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Abstract. Let G be a (p,q) graph and A be a group. For a ∈ A, we denote the order of a by o(a). Let f : V (G)→ A

be a function. For each edge uv assign the label 1 if (o(u),o(v)) = 1or 0 otherwise. f is called a group A Cordial

labeling if |v f (a)− v f (b)| ≤ 1, ∀a,b ∈ A and |e f (0)− e f (1)| ≤ 1, where v f (x) and e f (n) respectively denote the

number of vertices labelled with an element x and number of edges labelled with n(n= 0,1). A graph which admits

a group A Cordial labeling is called a group A Cordial graph. In this paper we define group {1,−1, i,−i} Cordial

graphs and prove that Pn +K2 is group {1,−1, i,−i} Cordial for every n. We further characterize Pn +K3,Pn +K4

and Pn +Kn(n ≤ 30) that are group {1,−1, i,−i} Cordial.
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1. Introduction

In the mathematical discipline of graph theory, a graph labeling is the assignment of labels,

traditionally represented by integers, to the edges or vertices, or both, of a graph. Interest in
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graph labeling problems became prominent in the mid 1960’s from a long standing conjecture

of Ringel and a paper by Rosa. Most graph labelings trace their origins to labelings presented

by Alex Rosa in his 1967 paper. Rosa called a function f a β− valuation of a graph G with q

edges if f is an injection from the vertices of G to the set {0,1, ...,q} such that, when each edge

uv is assigned the label | f (u)− f (v)|, the resulting edge labels are distinct. In 1980, Golomb

called such labelings graceful and this is now the popular term. Ringel conjectured more than

four decades ago that ” All trees are graceful” and this conjecture has been the focus of many

papers related to labeling problems.

Labelled graphs have wide applications in coding theory, X-ray crystallography, radar, astron-

omy, circuit design and communication network addressing.

2. Preliminaries

Graphs considered here are finite, undirected and simple. Let A be a group. The order of

a ∈ A is the least positive integer n such that an = e. We denote the order of a by o(a). Cahit

[3] introduced the concept of Cordial labeling. Motivated by this, we defined group A cordial

labeling and investigated some of its properties. We also defined group {1,−1, i,−i} cordial

labeling and discussed that labeling for some standard graphs [1] .In this paper we prove that

Pn+K2 is group {1,−1, i,−i} Cordial for every n. We further characterize Pn+K3,Pn+K4 and

Pn +Kn(n ≤ 30) that are group {1,−1, i,−i} Cordial. Terms not defined here are used in the

sense of Harary[5] and Gallian [4].

The greatest common divisor of two integers m and n is denoted by (m,n) and m and n are said

to be relatively prime if (m,n) = 1. For any real number x, we denote by ⌊x⌋, the greatest integer

smaller than or equal to x and by ⌈x⌉, we mean the smallest integer greater than or equal to x.

A path is an alternating sequence of vertices and edges, v1,e1,v2,e2, ...,en−1,vn, which are

distinct, such that ei is an edge joining vi and vi+1 for 1 ≤ i ≤ n− 1. A path on n vertices is

denoted by Pn. If G is a graph on n vertices in which every vertex is adjacent to every other

vertex, then G is called a complete graph and is denoted by Kn.

Given two graphs G and H, G+H is the graph with vertex set V (G)∪V (H) and edge set

E(G)∪E(H)∪{uv/u ∈V (G),v ∈V (H)}.
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We use the following theorem:

Theorem 1.1[2] The Fan Fn is group {1,−1, i,−i} Cordial for all n ≤ 10 and for n > 10, Fn is

group {1,−1, i,−i} Cordial iff n ≡ 0,1,2 (mod 4).

3. Main results

Let G be a (p,q)graph and consider the group A = {1,−1, i,−i} with multiplication. Let

f :V (G)→A be a function. For each edge uv assign the label 1 if (o(u),o(v))= 1or 0 otherwise.

f is called a group {1,−1, i,−i} Cordial labeling if |v f (a)− v f (b)| ≤ 1, ∀a,b ∈ A and |e f (0)−

e f (1)| ≤ 1, where v f (x) and e f (n) respectively denote the number of vertices labelled with

an element x and number of edges labelled with n(n = 0,1). A graph which admits a group

{1,−1, i,−i} Cordial labeling is called a group {1,−1, i,−i} Cordial graph.

