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Abstract: It is well known that hepatitis C virus (HCV) causes development of end-stage liver disease and 

hepatocellular carcinoma worldwide, in spite of advances in therapy and improved knowledge of viral factors relating 

to the disease evolution. In this paper, we review and analyze a deterministic mathematical model developed to assess 

the effect of antiviral drug on the in-vivo HCV dynamics. We computed the endemic equilibrium point (EE) and 

performed the stability analysis of the model equilibria using a derived threshold quantity well-known as the effective 

reproductive number , 𝑅𝑒 . The analytical results indicate that the disease free equilibrium point (DFE) is locally 

asymptotically stable, and globally asymptotically stable by using Metzler Stability Theory, if  𝑅𝑒 < 1.This implies 

that antiviral therapy absolutely eradicates the disease in this scenery. Also, we find that the endemic equilibrium point 

(EE) is globally asymptotically stable if 𝑅𝑒 > 1 by using the Lyapunov Direct Method with LaSalle Invariance 
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Principle. This implies that the disease still persists in the presence of antiviral therapy. Numerical simulations were 

performed to support the analytical results and the results verify that there is no coexistence of the DFE and EE points 

and that the model has unique equilibria. Thus, we recommend that the treatment of an individual with HCV infection 

should be well managed by optimizing therapy regimen such as choice of suitable drug type and combination, dosage 

and therapy period to stop the transmission by reducing strictly 
eR  less than unity.  

Keywords: Meltzer matrix; endemic equilibrium; Lyapunov function; local stability; global stability. 

2010 AMS Subject Classification: 92B05. 

 

1. Introduction 

Hepatitis c disease is a blood-borne infection caused by hepatitis C virus (HCV). It is estimated 

that 130-170 million are infected with HCV worldwide [1]. Literatures show that about 85% of 

infected individuals progress to chronic hepatitis c infection [2], while the remaining victims 

undergo just acute hepatitis C infection in six months. Of the acutely infected individuals, about 

20% to 50% spontaneously clear the virus in six-month period [3]. Many patients with acute 

hepatitis c disease are asymptomatic; and hence diagnosis and early intervention of the disease is 

very rare. Treatment of individuals with chronic hepatitis c has been very difficult to manage. This 

is associated with worsening prognosis; and requires more therapy and longer therapy period, 

causing intolerability due to developing side effects attributed to highly dosed drug- taking and 

drug type. Therapy with peginterferon alpha 2a or 2b and ribavirin drugs, for example, has not 

been significantly effective as only about 50% of cases attain sustained virologic response (SVR) 

[4-6]. On the other hand, it has been clinically established that monotherapy of acute HCV 

infection is far better tolerated, cheaper and takes less time [7] and reduces the chance of disease 

evolution to chronic state [8]. 

 

We know that one goal of mathematical epidemiology is to acquire insight into how to control and 

exterminate diseases[9]. In this setting, mathematical models have been widely used to study 

ecological and epidemiological incidences [10]. Also, we see that modeling of in-vivo dynamics 



757 

STABILITY ANALYSIS OF AN IN-VIVO HEPATITIS C DYNAMICS MODEL 

of viral infections has been used to inquire into possible mechanisms and dynamical performances 

of the viral infection course[11, 12]. They can be used to approximate vital parametric values of 

the viral infection such as virions, rate of clearance, infected cell life-span and viral generation 

time [13] and guide development of effective antiviral therapies [14]. 

 

Stability analysis of model equilibria is a well-known way in mathematical epidemiology that 

facilitates the understanding of the dynamical behavior of the model. These model equilibria are 

analyzed for local and global stability by using different methods, namely, the Jacobian stability 

method, Meltzer Stability Theory, Lyapunov Stability Theory and LaSalle’s Invariant Principle. 

The global stability for a bio-mathematical model equilibria has been very well discussed in the 

literature [15]. It is also known that the method based on the use of Metzler matrices has been 

useful for the global stability analysis of  the DFE point [16]. Up to now, the Lyapunov Direct 

Method combined with LaSalle’s Invariance Principle has been a classical potent tool for the 

global stability analysis of autonomous systems of differential equations through construction of 

appropriate Lyapunov functions. In literature, we find different forms of Lyapunov functions that 

are employed for global stability analysis of epidemic model equilibria [15, 17-21]. 

