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Abstract. We consider multiple step-stress accelerated life tests (SS-ALTs) assuming that the lifetime follows a

generalized exponential distribution. Based on Type-II censored data, we calculate the maximum likelihood and

Baysian estimates using MCMC. A Monte Carlo simulation study is carried out to examine the performance of the

maximum likelihood and Baysin estimators through their mean squared error.
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1. Introduction

Many modern electro-mechanical materials and items tend to have a long life under normal-

use operating conditions. Hence it is difficult to test their failure times since standard testing

procedures are far too lengthy and expensive to be useful. However, accelerated life tests (ALTs)
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offer an alternative that manufacturing industries prefer due to the ability to obtain enough

failure data in a short period of time.

In an ALT the test items are subjected to higher than usual levels of stress to induce early

failures. The stress can be applied in different ways including the constant stress and step stress

techniques. A step stress ALT is often preferred to a constant stress ALT because it reduces

overall test time and enables quicker failures see [5-8]. We consider here m-step stress ALTs

where n identical units are placed on a life-test with an initial stress level x1 which is changed

to x2 at a fixed time τ1 and the successive failure times are recorded. Then, at the fixed time τ2,

the stress is increased to x3. Thus the resulting failure times are observed in a naturally ordered

manner.

Cumulative exposure models are often useful in the analysis of step-stress experiments.

These models relate the life distribution of the test units at one stress level to the distributions

at preceding stress levels by assuming that the residual lives of the experimental units depend

only on the cumulative exposure that the units have experienced, with no memory of how the

stress was accumulated. Moreover, the surviving units will fail according to the cumulative

distribution at the same stress level that is currently being tested at, but starting at the previous

accumulated stress level. For more discussion see [1].

We develop a model for 3-step stress ALTs based on the lifetime distribution following a gen-

eralized exponential distribution see [2]. We then show how the observed ordered failure times

can be used to do maximum likelihood estimation and Baysian estimation of the parameters of

the distribution of failure times under normal operating conditions see [9,10]. Finally, we study

the performance of these methods in a simulation study under Type-II censoring.

2. Model description

We assume that the lifetime T follows a two-parameter generalized exponential distribution,

denoted GE(α,λ ) where λ is a scale parameter and α is a shape parameter. The two-parameter

GE(α,λ ) distribution can be used quite effectively in analyzing lifetime data, particularly in

place of two-parameter gamma or Weibull distributions see [3,4].
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The GE(α,λ ) probability density function (pdf) and cumulative distribution function (cdf)

are given, respectively, by

f (t;α,λ ) = αλ (1− e−λ t)α−1e−λ t , α,λ > 0 . (2.1)

and

F(t;α,λ ) = (1− e−λ t)α . (2.2)

The survival (sf) and hazard rate functions (hrf) are

F̄(t;α,λ ) = 1− (1− e−λ t)α , (2.3)

and

h(t;α,λ ) =
αλ (1− e−λ t)α−1e−λ t

1− (1− e−λ t)α
. (2.4)

respectively. For any λ the GE distribution has an increasing hrf if α > 1, while the hrf is

decreasing if α < 1. Of course, if α = 1, then the hrf is constant.

2.1. Basic assumptions

We assume that the lifetime distribution functions at stress levels x1, x2 and x3 are F1, F2 and

F3, respectively, and that they belong to the same family of distributions. The experiment starts

with n identical units, and each unit is subjected to an initial stress x1 with lifetimes following

the CDF F1(t). The time at which a unit failed will be collected and the surviving units will

continue until time τ1 at which the stress is increased to x2 and the units will follow the CDF

F2(t), once again the time at which a unit failed will be collected and the surviving units will

continue until time τ2 at which the stress is increased to x3 and the units will follow the CDF

F3(t), but it will start at the previously accumulated fraction failed.

Thus the change in stress level from x1 to x2 changes the lifetime distribution at stress level

x2 from F2(t) to F2(t−τ1+ τ̂1), also the change in stress level from x2 to x3 changes the lifetime

distribution at stress level x3 from F3(t) to F3(t− τ2 + τ̂2) where

F1(τ1) = F2(τ̂1).