A simple example of a group {1,−1, i,−i} Cordial graph is given in Fig. 3.1.
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Fig. 3.1

We now investigate the group {1,−1, i,−i} Cordial labeling of Pn +Km for 1 ≤ m ≤ 4 .

Pn+K1 is the Fan Fn and theorem 1.1 characterizes the Fans that are group {1,−1, i,−i} cordial.

Theorem 3.1. Pn +K2 is group {1,−1, i,−i} cordial for every n.

Proof. Let the vertices of Pn be u1,u2, ...,un and let the vertices of K2 be v1,v2 . Number of

vertices of Pn +K2 is n+2 and number of edges is 3n.

Case(1): n+2 ≡ 0(mod 4).

Let r = n−2
4 . Label the vertices v1,u1,u2, ....,ur with 1. Label the remaining vertices arbitrarily

so that n+2
4 vertices get label -1 , n+2

4 vertices get label i and n+2
4 vertices get label −i. Number

of edges with label 1 = n+2r+1 = n+2
(n−2

4

)
+1 = 3n

2 . So this is a group {1,−1, i,−i} cordial
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labeling.

Case(2): n+2 ≡ 1(mod 4).

Let r = n−3
4 . Label the vertices v1,u1,u2, ....,ur with 1. Label the remaining vertices arbitrarily

so that r+1 vertices get label -1, r+1 vertices get label i and r+2 vertices get label -i. Number of

edges with label 1 = n+1+2r = 3n−1
2 . Also number of edges with label 0 = 3n+1

2 .

Case(3): n+2 ≡ 2(mod 4).

If n = 4, a group {1,−1, i,−i} cordial labeling is shown in Fig 3.2.

Suppose n ≥ 8. Let r = n
4 . Label the vertices v1,u2,u3, ....,ur with 1. Label the remaining ver-

tices arbitrarily so that n
4 vertices get label -1, n

4 + 1 vertices get label i and n
4 + 1 vertices get

label -1. Number of edges with label 1 = n+1+3+2(r−2) =n+4+2(n
4 −2) = 3n

2 .

b b b b

b b

1 1 -1 -1

i -i
Fig. 3.2

Case (4): n+2 ≡ 3(mod 4).

Let r = n−1
4 . Label the vertices v1,u1,u2, ....,ur with label 1. Label the remaining vertices

arbitrarily so that r+ 1 vertices get label −1, r+ 1 vertices get label i and r vertices get label

−i. Number of edges with label 1 = n+1+2r = n+1+2(n−1
4 ) = 3n+1

2 . Also , number of edges

with label 0 = 3n−1
2 .

Illustration of the labeling for n = 6 is given in Fig.3.3.
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Fig 3.3

Theorem 3.2. Pn +K3 is group {1,−1, i,−i} Cordial iff n ̸= 2,3,6.
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Proof. Let the vertices of Pn be u1,u2, ...,un and let the vertices of K3 be v1,v2,v3 . Number of

vertices of Pn +K3 is n+3 and number of edges is 4n+2.

If n = 2, P2 +K3 has 5 vertices and 10 edges. If 1 vertex is labelled with 1, then 4 edges get

label 1 and if 2 vertices are labelled with 1 then 7 edges get label 1. But only 5 edges have to

get label 1. So P2 +K3 is not group {1,−1, i,−i} Cordial.

If n=3 ,P3 +K3 has 6 vertices and 14 edges. If 1 vertex is labelled with 1 , at most 5 edges get

label 1 and if 2 vertices are labelled with 1, either 8 or 9 vertices get label 1. So P3 +K3 is not

group {1,−1, i,−i} Cordial.

If n=6 ,P6 +K3 has 9 vertices and 26 edges. It is easy to observe that there is no choice of 2 or

3 vertices so that 13 edges get label 1. Hence P6 +K3 is not group {1,−1, i,−i} Cordial. Thus

n ̸= 2,3,6.

Conversely , assume n ̸= 2,3,6.

We need to prove that Pn +K3 is group {1,−1, i,−i} Cordial.

Case(1): n+3 ≡ 0(mod 4).

Each vertex label occurs n+3
4 times and each edge label occurs 2n+1 times. Let r = n−1

4 . Label

v1,u2,u4, ....,u2r with 1. Label the remaining vertices arbitrarily so that r+1 of them get label

-1, r+1 of them get label i and r+1 of them get label -i.