 

In this paper, we consider the model proposed by [22] for stability analysis of the disease free 

equilibrium (DFE) and endemic equilibrium (EE) points. We analyze the DFE point for local 

stability by using the Jacobian stability method and global stability by Meltzer Stability Theory 

while the global stability analysis of the EE point is performed by using Lyapunov Direct Method 

combined with LaSalle’s Invariance Principle [20, 23]. 

 

2. The Model Preliminaries 

In this section, we initially introduce a deterministic mathematical model developed by [22], that  

includes the susceptible hepatocytes ( S  ) and infected hepatocytes ( I  ) sub-populations, HCV 

population (V ) and CD8+ T cells population (T ).We believe that some dynamical derivatives of 
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the model are compulsory for the stability analysis we are presenting in this paper. 

 

2.1 The Description of Interactions 

New hepatocytes S are constantly recruited at the rate   and die naturally at a constant rate d . 

They are infected at the rate proportional to the product SV , with a constant of proportionality . 

The infected hepatocytes I  naturally die at a constant rate d , which produce hepatitis C viruses 

V are at a constant rate . The viruses die naturally at a constant rate c . In the presence of HCV, 

the CD8+ T cells are activated and supplied at a constant rate g . These CD8+ T cells kill infected 

hepatocytes at the rate proportional to the product IT , with a constant of proportionality 𝛽 and 

naturally die at a constant rateb . Finally, the patient with acute HCV infection is treated with 

interferon alpha-2b that blocks viral replication within infected hepatocytes by a fraction . 

The state variables and parameters used in this work are itemized and briefly described in Table 1 

and Table 2 respectively. 

 

TABLE 1. List of state variables and their descriptions 

 

In the formulations and analyses, we merely employ the symbols S , I , V and T to represent the 

susceptible hepatic sub-population, )(tS ; infected hepatic sub-population, )(tI ; hepatitis C viral 

population, )(tV  and CD8+T cells population, )(tT  respectively. 

 

Variable Description 

)(tS  Number of susceptible hepatocytes at time t  

)(tI  Number of infected hepatocytes at time t  

)(tV  Number of hepatitis C virions at time t  

)(tT  Number of CD8+
 T cells at time t  
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TABLE 2. List of parameters and their descriptions 

Parameter  Description 

  Per capita infection rate 

  Per capita production rate  of viruses from the infected hepatocytes 

  Rate at which the CD8+ T cells destroy the infected hepatocytes 

  Per capita production rate of susceptible hepatocytes   

g  Per capita production rate of the CDB+ T cells  

d  Per capita natural death rate of susceptible and infected hepatocytes 

c  Per capita natural death rate of  viruses 

b  Per capita natural death rate of CD8+ T cells 

q  Rate of spontaneous cure of infected hepatocytes by a noncytolytic process 

  Per capita death rate infected hepatocytes due to HCV infection 

  Fraction by which antiviral drug reduces viral production rate 

mT  Maximum CD8+ T cells population level 

 

2.2 Model Assumptions and Equations  

The model was developed based on the following assumptions: 

(i) To study the dynamics of HCV during acute phase of infection. 

(ii) New hepatocytes are recruited at a constant rate. 

(iii) Susceptible hepatocytes are equally likely infected by the viruses and infected hepatocytes. 

(iv) The susceptible and infected hepatocytes die naturally at equal constant rates. 

(v) The infected hepatocytes have a constant disease-induced death rate. 

(vi) Virions are produced from infected hepatocytes at a constant rate. 

(vii) CD8+ T cells are activated and subsequently supplied at a constant rate. 

(viii) The virions and the CD8+ T cells die naturally at different constant rates.  

(ix) The CD8+ T cells kill infected hepatocytes at a constant rate.  

(x) The HCV patient is treated using highly dosed-interferon alpha-2b to block viral replication.  



760 

SELEMAN ISMAIL, LIVINGSTONE S. LUBOOBI, YAW NKANSAH-GYEKYE 

(xi) The patient can either clear the virus spontaneously or not during therapy period. 

