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1. Introduction and Preliminaries

The theory of fuzzy sets was introduced by Zadeh [24] in 1965. Since then, to use this
concept in topology and analysis, many authors have expansively developed the theory
of fuzzy sets and applications. for example, Deng [5], Ereeg [11], George and Veeramani
[12], Kramosil and Michalek [14] have introduced the concept of fuzzy metric spaces in
different ways. One of the most important problems in fuzzy topology is to obtain an
appropriate concept of intuitionistic fuzzy metric space. This notion has been introduced
and studied by Park [18]. Alaca et al. [1] have redefined the concept of intuitionistic

fuzzy metric spaces, according to concept of fuzzy metric spaces and proved Intuitionistic
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fuzzy Banach and Intuitionistic fuzzy Edelstein contraction theorems, with the different
definition of Cauchy sequences and completeness.

Recently, Merghadi and Aliouche [17] Aliouche and Fisher [2], Aliouche et.al [3] and
Rao et.al [20] proved some related fixed point theorems in compact metric spaces and
sequentially compact fuzzy metric spaces. Inspired by a work due to Popa [19], we have
remarked that proving common fixed point theorems using an implicit relation covers
several contractive conditions.

In this paper, we prove a related fixed point theorem for three mappings in three
complete intuitionistic fuzzy metric spaces using an implicit relation which generalizes
results of Aliouche and Fisher [2] and Rao et al. [20].

Definition 1.1 [22]. A binary operation * : [0,1] x [0,1] — [0, 1] is a continuous

t—norm if it satisfies the following conditions:

1
2
3
4

x is associative and commutative,
* 1s continuous,

(1)
(2)
(3) ax1=aforalla€l0,1],

(4) axb < c*d whenever a < ¢ and b < d, for each a,b,c,d € [0,1].

Two typical examples of a continuous t—norm are a * b = ab and a * b = min{a, b}.
Definition 1.2 [22]. A binary operation ¢ : [0,1] x [0,1] — [0,1] is a continuous

t—conorm if it satisfies the following conditions

1) ¢ is associative and commutative,

2) ¢ is continuous,
3

4

(1)
(2)
(3) a®0 = a for all a € [0, 1],
(4) adb < cOd whenever a < ¢ and b < d, for each a,b,c,d € [0, 1].
Examples of a continuous ¢t—conorm are a0b = max {a, b} and aQb = min{1,a + b}.
The concept of intuitionistic fuzzy metric space is defined by Park [18].
Definition 1.3. A 5—tuple (X, M, N, x, Q) is called an intuitionistic fuzzy metric space
if X is an arbitrary (non-empty) set, x is a continuous t-norm, ¢ a continuous t-conorm

and M, N are fuzzy sets on X? x |0, +ool, satisfying the following conditions for each

x,y,z€ X and t,s >0
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(1) M (z,y,t) + N (z,y,1) < 1

(2) M (2,y.1) > 0;

(3) M (z,y,t) =1 if and only if z = y;

(4) M (z,y,t) = M (y,z,1);

(5) M (z,y,t)* M (y,z5) < M(z,2,t+s);
(6) M (x,y,-):]0,4+00[ — [0, 1] is continuous;
(7) N (z,y,t) =0 if and only if z = y;

(8) N (z,y,t) =N (2,y,1);

9) N (z,y,t) ON (y, 2, t) > N (z, 2, t + s);
(10) NV (z,y,t) : ]0,4+00[ — [0, 1] is continuous.

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M (x,y,t),
N (z,y,t) denote the degree of nearness and the degree of non-nearness between z and y
with respect to t, respectively.

Every fuzzy metric space (X, M, *) is an intuitionistic fuzzy metric space of the form
(X, M,1— M,*,0}) such that t-norm * and ¢t-conorm ¢ are associated [16], i.e., xQy =
1—((1—2)*x(1—y)) for any z,y € X.

Lemma 1.4 [18]. In intuitionistic fuzzy metric space X, M (z,y, ) is non-decreasing
and N (z,y,-) is non-increasing for all z,y € X.