Case(2): n+3 ≡ 1(mod 4).

By assumption , n ≥ 10. In this case , one vertex label occurs
⌈n+3

4

⌉
times and each of the other

3 vertex labels occur
⌊n+3

4

⌋
times.

Let r = n−10
4 . Label v1,u1,u2,u3,u5,u7, ...,u2r+3 with 1. Label the remaining vertices arbitrarily

so that r+3 of them get label -1, r+3 of them get label i and r+3 of them get label -i.

Case(3): n+3 ≡ 2(mod 4).

By assumption , n ≥ 7. In this case, 2 vertex labels occur
⌈n+3

4

⌉
times and 2 other labels occur⌊n+3

4

⌋
times.

Let r = n−7
4 . Label v1,u1,u2,u4,u6, ...,u2r+2 with 1. Label the remaining vertices arbitrarily so

that r+3 of them get label -1, r+2 of them get label i and r+2 of them get label -i.

Case(4): n+3 ≡ 3(mod 4).

In this case , 3 vertex labels occur
⌈n+3

4

⌉
times and 1 vertex label occurs

⌊n+3
4

⌋
times. Let
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r = n−4
4 . Label v1,u1,u3,u5, ...,u2r+1 with 1. Label the remaining vertices arbitrarily so that

r+2 vertices get label -1, r+2 vertices get label i and r+1 vertices get label -i. That Pn +K3

is group {1,−1, i,−i} Cordial for n ̸= 2,3,6 follows from Table 1.

Nature o f n v f (1) v f (−1) v f (i) v f (−i) e f (1) e f (0)

n+3 ≡ 0(mod 4) n+3
4

n+3
4

n+3
4

n+3
4 2n+1 2n+1

n+3 ≡ 1(mod 4)
⌈n+3

4

⌉ ⌊n+3
4

⌋ ⌊n+3
4

⌋ ⌊n+3
4

⌋
2n+1 2n+1

n+3 ≡ 2(mod 4)
⌈n+3

4

⌉ ⌈n+3
4

⌉ ⌊n+3
4

⌋ ⌊n+3
4

⌋
2n+1 2n+1

n+3 ≡ 3(mod 4)
⌈n+3

4

⌉ ⌈n+3
4

⌉ ⌈n+3
4

⌉ ⌊n+3
4

⌋
2n+1 2n+1

Table 1

Theorem 3.3. Pn +K4 is group {1,−1, i,−i} Cordial iff n ∈ {3,4,5,6,7,9,10,11,13,14,17}.

Proof. Let the vertices of Pn be u1,u2, ...,un and let the vertices of K4 be v1,v2,v3,v4. Number

of vertices of Pn +K4 is n+4.

Number of edges =
(4

2

)
+(n−1)+4n = 5n+5.

Case(1): Exactly one vertex, say v1 is given label 1.

Now , deg vi = n+3(1 ≤ i ≤ 4), degu1 = 5, degun = 5 and deg ui = 6(2 ≤ i ≤ n−1).

Subcase(i): n = 4k(k ∈ Z+).

Now total number of vertices is 4k+4 and so each vertex label should

occur k + 1 times. Total number of edges is 5(4k)+ 5 = 20k + 5. So one edge label should

occur 10k+ 3 times and another should occur 10k+ 2 times. Maximum number of edges that

can receive label 1 by taking k+ 1 vertices is (4k+ 3)+ 5k. So, to get a group {1,−1, i,−i}

Cordial labeling , we need to have 4k+ 3+ 5k = 9k+ 3 ≥ 10k+ 2 and so k ≤ 1. In this case

n = 4. A group {1,−1, i,−i} Cordial labeling of P4 +K4 is given in Table 2 .

Subcase(ii): n = 4k+1(k ≥ 0).

Now, number of vertices in Pn +K4 is 4k+ 5 and so one vertex label should occur k+ 2 times

and each of the other three vertex labels should occur k+ 1 times. Total number of edges is

5(4k+ 1)+ 5 = 20k+ 10. So each of the edge labels should occur 10k+ 5 times. Maximum

number of edges that can receive label 1 by taking k+ 2 vertices is (4k+ 4)+ 5(k+ 1). So,

a necessary condition to get a group {1,−1, i,−i} Cordial labeling is 9k+ 9 ≥ 10k+ 5 and so
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k ≤ 4. When k = 0 , P1+K4 ≈ K5 and there is no choice of 1 vertex or 2 vertices so that 5 edges

get label 1. So k ̸= 0. Group {1,−1, i,−i} Cordial labelings of Pn +K4 when n = 5,9,13 and

n = 17 are given in Tables 2 and 3.