Then based on the assumptions and description of interactions showing the relationships between 

the state variables, a system of four non-linear ordinary equations was formulated. 


























bT
T

T
gV

dt

dT

cVI
dt

dV

qIIdIITSV
dt

dI

dSSVqI
dt

dS

)1(

)1(

max







                           (1)                                            

with initial conditions 0S , 0I , 0V and 0T . 

 

2.3 The Disease Free Equilibrium Point and Effective Reproductive Number 

We calculated the disease free equilibrium point (DFE) by setting the derivatives of the model 

system (1) equal to zero. Let ),,,(0

 TVISE be the DFE point. Thus, we have: 






















0)1(

0)1(

0

0

max

bT
T

T
gV

cVI

qIIdIITSV

dSSVqI







                              (2)                                    

Using the first, third and fourth equations in (2), we obtain:  

                 dV

qI
S





   ,  )1( 


cV

I   and    
max

max

bTgV

VgT
T




         

(3)   

At the DFE point 0E , we assume there is no HCV and hence 0V .Then from (3), we obtain: 

      
dd

q
S









)0(

)0(


 ,   0

)1(

)0(







c
I    and    0

)0(

)0(

max

max 




bTg

gT
T      (4)   

Thus, the disease free equilibrium point of the system (1) exists and is given by    

)0,0,0,(0
d

E


  



761 

STABILITY ANALYSIS OF AN IN-VIVO HEPATITIS C DYNAMICS MODEL 

By using the next generation operator method described by [24] and subsequently analyzed by 

[25], we derived the effective reproduction number, 
eR of the model (1). It is the spectral radius 

(  ) of the next generation matrix,
1FY , i.e. )( 1 FYRe  . 

where F is a non-negative nn matrix and Y is a non –singular N-matrix such that 


















j

i

X

Ef
F

)( 0

 

and 

















j

i

X

Ey
Y

)( 0  with nji  ,1  

Thus, we have: 





















0)1(

0





dF  ,  






 


c

qd
Y

0

0
 and hence 



























0
)1(

0
1

qd

cdFY







 

We obtain the effective reproductive number, 
eR from )( 1 FYRe  .Thus, we have: 

                       
cdqcdcd

Re








2

)1(
                          (5)    

          

3. Existence of Endemic Equilibrium Point with Therapy 

We obtain the endemic equilibrium (EE) point of the mode(1) . Let ),,,(   TVISE  be the 

EE point of the model.  

Using the first, third and fourth equations of the model system(1) at the EE point
E , we obtain: 

                   dV

qI
S












                                          (6𝑎)                                                                                                                    

                   
 )1( 




 cV
I                                            (6𝑏)                                                                                                        

                    max

max

bTgV

VgT
T









                                       (6𝑐)                                                                                                

Substituting (6𝑏) into (6𝑎) yields: 



762 

SELEMAN ISMAIL, LIVINGSTONE S. LUBOOBI, YAW NKANSAH-GYEKYE 

                    
)()1(

)1(

dV

cqV
S














                                  (6𝑑)                                           

Substituting (6𝑏),(6𝑐) and (6𝑑) into the second equation of the model (1) with simplification 

produces a quadratic polynomial in terms of
V . 

                        0)()()( 2   CVBVAVP                         (7)                                   

The coefficients of the quadratic polynomial (4) are given by 

)]([ max qdcgcgTcqgA   ; 

maxmax

2 )()1( TqdbcTbcqgB    

                     )]([ max qdcdgcdgT   ; 

maxmax

2 )()1( TqdbcdTbC  
 

The equation 0)( VP corresponds to a situation when the disease is endemic.  

We find that the polynomial (7) has positive real solution 
V under the conditions stipulated in 

the following theorem: 

Theorem 𝟏: The HCV model system (1)with therapy has: 

a) A unique endemic equilibrium point if 0C , which implies 1eR  

b) A unique endemic equilibrium point if 0B  and 0C  or 042  ACB  

c) Two endemic equilibrium points if 0C , 0B  and 042  ACB  

d) No solution otherwise. 

 

4. Stability Analysis of the Model Equilibria 

In this section, we determine conditions which underlie asymptotic stability or instability of the 

model equilibria. We initially define asymptotic stability and instability.  