Example 1.5 [18]. Let (X,d) be a metric space. Denote a *x b = ab and ab =
min {1, a + b} for all a,b € [0, 1] and let M, and Ny be fuzzy sets on X? x |0, +oo[ defined

as follows:

t d(z,y)
traGy MO T Gy

Mgy (z,y,t) =

Then (X, My, Ny, %, ) is an intuitionistic fuzzy metric space. We call this intuitionistic
fuzzy metric induced by a metric d the standard intuitionistic fuzzy metric.

Note that the above example holds even with the t-norm a * b = min{a, b} and the

t-conorm a{)b = max{a,b}tand hence (X, My, Ny, *,0) is an intuitionistic fuzzy metric

with respect to any continuous ¢t-norm and continuous ¢-conorm.
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Let (X, M,N,*,{) be an intuitionistic fuzzy metric space. For ¢ > 0, the open ball

B(z,r,t) with center € X and radius 0 < r < 1 is defined by
B(z,r,t)={y € X : M(z,y,t) >1—r and N (z,y,t) <r}.

A subset A C X is called open if for each x € A, there exist t > 0 and 0 < r < 1
such that B(x,r,t) C A. Let () denote the family of all open subsets of X. Then
T(m,n) is called the topology on X induced by the intuitionistic fuzzy metric (M, ). This
topology is Hausdorff and first countable. The topology 74 induced by the metric d and
the topology 7(a, induced by the intuitionistic fuzzy metric (M, N) are the same [18].

Definition 1.6 [18]. Let (X, M, N, x,0) be an intuitionistic fuzzy metric space.

1) A sequence {z,} in X converges to z if for any 0 < ¢ < 1 and ¢ > 0, there exists
ng € N such that for all n > ny,

M(xp,z,t) > 1 —¢ and N (2, 2, t) < € for each n > ng, i.e., M(z,,z,t) — 1 and
N (zn,x,t) = 0 as n — oo for each t > 0.

2) A sequence {z,} in X is called a Cauchy sequence if for any 0 < ¢ < 1 and ¢ > 0,
there exists ng € N such that for all n > ng,

M (2, Ty t) > 1 — e and N (2, 1, t) < € for each n,m > ng., i.e; M(x,, Ty, t) — 1
and N (2, Ty, t) — 0 as n,m — oo for each t > 0.

3) The intuitionistic fuzzy metric space (X, M, N, x, () is said to be complete if every
Cauchy sequence is convergent.

Implicit relation

We denote by @, ¥ respectively, sets of all functions ¢, : [0,1] — [0, 1] such that

(i) ¢ € @, ¢ € ¥ and ¢, are upper semi continuous in each coordinate variable,

(ii) ¢, ¥ are non-increasing in the second and the third variable,

(iii) For all w,v € (0,1), if either ¢(u,1,u,v,v,1) > 0 or ¢(u,1,u,v,1,v) > 0 or
o(u,u, 1,1,v,v) > 0 or ¢(u,u,1,v,1,v) >0 then u > v.

Furthermore, for all u,v € (0, 1), if either ¢(u, 0, u,v,v,0) < 0 or ¥(u,0,u,v,0,v) <0
or Y(u,u,0,0,v,v) <0 or ¥(u,u,1,v,1,v) <0 then

u <.
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Example1.7. Let ¢(t1,t27t3,t4,t5,t6) =11 — min{t27t3,t4,t5,t6}. Then ¢ € P.
Examplel.& Let ¢(t1,t2,t3,t47t5,t6) =11 — max{tg,tg,t4,t5,t6}. Then @Z) e V.

Examplel.9.

¢ (ta, ts, ta, t5,ts) = t1 —n(min{ta,t3,t4,t5,%6})
Y (ta, s, ta, ts, ts) = t1 — @ (max {ta, 3,14, 15, 16})

where n,¢ : [0,1] — [0,1] is a increasing and continuous function respectively, with
n(t) >tand p(t) <tfor 0 <t < 1. Forexamplen(t)=+torn(t) =t for0<h<1
and ¢ (t) = %
We need the following lemma of [15].
Lemma 1.10. Let {z,} be a sequence in intuitionistic fuzzy metric space (X, M, N, *, )
with M (z,y,t) — 1 and N (x,y,t) — 0 as t — oo for all z,y € X. If there exists a num-

ber k €]0, 1] such that
M(xn+17xn7kt) > M(Inaxn—17t)7

N(ajn—&-bmn;kt) S N(xnwrn—bt)'