F2(τ2) = F3(τ̂2).
(2.5)
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Assuming that λ1,λ2 and λ3 are the scale parameters associated with F1, F2 and F3, respectively,

and assuming absolute continuity of the cumulative distribution function of the lifetime, we find

τ̂1 =
λ1

λ2
τ1.

τ̂2 =
λ2

λ3
[τ2− τ1 +

λ1

λ2
τ1].

(2.6)

Then, the cumulative distribution function of the model, in which there are three stress levels

x1, x2 and x3, will become

G(t) =


G1(t) = F1(t), for 0 < t < τ1

G2(t) = F2(t− τ1 + τ̂1) for τ1 ≤ t < τ2

G3(t) = F3(t− τ2 + τ̂2) for τ2 ≤ t < ∞

(2.7)

where

Fi(t) = (1− e−λit)α , i = 1,2,3.

The corresponding probability density function (PDF) in this case will be in the flowing form:

g(t) =


g1(t) = αλ1(1− e−λ1t)α−1e−λ1t , 0 < t < τ1

g2(t) = αλ2(1− e−λ2(t−τ1+τ̂1))α−1e−λ2(t−τ1+τ̂1) τ1 ≤ t < τ2,

g3(t) = αλ3(1− e−λ3(t−τ2+τ̂2))α−1e−λ3(t−τ2+τ̂2) τ2 ≤ t < ∞.

(2.8)

3. Maximum likelihood estimation

In a 3-step-stress model with Type-II censoring, we start with n independent and identical

units placed simultaneously on a life-test. Each unit will be subjected to an initial stress level

x1, then the experiment will run until a fixed time τ1 when the stress level is changed to x2, after

that the experiment will run until a fixed time τ2 when the stress level is changed to x3. The

experiment is continued until a specified number of failures r is observed.

Let n1 be the number of units that fail before τ1, n2 be the number of units that fail between

τ1 and τ2 and n3 is the number of units that fail after τ2, and so r = n1 + n2 + n3. If r failures

occur before τ1 or τ2, then the test is terminated, otherwise the experiment continues after time

τ2 until the required r failures are observed. The ordered failure times that are observed will be

denoted by (t1 < ... < tn1 < τ ≤ tn1+1... < tn2 < τ ≤ tn2+1 < ... < tr).
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The likelihood function based on the censored data above is given by

L(α,λ1,λ2,λ3; t) =
n!
r!
{

r

∏
i=1

g(ti)(1−G(tr))n−r}, (3.1)

where r = n1 + n2 + n3 and t is the vector of observed Type-II censored data. The likelihood

function of α , λ1,λ2 and λ3 is as follows:

(1) If n1 = 0:

L(α,λ2,λ3; t) =
n!
r!
{

n2

∏
i=1

g2(yi)}{
r

∏
i=n2+1

g3(zi)}(1−G3(zr))
n−r

=
n!
r!

α
r
λ

n2
2 λ

n3
3 e−λ2 ∑

n2
i=1 yi−λ3 ∑

r
i=n2+1 zi

×{
n2

∏
i=1

(1− e−λ2yi)α−1}{
r

∏
i=n2+1

(1− e−λ3zi)α−1}

× (1− (1− e−λ3zr)α)n−r

(3.2)

(2) If n2 = 0:

L(α,λ1,λ3; t) =
n!
r!
{

n1

∏
i=1

g1(ti)}{
r

∏
i=n1+1

g3(zi)}(1−G3(zr))
n−r

=
n!
r!

α
r
λ

n1
1 λ

n3
3 e−λ1 ∑

n1
i=1 ti−λ3 ∑

r
i=n1+1 zi

×{
n1

∏
i=1

(1− e−λ1ti)α−1}{
r

∏
i=n1+1

(1− e−λ3zi)α−1}

× (1− (1− e−λ3zr)α)n−r

(3.3)

(3) If n3 = 0:

L(α,λ1,λ2; t) =
n!
r!
{

n1

∏
i=1

g1(ti)}{
n1+n2

∏
i=n1+1

g2(yi)}

=
n!
r!