Definition 𝟏 : Asymptotic stability of the model system (1)  is the state where the solutions 
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starting arbitrarily in the close vicinity of its equilibrium point remain close to it and converge to 

it as t whereas instability of an equilibrium point implies that solutions starting arbitrarily 

in the close vicinity of it do not approach it as t . 

 

4.1 Local Stability of the DFE Point 

In the general perspective, the local asymptotic stability of an equilibrium point refers to the state 

where non-linear system trajectories start arbitrarily in the close vicinity of the equilibrium point 

and converge to it as t . So, we have to prove that the DFE point of the model  (1) is locally 

asymptotically stable. Nevertheless, we initially evaluate the Jacobian matrix at the DFE point and 

then compute the trace and determinant of the matrix. 

Let 
0EJ denote the Jacobian matrix at the DFE point

0E . Let )(
0EJTr and )(

0EJDet be the trace 

and determinant of the matrix
0EJ  respectively. Then the Jacobian matrix 

0EJ is given by 



































bg

c
d

qd

d
qd

J E

00

0)1(0

0)(0

0

0








 

Thus, we have: 

)2()(
0

bcqdJTr E    

)()( 2

0
  cdqcdcdbJDet E                              

 

Then 0)(
0
EJDet  if 02   cdqcdcd    

That is,              )1(2 cdqcdcd         

                  cdqcdcd   2)1(  

       

1
)1(

2






cdqcdcd 



 

That is,                     
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                   11
)1(

2






cdqcdcd 


                                 (8)                                                                                             

Using (5), (8) simplifies to 1eR . 

Since the trace and determinant of the matrix
0EJ  are strictly negative and positive respectively, 

the disease free equilibrium point of the model (1) is locally asymptotically stable and so we 

have proved the following theorem:   

Theorem 𝟐: The disease free equilibrium point is locally asymptotically stable in Φ if 1eR

and unstable if 1eR . 

  

4.2 Global Stability of the DFE Point 

The global stability of the DFE point is analyzed by applying the method of [26].We initially 

express the model system (1) in the following format: 














n

n

nnEN

N

RX
dt

dX

QXXXP
dt

dX
)( ,0

                              (9)                                                                            

where NX  is the non-transmitting class, nX  is the transmitting class, nEX ,0
 is the class of the same 

size as 
nX
 
at the DFE point 

0E  and P ,Q and R are matrices. Thus, we have: 











T

S
X N ,   










V

I
X n  ,  )0,0,(,0 d

X nE


  and 













 




T
d

S
XX nEN ,0

 

For global stability of the DFE point, we must show that matrix P  has real negative eigenvalues 

and R is a Meltzer matrix (i.e. the off-diagonal elements of R are non-negative).Then by using 

the equations of the model (1) and format(9), we obtain: 























 























V

I
Q

T
d

S
P

bT
T

T
gV

dSSVqI

)1(
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

 and 





















V

I
R
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qIIdIITSV


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)1(
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Using non-transmitting elements from the Jacobian matrix of the system (1)and the format (9), 

we find that: 















b

d
P

0

0
, 






















bg
d

q
Q

0


and 






















c
d

qd
R






)1(

)(

 

We find that the matrix P in (9) has real negative eigenvalues b  and d .We also find that R

is a Meltzer matrix as the entries in the leading diagonal are all negative and the off-diagonal 

elements are positive. So, the DFE point of the system (1) is globally asymptotically stable and 

therefore we have proved the following theorem:  

Theorem 𝟑: The disease free equilibrium point is globally asymptotically stable in the region 

Φ if 1eR
 
and unstable if 1eR .

  

 

4.3 Global Stability of the EE Point 

We know that the DFE point of the model system (1) is locally asymptotically stable if 1eR  

and unstable if 1eR ,which suggests the local stability of the EE point for the reverse condition 

[25]. In this section, we only prove the EE point for global stability by constructing a suitable 

Lyapunov function.  