Subcase(iii):n = 4k+2(k ≥ 0).

Now, number of vertices in Pn+K4 is 4k+6 and so 2 vertex labels should occur k+2 times and

2 vertex labels should occur k+ 1 times. Total number of edges is 5(4k+ 2)+ 5 = 20k+ 15.

So , one edge label should occur 10k+ 7 times and another edge label should occur 10k+ 8

times. Maximum number of edges that can receive label 1 by taking k+ 2 vertices in a group

{1,−1, i,−i} Cordial labeling is 4k+6+5(k+1). So , the necessary condition is , 9k+11 ≥

10k+8 and so k ≤ 3. When k = 0,n = 2. P2+K4 ≈ K6 and 2 vertex labels should occur 2 times

and 2 labels should occur 1 time. One edge label should occur 7 times and another edge label

should occur 8 times. There is no choice of 1 vertex or 2 vertices so that 7 or 8 edges get label

1. So , n ̸= 2. Group {1,−1, i,−i} Cordial labeling of Pn +K4 when n = 6,10,14 are given in

Tables 2 and 3.

Subcase(iv): n = 4k+3(k ≥ 0).

Now, number of vertices in Pn +K4 is 4k+7 . So 3 vertex labels should occur k+2 times and

1 vertex label should occur k+1 times. Total number of edges is 5(4k+3)+5 = 20k+20. So,

each edge label should occur 10k+10 times. Maximum number of edges that can receive label 1

by taking k+2 vertices in a group {1,−1, i,−i} cordial labeling is (4k+7)+5(k+1) = 9k+12.

So , the necessary condition is , 9k+12 ≥ 10k+10 i.e., k ≤ 2. Group {1,−1, i,−i} Cordial la-

belings of Pn +K4 when n = 3,7 or n = 11 are given in Tables 2 and 3.

Case(2): At least two vertices vi(1 ≤ i ≤ 4) are given label 1.

Suppose v1 and v2 are given label 1. Now, (n+3)+(n+2) = 2n+5 edges get label 1.

Subcase(i): n = 4k(k ≥ 1).

Number of edges that has to receive label 1 is 10k + 2. Minimum number of edges that can

receive label 1 is 8k+5+(k−1)3 = 11k+2. Therefore, 10k+2 ≥ 11k+2 => k ≤ 0.
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n v1 v2 v3 v4 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

3 1 −1 −1 i 1 i −i

4 1 −1 i −i −1 1 i −i

5 1 1 −1 −1 i i i −i −i

6 1 1 −1 −1 i i i −i −i −i

7 1 −1 −1 −1 i 1 i 1 i −i −i

9 1 −1 −1 −1 1 1 i 1 i i −i −i −i

10 1 −1 −1 −1 −1 1 i 1 1 i i −i −i −i

11 1 1 −1 −1 1 −1 −1 i i i i −i −i −i

13 1 −1 −1 −1 1 1 i 1 i 1 −1 i i −i

14 1 −1 −1 −1 −1 1 −1 1 i 1 i 1 i i

17 1 −1 −1 −1 −1 1 −1 1 i 1 i 1 i 1

Table 2

n u11 u12 u13 u14 u15 u16 u17

11 −i

13 −i −i −i

14 −i −i −i −i

17 i i −i −i −i −i −i

Table 3

Subcase(ii): n = 4k+1(k ≥ 0).

Number of edges that has to receive label 1 is 10k + 5. Minimum number of edges that can

receive label 1 is 8k+5+(k−1)3 = 11k+2. Therefore, 10k+5 ≥ 11k+2 => k ≤ 3.

Subcase(iii) n = 4k+2(k ≥ 0).

Number of edges that has to receive label 1 is 10k + 8. Minimum number of edges that can

receive label 1 is 8k+ 5+(k− 1)3 = 11k+ 2. So 10k+ 8 ≥ 11k+ 2 => k ≤ 6. It is easy to

observe that P18 +K4, P22 +K4 and P26 +K4 are not group {1,−1, i,−i} Cordial.