α
r
λ

n1
1 λ

n2
2 e−λ1 ∑

n1
i=1 ti−λ2 ∑

n1+n2
i=n1+1 yi

×{
n1

∏
i=1

(1− e−λ1ti)α−1}{
n1+n2

∏
i=n1+1

(1− e−λ2yi)α−1}

(3.4)
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(4) If ni > 0 ,i=1,2,3:

L(α,λ1,λ2,λ3; t) =
n!
r!
{

n1

∏
i=1

g1(ti)}{
n1+n2

∏
i=n1+1

g2(yi)}{
r

∏
i=n1+n2+1

g3(zi)}(1−G3(zr))
n−r

=
n!
r!

α
r
λ

n1
1 λ

n2
2 λ

n3
3 e−λ1 ∑

n1
i=1 ti−λ2 ∑

n1+n2
i=n1+1 yi−λ3 ∑

r
i=n1+n2+1 zi

×{
n1

∏
i=1

(1− e−λ1ti)α−1}{
n1+n2

∏
i=n1+1

(1− e−λ2yi)α−1}

×{
r

∏
i=n1+n2+1

(1− e−λ3zi)α−1}(1− (1− e−λ3zr)α)n−r

(3.5)

where yi = ti− τ1 + τ̂1 , zi = ti− τ2 + τ̂2 .

As we can see from (3.2)-(3.5) the three MLEs does not exist unless when n1,n2,n3 > 0 and

may be obtained by maximizing the corresponding likelihood function (3.5).

Maximizing the likelihood function for the parameters cannot be achieved analytically. The

only option we have is to numerically maximize the likelihood function for the vector of param-

eters (α,λ1,λ2,λ3). For this purpose, it is convenient to work with the log-likelihood function

rather than the likelihood function in (3.5), which is given by

`(α,λ1,λ2; t) = logc+ r logα +n1 logλ1 +n2 logλ2 +n3 logλ3−λ1

n1

∑
i=1

ti

−λ2

n1+n2

∑
i=n1+1

yi−λ3

r

∑
i=n1+n2+1

zi +(α−1)
n1

∑
i=1

(1− e−λ1ti)

+(α−1)
n1+n2

∑
i=n1+1

(1− e−λ2yi)+(α−1)
r

∑
i=n1+n2+1

(1− e−λ3zi)

+(n− r) log(1− (1− e−λ3zr)α).

(3.6)

The likelihood equations for the parameters α , λ1,λ2 and λ3 are given, respectively, by

∂`

∂α
=

r
α
+

n1

∑
i=1

(1− e−λ1ti)+
n1+n2

∑
i=n1+1

(1− e−λ2yi)+
r

∑
i=n1+n2+1

(1− e−λ3zi)

− (n− r)
(1− e−λ3zr)α log(1− e−λ3zr)

1− (1− e−λ3zr)α
,

(3.7)

∂`

∂λ1
=

n1

λ1
+

n1

∑
i=1
{−ti +

(α−1)tie−λ1ti

1− e−λ1ti
}, (3.8)
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∂`

∂λ2
=

n2

λ2
+

n1+n2

∑
i=n1+1

{−yi +
(α−1)yie−λ2yi

1− e−λ2yi
}, (3.9)

∂`

∂λ3
=

n3

λ3
+

r

∑
i=n1+n2+1

{−zi +
(α−1)zie−λ3zi

1− e−λ3zi
}− (n− r)

αzre−λ3zr(1− e−λ3zr)α−1

1− (1− e−λ3zr)α
. (3.10)

The maximum likelihood estimates must be derived numerically because there is no obvious

solution of these four non-linear likelihood equations. We used the R software to carry out a

numerical maximization on the log likelihood function and obtain the MLEs using the following

algorithm:

(1) Simulate n order statistics from the uniform (0,1) distribution,

(U1,U2, ...,Un).

(2) Find n1 such that Un1 ≤ G1(τ1)≤Un1+1.