Then {z,} is a Cauchy sequence in X.
Lemma 1.11 [15]. Let (X, M,, N, *,0) be an intuitionistic fuzzy metric space. If
there exists k € (0, 1) such that M (z,y, kt) > M(x,y,t) and N(z,y; kt) < N(z,y;t) for

x,y € X, then x = y.
2. Main results

Theorem 2.1. Let (X;, M;, N, 6;, %)1953, be three complete intuitionistic fuzzy metric
spaces with M;(x,xz;,t) — 1 and N; (x,x;,t) — 0 as t — oo for all z,z; € X; and let
{Az}iz‘{f be 3-mappings such that A; : X; — X1 for all i = 1,2 and Az : X3 — X,
satisfying the inequalities

M (A3Agzy, A3As Ay, kit) , My (21, AzAsgxo, t),
(2.1x) P1 M (x1, A3As Az, t) , My (29, Ay, t) >0
My (29, A1 A3 Agxo, t) , My (Ayzq, Ay A3Asxs, t)
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N (A3Agy, AgAs Ay, kit) \ Ny (21, AgAgxa, t),
(2-1calN> wl Nl (.lel, AgAQAl.CL’l, t) ,NQ (.CL’Q, Alﬂfl, t) y <0
Nz (1'2, A1 AsAszs, t) 7N2 (Alxla A1 AsAszs, t)

for all 1 € X1, x9 € Xo and t > 0, where ¢ € @, Yy € ¥ and 0 < k < 1.
My (A Asxs, A1 AsAsxs, kt) , My (22, A1 Ass, t),

(2.20r) ®2 My (x9, Ay A3 Asxe, t) , M3 (23, Asxa, ), >0
M (23, Ay A1 Asxs, t) , M3 (Asxe, Ag Ay Az, t)

Ny (A1 Ases, A1 AsAsxa, kt) , Ny (22, Ay Asas, t)
(2'2calN> ¢2 NQ (ZBQ, AlAgAQZL'Q, t) ,Ng (1'3, AQZL'Q, t) s <0
N3 (x5, As A1 Az, t) , N5 (Aswe, Ag Ay Agas, t)

for all x4 € X5, x3 € X3, t >0, where ¢ € ®, o € ¥ and 0 < k < 1.
M3 (AgAyxy, AsAyAsws, kt) , M3 (23, Ag A2, 1),

(23M) ¢3 M3 (.133,A2A1A3$3,t) 7M1 (Il,Agng,t) ) >0
M (z1, AgAs Ay, t), My (Aszs, AsAs Ay, t)

N3 (A2A1I1, AsA Az, ]ft) ;Ns ($3, A Ayzq, t) )
(2-3calN> 7?3 N3 (.ng, A2A1A3.CL’3, t) ,Nl (.CL’l, A3I3, t) , <0
M (21, AsAs Az, t) , Ny (Aszs, AsAsAyxy, )

for all x1 € X1, v3 € X3 and t > 0, where ¢3 € ®, 3 € ¥ and 0 < k < 1. Further,

suppose that one of Ay, As and As is continuous on X;. Then

A3AsA1 has a unique fizxed point p; € X,
A1A3As has a unique fixed point po € X,

A9 A1 A3z has a unique fized point p3 € Xs.

Further, A;p; = pir1 for i = 1,2 and Aspz = p1.
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Proof. Let {mfnl)} , {xg)} and {x,(ng)} be sequences in X7, Xy, X3 respectively and xél)
be an arbitrary point in X; We define the sequences { Ty } fori=1,2,3 and r € N by
l‘ﬁ,l) = (AgAQAl) (A3A2A )ilf 1)1

x?) = Al (AgAQAl)T fﬂ(()l) = All',g,l_)l

I£3) = A2A1 (A3A2A1)T Iél) = A2$£2)
We assume that z!' 7& a:f,lﬁl Applying the inequahties (2.1M) and (2.1y) for xo = :139_)1 =
Alxr L= Ay (As3A Ay ! 9:0 Jand T, = oV = (A3A2A))" x ) we get