Subcase(iv): n = 4k+3(k ≥ 0).

Number of edges that has to receive label 1 is 10k+ 10. Minimum number of edges that can
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receive label 1 is (8k+5)+(k−1) = 11k+2. Hence 10k+10 ≥ 11k+2 => k ≤ 8. It is easy

to observe that Pn +K4 is not group {1,−1, i,−i} Cordial for 3 ≤ k ≤ 8.

Case(3): No vertex vi is given label 1.

Subcase(i):n = 4k(k > 0).

Maximum number of edges that can receive label 1 is (k+1)6 = 6k+6.

So, 6k+6 ≥ 10k+2 => 4k ≤ 4 => k ≤ 1.

Subcase(ii): n = 4k+1(k ≥ 0).

Maximum number of edges that can receive label 1 is 6k+ 6. So 6k+ 6 ≥ 10k+ 5 => 4k ≤

1 => k = 0.

Subcase(iii): n = 4k+2(k ≥ 0).

Now, 6k+6 ≥ 10k+8 => 4k ≤−2 which is impossible.

Subcase(iv): n = 4k+3(k ≥ 0).

Now, 6k+6 ≥ 10k+10 => 4k ≤−4 which is impossible.

Thus, Pn +K4 is group {1,−1, i,−i} Cordial iff n ∈ {3,4,5,6,7,9,10,11,13,14,17}.

Theorem 3.4. For n ≤ 30 ,Pn +Kn is group {1,−1, i,−i} Cordial iff

n ∈ {1,2,4,5,7,9,10,11,16,25,26,27}.

Proof.

Let the vertices of Pn be labelled as u1,u2, .....,un and the vertices of Kn be labelled as

v1,v2, .....,vn. Number of vertices in Pn+Kn is 2n and the number of edges is
(n

2

)
+n2+n−1 =

(3n−2)(n+1)
2 .

For 1 ≤ i ≤ n, deg vi = 2n−1, deg u1 = deg un = n+1 and

deg ui(1 < i < n) = n+2.

For n = 1, the two vertices of P1 +K1 ≈ K2 be labelled as 1,-1 respectively and this is a group

{1,−1, i,−i} Cordial labeling.

For n = 2, P2 +K2 ≈ K4 which is group {1,−1, i,−i} Cordial.

For n = 3, P3 +K3 has 6 vertices and 14 edges. Two vertex labels should appear 2 times and

2 other vertex labels should appear once. Each edge label should appear 7 times. There is no

choice of 1 vertex or 2 vertices so that 7 edges get label 1.

For n= 4 , f1 defined by f1(v1)= f1(v2)= 1, f1(v3)= f1(v4)=−1, f1(u1)= f1(u2)= i, f1(u3)=
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f1(u4) =−i is a group {1,−1, i,−i} Cordial labeling.

For n = 5, f2 defined by f2(v1) = f2(u1) = f2(u3) = 1, f2(v2) = f2(v3) = f2(v4) =−1, f2(v5) =

f2(u2) = i, f2(u4) = f2(u5) =−i is a group {1,−1, i,−i} Cordial labeling.

For n = 6, P6 +K6 has 12 vertices and 56 edges. Each vertex label should occur 3 times. Each

edge label should appear 28 times. There is no choice of 3 vertices so that 28 edges get label 1.

For n= 7, f3 defined by, f3(v1) = f3(v2) = f3(u1) = f3(u3)= 1, f3(v3) = f3(v4) = f3(v5) = f3(v6)=

−1, f3(v7) = f3(u2) = f3(u4) = i, f3(u5) = f3(u6) = f3(u7) =−i is a group {1,−1, i,−i} Cordial

labeling.

For n = 8, P8 +K8 has 16 vertices and 99 edges. There is no choice of 4 vertices so that 49 or

50 edges get label 1.

For n = 9, f4 defined by, f4(v1) = f4(v2) = f4(v3) = f4(u1)= f4(u2) = 1, f4(v4) = f4(v5) = f4(v6)

= f4(v7)= f4(v8) =−1, f4(v9) = f4(u3) = f4(u4) = f4(u5) = i, f4(u j) =−i for 6 ≤ j ≤ 9 is a group

{1,−1, i,−i} Cordial labeling.