(3) For i≤ n1 Ti =− 1
λ1

ln(1−U
1
α

i ).

(4) Find n2 such that Un1+n2 ≤ G2(τ2)≤Un1+n2+1.

(5) For i≤ n1 +n2 Ti =− 1
λ2

ln(1−U
1
α

i )+ τ1− τ̂1.

(6) For n1 +n2 +1≤ i≤ r set Ti =− 1
λ3

ln(1−U
1
α

i )+ τ2− τ̂2.

(7) Obtain the MLEs of (α,λ1,λ2,λ3) based on (T1,T2, ...,Tn1 ,Tn1+1, ...,Tn1+n2,Tn1+n2+1, ...,Tr)

say α̂, λ̂1, λ̂2 and λ̂3.

(8) Repeat steps 2-7 1000 times.

(9) Compute the MSE of the obtained estimates.

4. Baysian Estimation

There is a fundamental difference between classical and Bayesian estimation. In classical

estimation we consider the unknown parameter as a fixed value. But in Bayesian estimation we

treat the parameter as a random variable. It is assumed that the parameters α,λ1,λ2 and λ3 are

all independent and have the following prior distributions see [2-4]:
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π1(α) =
µ

ν1
1

Γ(ν1)
α

ν1−1e−µ1α , µ1,ν1 > 0,

π2(λ1) =
µ

ν2
2

Γ(ν2)
λ

ν2−1
1 e−µ2λ1, µ2,ν2 > 0,

π3(λ2) =
µ

ν3
3

Γ(ν3)
λ

ν3−1
2 e−µ3λ2, µ3,ν3 > 0,

π4(λ3) =
µ

ν4
4

Γ(ν4)
λ

ν4−1
3 e−µ4λ3, µ4,ν4 > 0.

(4.1)

Then the joint prior density function is

Π(α,λ1,λ2,λ3) =
µ

ν1
1 µ

ν2
2 µ

ν3
3 µ

ν4
4

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)
α

ν1−1
λ

ν2−1
1 λ

ν3−1
2 λ

ν4−1
3 e−µ1α−µ2λ1−µ3λ2−µ4λ3

(4.2)

And hence the posterior function will be as the following

z(α,λ1,λ2,λ3; t) ∝ Π(α,λ1,λ2,λ3)L(α,λ1,λ2,λ3; t)

∝
µ

ν1
1 µ

ν2
2 µ

ν3
3 µ

ν4
4

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)
α

ν1−1
λ

ν2−1
1 λ

ν3−1
2 λ

ν4−1
3 e−µ1α−µ2λ1−µ3λ2−µ4λ3

× n!
r!

α
r
λ

n1
1 λ

n2
2 λ

n3
3 e−λ1 ∑

n1
i=1 ti−λ2 ∑

n1+n2
i=n1+1 yi−λ3 ∑

r
i=n1+n2+1 zi

×{
n1

∏
i=1

(1− e−λ1ti)α−1}{
n1+n2

∏
i=n1+1

(1− e−λ2yi)α−1}

×{
r

∏
i=n1+n2+1

(1− e−λ3zi)α−1}(1− (1− e−λ3zr)α)n−r

(4.3)

It is obvious from the posterior function that we are not going to be able to estimate the pa-

rameters by the traditional Bayesian methods with integration, so we are going to use one of

the MCMC methods which attempt to simulate direct draws from some complex distribution

of interest. MCMC approaches are so-named because one uses the previous sample values to

randomly generate the next sample value. Here we are going to use the Metropolis algorithm.

Suppose you want to obtain M samples from a univariate distribution with probability density

function f (θ , t). Suppose θi is the i− th sample from f . To use the Metropolis algorithm, you

need to have an initial value θ o and a symmetric proposal density q(θ i+1|θ i). For the (i+1)−th

iteration, the algorithm generates a sample from q(.|.) based on the current sample i, and it
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makes a decision to either accept or reject the new sample. If the new sample is accepted,

the algorithm repeats itself by starting at the new sample. If the new sample is rejected, the

algorithm starts at the current point and repeats. The algorithm is self-repeating, so it can be

carried out as long as required.The most common choice of the proposal distribution is the

normal distribution N(θ i,σ) with a fixed σ . The Metropolis algorithm can be summarized as

follows:

(1) Set i= 0. Choose a starting point θ o. This can be an arbitrary point as long as f (θ o, t)>

0.

