Γ

(B( fAi)�B(gB j)) (by Definition 3.5 (LSB2))

≥ (
∧
i∈∆

B( fAi))� (
∧
j∈Γ

B(gB j)).

By definition 2.4 (L4) we have TB( fAugB)≥TB( fA)�TB(gB).

(3) Let Ji be the collection of all index sets Ki such that { fAik
∈L-FS(X ,E) : fAi =

⊔
k∈Ki

fAik
}

with fA =
⊔

i∈Γ fAi =
⊔

i∈Γ

⊔
k∈Ki

fAik
. For each i ∈ Γ and each ψ ∈ Πi∈ΓJi with ψ(i) = Ki we

have

TB( fA)≥
∧
i∈Γ

(
∧

k∈Ki

B( fAik
)).(1)

Put ai,ψ(i) =
∧

k∈Ki
B( fAik

). From (3.1) we have

TB( fA) ≥
∨

ψ∈Πi∈Γ

(
∧
i∈Γ

ai,ψ(i))

(Since L is a completely distributive lattice,)

=
∧
i∈Γ

(
∨

Mi∈Ji

ai,Mi) =
∧
i∈Γ

(
∨

Mi∈Ji

(
∧

m∈Mi

B( fAim
)))

=
∧
i∈Γ

TB( fAi).

Thus TB is a (L,M)-fuzzy soft topology on X .
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If T ≥B for every fA =
⊔

i∈∆ fAi we have

T ( fA)≥
∧
i∈∆

T ( fAi)≥
∧
i∈∆

B( fAi).

Thus T wTB.

From Theorem 3.6, we can easily prove the following lemma.

Lemma 3.7. Let T be an (L,M)-fuzzy soft topology on (X ,E) and B be an (L,M)-fuzzy

soft base on (Y,E∗). Then a map φ : (X ,E,T )→ (Y,E∗,TB) is LFS-continuous if and only if

T (φ←( fA))≥B( fA) for each fA ∈ L-FS(Y,E∗).

Theorem 3.8. Let {(Xi,Ei,Ti) : i ∈ Γ} be a family of (L,M)-fuzzy soft topological spaces,

X a set, E be a set of parameters and for each i ∈ Γ, φi : (X ,E)→ (Xi,Ei) a fuzzy soft map.

Define a map B : L-FS(X ,E)→M on (X ,E) by:

B( fA) =
∨
{�n

j=1Tk j(gBk j
) : fA = un

j=1φ
←
k j
(gBk j

)}

where
∨

is taken over all finite subsets K = {k1, ...,kn} ⊂ Γ.

Then: (1) B is an (L,M)-fuzzy soft base on (X ,E).

(2) The (L,M)-fuzzy soft topology TB generated by B is the coarsest (L,M)-fuzzy soft

topology on (X ,E) for which all φi, i ∈ Γ are LFS-continuous maps.

Proof. (1)(LSB1)Since fA = φ←i ( fA) for each fA ∈ {0̃, 1̃} we have B(0̃) = B(1̃) = 1.

(LSB2) For all finite subsets K = {k1, ...,kp} and J = { j1, ... jq} of Γ such that

fA = up
i=1φ

←
ki
( fAki

), gB = uq
i=1φ

←
ji (gB ji

),

we have

fAugB = (up
i=1φ

←
ki
( fAki

))uuq
i=1φ

←
ji (gB ji

).

Furthermore, we have for each k ∈ K∩ J,

φ
←
k ( fAk)uφ

←
k (gBk) = φ

←
k ( fAk ugBk).
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Put fAugB = umi∈K∪Jφ←mi
(hCmi

) where

hCmi
=


fAmi

, if mi ∈ K− (K∩ J),

gBmi
, if mi ∈ J− (K∩ J),

fAmi
ugBmi

, if mi ∈ K∩ J.

We have

B( fAugB)≥� j∈K∪JTJ(hC j)

≥ (�mi∈K−K∩JTmi( fAmi
))� (�i=1Tmi∈J−K∩J(gBmi

))

� (�mi∈K∩JTmi( fAmi
ugBmi

))

≥ (�p
i=1T ji( fAmi

)� (�q
i=1T ji(gB ji

)).

By Definition 2.4 (L4) we have B( fAugB)≥B( fA)�B(gB).

(2) For each fAi ∈ L-FS(Xi,Ei), one family {φ←i ( fAi)} and i ∈ Γ we have

TB(φ←i ( fAi))≥B(φ←i ( fAi))≥Ti( fAi).

Thus, for each i ∈ Γ,φi : (X ,E,TB)→ (Xi,Ei,Ti) is LFS-continuous. Let φi : (X ,E,T 0)→

(Xi,Ei,Ti) is LFS-continuous, that is for each i ∈ Γ and fAi ∈ L-FS(Xi,Ei), T 0(φ←i ( fAi)) ≥

Ti( fAi). For all finite subsets K = {k1, ...kp} of Γ such that fA =�p
i=1φ←ki

( fAki
) we have

T 0( fA) ≥�p
i=1T

0(φ←ki
( fAki

))≥�p
i=1Tki( fAki

).

It implies T 0( fA)≥B( fA) for each fA ∈ L-FS(X ,E). By Theorem 3.6 T 0 ≥TB.

Example 3.9. Let X = {x,y} be a set, E = {e1,e2,e3} be a set of parameters and L = M =

[0,1] a completely distributive lattice. Define a binary operation � on M = [0,1] by x� y =

max{0,x+ y−1}. Then ([0,1],≤,�) is a stsc-quantale. Let gB,hC ∈ L-FS(X ,E) be defined as

follows:

gB ={g(e1) = {(x,0.6),(y,0.3)}, g(e2) = 0, g(e2) = 0}

hC ={h(e1) = {(x,0.5),(y,0.7)}, h(e2) = 0, h(e2) = 0}.
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Then we have

gBuhC ={(gBuhC)(e1) = {(x,0.5),(y,0.3)},

(gBuhC)(e2) = 0,(gBuhC)(e2) = 0}

gBthC ={(gBthC)(e1) = {(x,0.6),(y,0.7)},

(gBthC)(e2) = 0,(gBthC)(e2) = 0}.

We define an (L,M)-fuzzy soft topology T : L-FS(X ,E)→ [0,1] as follows:

T ( fA) =



1, if fA ∼= 0̃ or 1̃,

0.8, if fA ∼= gB,

0.4, if fA ∼= hC,

0.6, if fA ∼= gBthC,

0.2, if fA ∼= gBuhC,

0, otherwise.
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[15] U. Höhle, Many valued topology and its applications, Kluwer Academic Publisher, Boston (2001).

[16] U. Höhle, S.E. Rodabaugh, Mathematics of fuzzy sets: Logic, Topology, and Measure Theory, Handbook of

fuzzy sets series vol. 3, Kluwer Academic Publisher, Dordrecht, (1999).
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[41] Šostak A.P. On a fuzzy topological structure, Suppl. Rend. Circ. Matin. Pulerms Ser. II 11, (1985) 89-103.

[42] E. Turunen, Mathematics behind fuzzy logic, A Springer-Verlag Co., NewYork (1999).

[43] G. J. Wang, Theory of L-Fuzzy topological spaces, Shanxi Normal University Press, Xian, 1988 (in Chinese).

[44] P. Zhu, Qiaoyanwen, Operations on soft sets revisted, J. Applied Math., 2013 (2013), Article ID 105752, 7

pages.

[45] Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowl. Base. Syst., 21

(2008), 941-945.

[46] I. Zorlutuna, M. Akdag, W.K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math.

Inform., 3 (2012), 171-185.