Ml <[L’$=1), xfﬂ?l? kt) ) 17 Ml (x$1)7 xf"?l? t) )

2 2 2 >0
Mz( f,)l,:m(«),t> , My (xﬁ_)l,asﬁ),t>,1

1

N (22l k) 0.0 (2,28t
NQ <$£2)1,l'£«2)7t> aNQ ( 542)17:65'2)’1;) 70

Using (ii) and (iii) of the implicit relation we have

() <0

(31M> Ml <xq(" ) (ri)l?kt> Z M2< 7("2)17 7("2)7t>

(3'1calN> N1 <£L‘7(n1),l’(r21, ) <N ( Tp 1, 52),t> .

Applying the inequalities (2.2);) and (2.2y) for z5 = ¥, and 25 = 2%, we obtain

MZ <$S’2)7 xfﬂ?l? kt) ’ 17 M <$$~ )7 ‘,E'E'izl’ t)

02 3) () 3) () >0
7M3< Lp_15Tr 7t> 7M3 (xr—bm?" 7t) 71

N (l’?), r+)1’ ) ON2 (xT ’ gglvt)
N3 <x£3)1,x§3),t> N3 (xig)l,mﬁ ),t) 0

From (ii) and (iii) of the implicit relation we get

<0

(C>

(3~20alN) Af? < Z,’, 5’3217 ) S NB (xigl)l’x7(n3),t> .
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Applying the inequalities (2.357) and (2.3y) for z3 = 2Pand 7, = xq(i)l we have

¢ MS (xg“?))v £+17kt) 717M (xT )’x5?17t> ) >0
3
M (1}9),1'5, )17t> 7M1 (.’L'?(n )7‘7:5’1—)17t) 71

N3 (137(«3)7 Lri1s ) 0 N3 <I7("3)7 T‘leat> ’

<0
M <$” ) T1>17t> M (xﬁ’l)’xg )1,t> 0

Vs
and so by (ii) and (iii) of the implicit relation we get

(3.3n:) M5 <x£ , i,?_’gl,kt> > M, (xﬁl),xf,l_)l,t>

(3~3calN) j\/’S <x£3)7$£?17 ) <N ( &1)7 5)17{;)

It follows from (3.1x), (3.2a7) and (3, 37) that for n large enough and for all i = 1,2, 3

Ml( 7(~ ) £217kt> > M2< £)1,$£2),t)

i i i ; t
Mz’ (:L‘g‘Z)axf“—&)-lat) Z MiJrl <x7(~—+11)7x7(}+1) _>

"k

>
> M, ($7(»+i—nax7(~+i—n+1a k”_i)

(1) (1) ¢
> M\ 21, T, n—it1
>

1 1 _t

M1 (.1'5,421'2”17 x££i72n7 k2n7i+1

>

(1) 1) ¢
2 Ml xr+z‘—mn—17'rr+i—mn7 kmn—i+1
>

t t
Ml (1’5 )ng1)7 kmn) 7M1 <$§2)7I§2), kmn)
min

t
aMB (xgg)axg )7 kmn)
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It follows from (3.1xr), (3.2y) and (3, 3,r) that for large enough n and for all i = 1,2, 3.

1 7 7 7 t
M <SC7(}), xfﬂ-i)—lv t) S M+1 (xfﬂjll)a l'fq +1)7 %)

W b
< <N1( Trtizon—1 Trtiz2n: Ton— H—l)

W © t
< .= Nl <xr+i—mn—17 L Li—mn> kmn_i+1>

Ny (2,0, ) A (0, )
'/\/‘3 <$1 7x§3)7 krfmn)

< max

Since 0 < k < 1, it follows from Lemma 1.10 that {xy)} is a Cauchy sequence in X; for
1 =1,2,3 with limits

pr = lim 20 = lim (A34,4,)" 2V
7—00 r—00

pr = limz® = lim A2V
r—00 r—00

ps = lim z® = lim A, 4,20 = lim A,2?
r—00 r—00 r—00

(2)

