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1. Introduction

Bernstein polynomials [4] have been one of the useful tools for many mathematicians since

last century. Getting these tools as afflatus, we have recently seen a lot of important and

interesting research studies. We exclusively advert to some of them as follows:

Relations between some special polynomials (Bernoulli and Frobenius-Euler polynomials

etc.) and Bernstein polynomials were investigated, very interesting properties were obtained
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from these researchers [2,5]. Generating function of Bernstein polynomials was obtained. Also

recurrence relations and derivative formula for Bernstein polynomials were proved with the aid

of generating function [6].

Consider the q- and (p,q)- calculus to obtain many new results. Some new properties were

obtained for q- analogue of some special polynomials[20]. Generalized Bernstein polynomials,

so called q-Bernstein polynomials, were defined in [16]. By the motivation from [16], approxi-

mation properties for generalize Bernstein polynomials were studied and some estimates on the

rate of convergence were given for q-Bernstein polynomials [15]. Results for q-Bernstein poly-

nomials were obtained with regard to some special polynomials [3]. A new generating function

for the generalize Bernstein type polynomials was constructed and some basic properties were

established by using this new generating function [19]. Acar [1] constructed new modifications

of Szász–Mirakyan operators based on (p,q)-integers and derived its new properties. In addi-

tion, a new analogue for Bernstein polynomials which is called (p,q)-Bernstein polynomials

was defined and approximation properties were studied for these polynomials [14].

This paper is organised as follows:

We will give, respectively, basic definitions and notations which are important and useful

for integral representations of Bernstein polynomials in (p,q)-calculus, a definition of (p,q)-

Bernstein polynomials introduced by Mursaleen et al.[14], and then extend some well known

properties from Bernstein polynomials to (p,q)-Bernstein polynomials and integral representa-

tions of (p,q)-Bernstein polynomials and also we will show relations between special functions

and these polynomials by using integral representations of (p,q)-Bernstein polynomials. Fi-

nally, we will present the conclusions in this paper.

2. Basic Definitions and Notations

In this part, we mention the following definitions and notations that enable us to obtain some

results for sequel of this paper.

Definition 2.1. [8] The (p,q)-numbers that are called twin basic number is defined as
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[n]p,q =
pn−qn

p−q
,0 < q < p≤ 1. (2.1)

If we take p = 1, (p,q) analog of n reduces to q analogue of n. Some (p,q)-numbers are

determined as follows:

[1]p,q = 1

[2]p,q = p+q

[3]p,q = p2 + pq+q2

...

Definition 2.2. [9] The (p,q)-Binomial Formula is defined as

(a−b)n
p,q =

n

∑
k=0

(
n
k

)
p,q

p(n−k)(n−k−1)/2qk(k−1)/2(−1)kan−kbk, (2.2)

where a,b ∈ R.

Definition 2.3. [9] The (p,q)-Binom coefficients are defined as below: n

k


p,q

=
[n]p,q!

[k]p,q! [n− k]p,q!
, (2.3)

where

[n]p,q! =

 1 ,n = 0

[n]p,q · [n−1]p,q · ... · [1]p,q ,n 6= 0
.

Definition 2.4. [17] (p−q)∞

p,q is expressed multiplication of infinite powers as follows:

(p−q)∞

p,q =
n

∏
k=0

(
pn+1−qn+1) . (2.4)

Definition 2.5. [18] The (p,q)-derivative operator is determined as (2.5)

Dp,q [ f (x)] =
f (px)− f (qx)

(p−q)x
(2.5)

Definition 2.6. [9] Let f and g be arbitrary function. The (p,q)- analogue of derivative of

product for two functions is defined as

Dp,q [ f (x)g(x)] = f (px)Dp,qg(x)+g(qx)Dp,q f (x) = g(px)Dp,q f (x)+ f (qx)Dp,qg(x). (2.6)
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where f : R→ R and x ∈ R.

The definite (p,q)-integral is known as below:

Definition 2.7. [9,18] Suppose that f be an arbitrary function and a be a real number, we

construct ∫ a

0
f (x)dp,qx = (p−q)a

∞

∑
k=0

qk

pk+1 f (
qk

pk+1 a),
∣∣∣∣qp
∣∣∣∣< 1. (2.7)

When a = 1, we see that∫ 1

0
f (x)dp,qx = (p−q)

∞

∑
k=0

qk

pk+1 f (
qk

pk+1 ).

For example, taking f (x) = xn gives∫ 1

0
xndp,qx =

1
[n+1]p,q

.

where 0≤ a≤ b≤ ∞.

For more information about the applications of (p,q)-integral, see [18].

Now, we present definition of Gamma and Beta functions in (p,q)-calculus which is called

post q-calculus. In post q-calculus, these special functions are very important and useful in

mathematics, physics and engineering as ordinary sense. Firstly, we begin with definition of

(p,q)-Gamma function.