For n = 10, f5 defined by, f5(v j) = 1(1 ≤ j ≤ 4), f5(u1) = 1, f5(v j) = −1, for 5 ≤ j ≤ 9,

f5(v10) = i, f5(u j) = i for 2 ≤ j ≤ 5, f5(u j) =−i for 6 ≤ j ≤ 10, is a group {1,−1, i,−i} Cor-

dial labeling.

For n = 11, f6 defined by, f6(v j) = 1 for 1 ≤ j ≤ 4, f6(u1) = f6(u2) = 1, f6(v j) = −1, for

5 ≤ j ≤ 10, f6(v11) = i, f6(u j) = i for 3 ≤ j ≤ 6, f6(u j) = −i for 7 ≤ j ≤ 11 is a group

{1,−1, i,−i} Cordial labeling.

For n = 12, number of vertices of P12 +K12 is 24 and number of edges is 221. There is no

choice of 6 vertices so that 110 or 111 edges get label 1.

For n = 13, number of vertices of P13 +K13 is 26 and number of edges is 259. There is no

choice of 6 or 7 vertices so that 129 or 130 edges get label 1.

For n = 14, number of vertices of P14 +K14 is 28 and number of edges is 300. There is no

choice of 7 vertices so that 150 edges get label 1.

For n = 15, number of vertices of P15 +K15 is 30 and number of edges is 344. There is no

choice of 7 or 8 vertices so that 172 edges get label 1.

For n = 16, f7 defined by, f7(v j) = 1(1 ≤ j ≤ 6), f7(u2) = 1, f7(u4) = 1, f7(v j) =−1(7 ≤ j ≤

14), f7(v15) = f7(v16) = i, f7(u1) = f7(u3) = i, f7(u j) = i(5 ≤ j ≤ 8) f7(u j) =−i(9 ≤ j ≤ 16)
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is a group {1,−1, i,−i} Cordial labeling.

For n = 17, P17 +K17 has 34 vertices and 441 edges. There is no choice of 8 or 9 vertices so

that 220 or 221 edges get label 1.

For n = 18, there is no choice of 9 vertices so that 247 edges get label 1.

For n = 19, there is no choice of 9 or 10 vertices so that 225 or 226 edges get label 1.

For n = 20, there is no choice of 10 vertices so that 305 or 306 edges get label 1.

For n = 21, there is no choice of 10 or 11 vertices so that 337 edges get label 1.

For n = 22, there is no choice of 11 vertices so that 370 edges get label 1.

For n = 23, there is no choice of 11 or 12 vertices so that 404 or 405 edges get label 1.

For n = 24, there is no choice of 12 vertices so that 440 or 441 edges get label 1.

For n = 25, f8 defined by, f8(v j) = 1(1 ≤ j ≤ 10), f8(u1) = f8(u3) = 1, f8(v j) =−1(11 ≤ j ≤

23), f8(v24) = f8(v25) = i, f8(u2) = i, f8(u j) = i(4≤ j ≤ 13), f8(u j) = i(14≤ j ≤ 25) is a group

{1,−1, i,−i} Cordial labeling.

For n = 26, f9 defined by, f9(v j) = 1(1 ≤ j ≤ 10), f9(u1) = f9(u2) = f9(u4) = 1, f9(v j) =

−1(11≤ j ≤ 23), f9(v j) = i(24≤ j ≤ 26), f9(u3) = i, f9(u j) = i(5≤ j ≤ 13), f9(u j) =−i(14≤

j ≤ 26) is a group {1,−1, i,−i} Cordial labeling.

For n = 27, f10 defined by, f10(v j) = 1(1 ≤ j ≤ 10), f10(u1) = f10(u2) = f10(u4) = f10(u6) = 1,

f10(v j) = −1(11 ≤ j ≤ 24), f10(v j) = i(25 ≤ j ≤ 27), f10(u3) = f10(u5) = i, f10(u j) = i(7 ≤

j ≤ 14), f10(u j) =−i(15 ≤ j ≤ 27) is a group {1,−1, i,−i} Cordial labeling.

For n = 28, there is no choice of 14 vertices so that 599 or 600 edges get label 1.

For n = 29 , there is no choice of 14 or 15 vertices so that 643 edges get label 1.

For n = 30 , there is no choice of 15 vertices so that 688 edges get label 1.
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