(2) Generate a new sample, θnew, by using the proposal distribution q(.|θ i).

(3) Calculate the following quantity w = min[ f (θnew|t)
f (θ i|t) ,1].

(4) Sample u from the uniform distribution U(0,1).

(5) Set θ i+1 = θnew if u < w; otherwise set θ i+1 = θ i.

(6) Set i = i+1. If i < M, the number of desired samples, return to step 2. Otherwise, stop.

The number of iterations used to calculate the MCMC estimates is 50000.

The performance of the MLEs and the Bayes estimates are evaluated using a simulation study

in the next section.

5. Simulation study

A simulation study was carried out for different values of τ1 and τ2 in order to examine MSE

of the ML and the Bayes estimates . For each setting we simulated 1000 data sets to fit the

model and estimated the desired quantities. The results are presented in Tables 1 - 4.
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Table 1: Conditional Failure Probabilities (in %) for a multi-stress model under Type-II

censoring when α = 3,λ1 = 1.3,λ2 = 0.65,λ3 = 2 and n = 25 .

Conditional Failure Probabilities (in%)

r τ1 τ2 0 < t < τ1 τ1 < t < τ2 τ2 < t < ∞

20 0.5 1 5 5 90

1.5 5 35 60

2 5 85 20

0.8 1.5 10 30 60

2 10 55 35

2.5 10 75 15

1.2 2 40 15 45

3 40 45 15

17 0.5 1 5.88 5.88 88.24

1.5 5.88 41.18 52.94

2 5.88 88.24 5.88

0.8 1.5 11.77 35.29 52.95

2 11.77 64.71 23.53

2.5 11.77 88.24 11.77
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Table 2: The MSE of the MCMC and ML estimates α̂, λ̂1, λ̂2 and λ̂3 based on 1000

simulations when α = 3,λ1 = 1.3,λ2 = 0.65,λ3 = 2 and n = 25.

MSE(α̂) MSE(λ̂1) MSE(λ̂2) MSE(λ̂3)

r τ1 τ2 ML MCMC ML MCMC ML MCMC ML MCMC

20 0.5 1 5.2353 1.0966 0.1580 0.3560 0.1254 0.7093 2.2618 0.3586

1.5 5.2353 1.0966 1.0331 0.3560 0.0273 0.7093 2.2729 0.3586

2 1.7221 1.0966 0.2235 0.3560 0.0389 0.7093 1.1282 0.3586

0.8 1.5 5.1046 1.0966 0.7247 0.3560 0.0190 0.7093 2.3978 0.3586

2 4.5516 1.0966 0.9467 0.3560 0.1778 0.7093 2.8297 0.3586

2.5 16.359 1.0966 5.4831 0.3560 3.7837 0.7093 0.1366 0.3586

1.2 2 4.9804 1.0966 0.0731 0.3560 0.2397 0.7093 2.7448 0.3586

3 33.995 1.0966 2.4813 0.3560 2.1534 0.7093 0.1701 0.3586

17 0.5 1 5.2750 1.0966 1.7909 0.3560 0.1140 0.7093 2.1031 0.3586

1.5 5.9015 1.0966 0.5811 0.3560 0.0054 0.7093 1.0971 0.3586

2 1.9988 1.0966 104.40 0.3560 53.794 0.7093 79.939 0.3586

0.8 1.5 4.5483 1.0966 0.7570 0.3560 0.0016 0.7093 1.1262 0.3586

2 1.2824 1.0966 1.5518 0.3560 1.6582 0.7093 0.6459 0.3586

2.5 4.3609 1.0966 6.4301 0.3560 3.1809 0.7093 0.0490 0.3586
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Table 3: Conditional Failure Probabilities (in %) for a multi-stress model under Type-II

censoring when α = 3,λ1 = 1.3,λ2 = 0.65,λ3 = 2 and n = 150 .