Using the inequality (2.1,,) for 1 = p; and 25 = x,”’; we have

Ml IL"r ) As Ay Avpy, kt) , My <p17$5~1),t> ;
(4.1ar) M, ( P1,A3A2A1p1, t), Mo (xfnz,)pAlpht) . | >0

x,” 1,$7(~), ) M, <A1p1,$r)7 )

From (2.2)/) and for 25 = py and x3 = x 3 V= AsA; (AsAAy) m(()l) we get

xr ) Ay As Agps, kt) , My <p2,9€7(~2),7f) ;
(4.2) M (p2, A1 AsAgps,t), Ms <$f«3_)1, A2p2,t> , | >0
5‘3)17 3:7(”3)7 t) ) M3 (A2p27 x£3)> t)
Finally, using the inequality (2.33;) for x3 = p3 and z; = (A3A24;)" x (1) = 2t we
obtain
) A3A A3p37 kt) ) M3 (p?n :L‘7(“3)7 t) )
(4.35) M3 p3,A2A Asps, t), My (569)7143]?370 , | >0

x?‘ ; gla ),M1 <A3p3>$5~21,t>
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Letting r — oo in (4.15), (4.257) and (4.37) and using (i) we have

M (p1, AsA2 Aipy, kt) , 1,
1| My (p1, A3AsAipy,t) , My (pa, Arpy,t), | >0
1, M, (p27 Aipa, t)

M, (p27 A1 AsAsps, kt) , 1
G2 | My (pa, AtA3Aopa,t), M3 (ps, Aspo,t), | >0
17 M3 (p37 A2p27 t)

M; (p3,A2A1A3P37 k‘t) o 1
$3 | M; (ps, Ay Ay Asps, t) , My (p1, Asps,t), | >0
1, My (p1, Asps, t)

It follows from (ii) and (iii) that
M (p1, AsAsAipr, kt) > My (pa, Aipr,t) (5.1y)
(1)
My (p2, A1A3Aops, kt) > My (ps, Aspa, t)

Ms (ps, A2 A1 Asps, kt) > M (p1, Asps, t)Similarly
N (p1, AsAAipy, kt) < No(pe, Aip1,t) (5.1can)
(2)
No (p2, A1 AsAspa, kt) < N3 (ps, Aapa, t)

N3 (ps, Ag A1 Asps, kt) < N7 (p1, Asps, t) .Suppose that A, is continuous. Then

(6.1) p3 = Aapa.

Using the inequality (2.1,,) for z; = 2t and 24 = pe we have

Ml <A3A2p27 1'7(421, kt) ) Ml (l‘g“l)v A3A2p27 t) )

(6.11) b1 wy (o, 200 t) M (o, Ar ) >0
M; (p2, A1AsAgpa, t) , My (Alfﬂgl), A1 Az Agps, t)
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Applying (2.2y;) for x5 = 2? and 73 = p; we get

My <A1A3p3, -A1A3A2$1(~2), kt) , My (x?), A1A3p37 t) ,
(62M) ¢2 M2 ($£=2), 'ngl? t) 7M3 (p3> A2x§’2)7 t) 3 >0
M (ps, Ao Ay Asps, t) , Ms (A2$£«2)7 Ay Ay Asps, t)

Finally, using the inequality (2.3,/) for 3 = p3 and x; = 2(Y we obtain

M3 (I’SS)) A2A1A3p37 kt) ) M3 (p?n x7("3)7 t) )
(6.3ar) G3 | Ms(ps, As Ay Asps, t) , My (x£1217A3p37t> , 1 >0
Ml ('Ii’l—)h 'Is“l)a t> ’ Ml <A3p37 l‘g“l)a t)

Letting r — oo in (6.1/), (6.237) and (6.357) and using (i) and (ii) we have

M, (Asps,p1, kt) , My (p1, Asps, kt) , 1,1,
My (pa, A1 Asps, t) , My (pa, A1 AsAspo, t)

5 M; (A1 Asps, p2, kt) , My (p2, A1Asps, kt) , 1,1, -0
2
M3 (ps, As A1 Asps, t) , M3 (ps, As Ay Asps, t)

Ms3 (ps, A2 Ay Asps, kt) , 1,
@3 | Ms (ps, AsA1 Asps, kt) , My (p1, Asps,t), | >0