To prove the EE point for the global stability, we use the Lyapunov function of the form (10) 

                

)ln( 


j

j

jjj
y

y
yyAH  for 0jA and 4,...1j                (10)                                                                        

as proposed by [26], where jA  is an appropriately selected constant, jy  is the population of the 

thj  compartment and 


jy   is the value of jy  at equilibrium. The method also holds for more 

complex compartmental models of the in-vivo dynamics [20, 23]. Thus, we have the following 

Lyapunov function:  
























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























T

T
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V

V
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I

I
IIA

S

S
SSAH lnlnlnln 4321 ,   
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Differentiation of the function H with respect to t  yields: 

dt

dT

T

T
A

dt

dV

V

V
A

dt

dI

I

I
A

dt

dS

S

S
A

dt

dH







































1111 4321      (11)          
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From (13), we have: 
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The function ),,,( TVISM  in equation (14) balances the right hand side of equation (13). It 

is non-negative following the approaches of [27] and [28]. This means that 0M   for every 

0,,, TVIS  .Thus, 0dtdH  for all 0,,, TVIS   and zero when  SS  ,  II    VV,  and 

 TT .Thus, the largest compact set in Φ such that 0dtdH is the singleton }{ E where the 

EE point of the model is 
E   (1). By the invariance principle [29],we find that 

E  is globally 

asymptotically stable in the region Φ. Hence, we have proved the following theorem: 

Theorem 𝟒 : The endemic equilibrium point is globally asymptotically stable in the region Φ if 

1eR and unstable if 1eR . 

 

5. Numerical Simulations and Discussion 
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The main objective of the original study was to assess the impact of antiviral drug therapy on the 

hepatitis C disease. Up to now, we have proved that the model equilibria exist and are stable by 

means of the analytical methods. In this section, we have performed numerical simulations for the 

model state variables, with various initial values, to support the analytical results, That is, we have 

performed numerical simulations to analyze the stability of the model equilibria to acquire 

additional insight into the dynamics of the disease. 

5.1   Simulations for the stability analysis of the DFE point 

We varied the initial size for each state variable and employed the following parametric values:  

0003.0,10,02.0486.0,00014.0,100,00000001.0,6,00001.0  gcbd 

0q and 96.0 . 

 

FIGURE 1(a). Graph of susceptible hepatocytes/ml vs. time with therapy varying initial size.   

 

FIGURE 1(b). Graph of Infected hepatocytes/ml vs. time with therapy varying initial size.   
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FIGURE 1(c). Graph of HCV load/ml vs. time with therapy varying initial size.   

 

FIGURE 1(d). Graph of CD8+ T cells/ml vs. time with therapy varying initial size.  

 

Figures 1(𝑎)-1(𝑑) show plots of HCV model with time from the onset of antiviral drug therapy 

onward. These simulations results verify the existence of a unique disease free equilibrium point 

and it is stable. That is, the graph of susceptible hepatocytes ultimately attains a non-zero steady 

state (Fig.1 (𝑎)) whereas the graphs of infected hepatocytes, HCV load and CD8+ T cells attain a 

zero steady state as shown in Fig.1(𝑏), Fig.1(𝑏) and Fig.1(𝑑) respectively. 
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FIGURE 2(a). Graph of susceptible hepatocytes/ml vs. time with therapy varying initial size.   

 

FIGURE 2(b). Graph of Infected hepatocytes/ml vs. time with therapy varying initial size.   

 

FIGURE 2(c). Graph of HCV load/ml vs. time with therapy varying initial size.   
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FIGURE 2(d). Graph of CD8+ T cells/ml vs. time with therapy varying initial size.   

Figures 2(𝑎)-2(𝑑) display plots of the HCV model with time from the onset of antiviral therapy 

and thereafter. The graphs of susceptible hepatocytes, infected hepatocytes, HCV viral load and 

CD8+ T cells all attain a non-zero steady state in the long run. These simulations results verify the 

existence of a unique endemic equilibrium point that comprises non-zero values of the state 

variables. This implies that the EE point is stable whenever it exists 

 

6. Conclusion    
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endemic equilibrium point and performed the stability analysis of the model equilibria to acquire 

further insight into the dynamics of HCV with therapy. But, we considered only treatment of the 

patient who cannot spontaneously clear the virus, as the case would be practical with treatment. 
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disease free equilibrium point and a unique endemic equilibrium point in the presence of therapy. 

Thus, the model equilibria exist and are stable.  

We recommend that antiviral therapy should be optimized to reduce strictly
eR less than unity in 

case the disease still persists with therapy. 
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