Conditional Failure Probabilities (in%)

r τ1 τ2 0 < t < τ1 τ1 < t < τ2 τ2 < t < ∞

120 0.5 1 6.6667 8.3333 85

1.5 6.6667 25 68.3333

2 6.6667 44.16667 49.16667

2.5 6.6667 63.3333 30

0.8 1.5 15 10.83333 74.16667

2 15 30 55

2.5 15 50.83333 34.16667

3 15 65.83333 19.16667

100 0.5 1 8 10 82

1.5 8 30 62

2 8 53 39

0.8 1.5 18 13 69

2 18 36 46

2.5 18 61 21
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Table 4: The MSE of the MCMC and ML estimates α̂, λ̂1, λ̂2 and λ̂3 based on 1000

simulations when α = 3,λ1 = 1.3,λ2 = 0.65,λ3 = 2 and n = 150.

MSE(α̂) MSE(λ̂1) MSE(λ̂2) MSE(λ̂3)

r τ1 τ2 ML MCMC ML MCMC ML MCMC ML MCMC

120 0.5 1 4.0500 0.7869 0.7090 0.2501 0.1040 0.2962 2.5623 0.4036

1.5 4.1847 0.7869 0.6675 0.2501 0.0713 0.2962 2.2004 0.4036

2 4.2574 0.7869 0.3999 0.2501 0.0098 0.2962 1.2196 0.4036

2.5 2.3898 0.7869 1.4883 0.2501 0.0564 0.2962 0.3534 0.4036

0.8 1.5 4.3684 0.7869 0.0014 0.2501 0.2031 0.2962 2.5434 0.4036

2 4.3046 0.7869 0.0190 0.2501 0.0873 0.2962 1.9579 0.4036

2.5 2.2203 0.7869 0.3369 0.2501 0.0244 0.2962 0.5566 0.4036

3 0.4339 0.7869 3.4879 0.2501 1.1105 0.2962 0.3788 0.4036

100 0.5 1 4.0048 0.7869 0.9461 0.2501 0.0656 0.2962 2.6447 0.4036

1.5 4.0933 0.7869 0.7069 0.2501 0.0529 0.2962 2.1232 0.4036

2 4.0685 0.7869 0.0152 0.2501 0.0161 0.2962 1.3705 0.4036

0.8 1.5 4.7227 0.7869 0.1324 0.2501 0.2291 0.2962 2.6742 0.4036

2 3.7934 0.7869 0.0039 0.2501 0.0483 0.2962 1.6252 0.4036

2.5 1.1006 0.7869 2.8560 0.2501 1.3784 0.2962 0.4753 0.4036
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6. Concluding Remarks

We have considered multiple step-stress accelerated model when the observed failure times

come from a GE(α,λ ) distribution under type-II censoring. A simulation study, based on two

different examples, was performed to examine the performance of the mean square error of the

maximum likelihood and Bayesian estimates.

In Tables 1 and 3, we can see that for a fixed τ1 and increasing τ2 the conditional failure

probabilities occurring on the first level of stress in the interval 0 < t < τ1 is the same. on the

meanwhile those occurring on the second and third levels of stress change. As τ2 increases the

conditional failure probabilities in the interval τ1 < t < τ2 increase ,but decrease in τ2 < t < ∞.

This means that as τ2 increases, there will be more failures occurring before τ2 and less failures

occurring after it, which means more information about λ2 and less information about λ3. We

also can see that as τ1 increases the conditional failure probabilities occurring on the first level

of stress in the interval 0 < t < τ1 also increase.

In Tables 2 and 4, we can see that the MSEs of the Bayesian estimates of the parameters

α ,λ1,λ2 and λ3 doesn’t change for different values of r,τ1or τ2, they only change for different

sample sizes n. On the other hand any change in those values affects the MSEs of the maximum

likelihood estimates. In general we can say that MCMC is abetter method to estimate our model

parameters in either small and larg sample sizes.
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