17 Ml (ph A3p37 t)
It follows from (iii) that

Ml (A3p37 P1, kt)

Y

My (p2, A1 Asps, t)

M, (p2, A1 Asps, kt)

Vv

M3 (p3, Ay A1 Asps, t)

M; (P3> Ay Ay Asps, kt)

v

Ml (A3p37p17 t)

In the same manner

Nl (A3p37p17 kt)

IN

Na (pa, A1 Asps, t)

IN

Ny (pa, A1 Asps, kt) N3 (ps, AgA1Asps, t)

N3 (ps, Ay A1 Asps, kt)

IN

Nl (A3p37p1a t)
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Then
M (Asps, pl, kt) > My (Asps, p1,t) and N (Asps, p1, kt) < Nj (Asps,pr,t)

By lemma 1.11 we get

(6.2) Asps =
From the inequalities (6.1), (6.2), (5.157) and (5.1y) we have

A1A3Asps = Do
A2A1A3p3 = P3

(3) A1p1 = p26.3
By (6.3), (5.157) and (5.15) we obtain
AsAsAipr = ;1

To prove the uniqueness of the fixed point p; in X;, we assume that there exists z; € X;
such that z; # p;, A;zi = z;1 for i = 1,2 and Azzz = 2;. Using (2.1y/), (2.2)7) and (2.3)

we have for 7 = 1,2

Mi (Zi)pia kt) ) MZ (p’L7 Zi )t) 3 ]-7
of >0
M1 (Ziv1, pig1,t) , 1, Migq (pisa, 2ig1, )
and

M3 (2371737 kt) 7M3 (p37 23, t) ) 17
¢3 >0

Ml (Zluplut) ) 17 Ml (pbzbt)

which imply

M (p1,21,kt) > M; (pg, 22, 1)
My (pa, 22, kt) > Ms (ps, 23,t)

Ms (ps, z3, kt) > M (p1,21,1).
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Similarly

N1 (p1, 21, kt) < N (pa, 20,1)
Ny (pa, 22, kt) < N3 (ps, 23,t)

N (ps, z3, kt) < Ni(p1,21,t).

Using lemma 1.11 we get z; = p;, © = 1,2, 3. This proves the uniqueness of p; in X; for
all 1 = 1,2,3. This complete the proof of the theorem.

Example 2.2. Let (M;, X;,6;), i = 1,2,3, be 3 an intuitionistic fuzzy metric spaces
Ny (z,y,t) = M, X; =1[0,1], Xy = [1,2]

T t+d(z,y) Ct+d(z,y)
and Xg = [2,3] Define Al : Xz _>Xi+1 for i = ].,2 and A3 : X3 — X1 by

such that My (x,y,t)

9 )
3 é—llfiﬁge 1,1
Alxl = iifl'le[o,].],AgfL‘Q: 5 5
§if$2€ 1,2
3. 9
Zlfl’ge 271_1|:

Aszs = 9
1if x5 € Z,3:|

Let ¢ = ¢g = ¢3 = ¢ such that ¢ (¢, ta, t3, 1y, t5,t6) = t1 — min {ta, t3,ty, t5, ts}
and let 1y = 19 = 1h3 = ¢ such that (ty, ta, t3, 1y, ts, ts) = t1 — max{ts, t3, t4, t5, 16}
Note that there exists w; in X; such that (A; 1A; 2..A1A,...A;)) w; = w;, Vi = 1,2,3
and n = 3.

1
(a) If i = 3 we get (AyA1As) wy = ws if wy =3 — 5= g because

(A A1 A3) (g)

= AyA (1) = A, (g)

°
2
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(b) If i = 2 we find A1 AzAyws = wy and if wy = g € E, 2 [;
3
(A1 A3A) (5)

an()-a()

3
2
(¢) If i =1 we find A3AsAjw; = wy and if wy =1 € [0, 1];

(A3A4241) (1)

anfl)-a()

= 1

Hence, all conditions of Theorem 2.1 are satisfied.
Remark. In the theorem 2.8 of [20], the inequalities (1) and (2) should be > (greater

than) in order to obtain a contradiction in example 2.5 of [20].
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