Definition 2.8. [13,17] The (p,q) analogue of Gamma function is determined as (2.9)

Γp,q(x) =
(p−q)∞

p,q

(px−qx)∞

p,q
(p−q)1−x ,0 < q < p≤ 1, (2.9)

in which (p,q)-Gamma function satisfies the following conditions:

◦Γp,q(x+1) = [x]p,q Γp,q(x)

◦Γp,q(n+1) = [n]p,q!

where n is a nonnegative integer.

Definition 2.9. [13] Let m and n ∈ N. The (p,q)-Beta function is given as

Bp,q(m,n) =
∫ 1

0
xm−1(1−qx)n−1

p,q dp,qx. (2.10)
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Remark 2.1. [13] (p,q)-Beta function which is defined by (2.10) is not commutatitve. Com-

mutative (p,q)-Beta function is determined as below :

B̃p,q(m,n) =
∫ 1

0
p

m(m−1)
2 xm−1(1−qx)n−1

p,q dp,qx.

In post q-calculus, we have important relationships between Gamma and two type Beta func-

tions just as ordinary calculus. These relations are shown, respectively,

Bp,q(m,n) = p
(n−m)·(2m+n−2)

2
Γp,q(m) ·Γp,q(n)

Γp,q(m+n)

B̃p,q(m,n) = p
2mn+m2+n2−3m−3n+2

2
Γp,q(m) ·Γp,q(n)

Γp,q(m+n)
.

3. Main results

In this part, we start by giving the definition of (p,q)-Bernstein operator which is constructed

by Mursaleen et. al. in [14].

Definition 3.1. The (p,q)-Bernstein operator is defined by (3.1)

Bn,p,q( f ;x) =
1

p
n(n−1)

2

n

∑
k=0

 n

k


p,q

p
k(k−1)

2 xk
n−k−1

∏
s=0

(ps−qsx) f

(
[k]p,q

pk−n [n]p,q

)
. (3.1)

Definition 3.2. Let k and n be arbitrary positive integers. The (p,q)-Bernstein polynomial of

degree n is given by

Bk,n(x; p,q) = p(
k
2)−(

n
2)
(

n
k

)
p,q

xk(1− x)n−k
p,q , k ≤ n, (3.2)

where n(n−1)
2 is shown by

(n
2

)
.

We now give some new corollaries listed below without giving proof because they can be

derived by means of the definition of (p,q)-Bernstein polynomials.

Corollary 3.1. (A recursive definition) For 0≤ x≤ 1,we have an equality as below:

Bk,n(x; p,q) =

(
1− x

(
q
p

)n−k−1
)

Bk,n−1(x; p,q)+ xqn−kBk−1,n−1(x; p,q). (3.3)
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Corollary 3.2. For 0≤ x≤ 1 and 0 < q < p≤ 1,we obtain an equality as follow:

pn−1 (pn−k−1− x
(
qn−k−1 + p−k))(n−1

k

)
p,q

Bk.n−1(x; p,q) =
Bk.n(x; p,q)(n

k

)
p,q

+
Bk+1.n(x; p,q)( n

k+1

)
p,q

. (3.4)

Above equation shows that the (p,q)-Bernstein polynomials of degree n−1 is generated by

means of (p,q)-Bernstein polynomials of degree n.

Corollary 3.3. (Derivative of (p,q)-Bernstein polynomials) For 0≤ x ≤ 1 and 0 < q < p≤

1,we obtain an equality as follows:

d
dp,qxBk,n(x; p,q) =

[n]p,q
qk pn−k (qkBk−1,n−1(qx; p,q)− pBk,n−1(qx; p,q))

=
(n

k

)
p,q p
(k

2

)
−
(n

2

)
∑

n−k
j=0
(n−k

j

)
p,q

p
(n−k− j

2

)
q
( j

2

)
(−1) j [k+ j]p,q xk+ j−1.(3.5)

By aid of the corollary 3.3, we construct some new corollaries for different type (p,q)-Bernstein

polynomials under (p,q)-derivative operator as below:

Corollary 3.4. For 0≤ x≤ 1, 0 < q < p≤ 1 and k1,k2, ...,ks,n ∈ N we obtain an equality as

follows:

d
dp,qx

(
Bp,q

k1,n
(x)∏

s
j=2 Bp,q

k j,n
(
(

q
p

)( j−1)n−∑
j−1
l=1 kl

x)

)

=

∏
s
y=1

 n

ky


p,q

 p

(
∑

s
y=1

(ky
2

)
−s
(n

2

))
+(∑

s
m=2((m−1)n−∑

s−1
i=1 ki)(n−2ks))

×q(∑
s
m=2((m−1)n−∑

s−1
i=1 ki)ks)×∑

sn−(k1+...+ks)
j=0

(sn−(k1+...+ks)
j

)
p,q

×p
(sn−(k1+...+ks)− j

2

)
q
( j

2

)
(−1) j [k1 + ...+ ks + j]p,q xk1+...+ks+ j−1.

Corollary 3.5. For 0≤ x≤ 1, 0 < q < p≤ 1 and ki,ni ∈ N, i = 1, ...,s, we have

d
dp,qx

(
Bp,q

k1,n1
(x)

s

∏
j=2

Bp,q
k j,n j

(

(
q
p

)
∑

s−1
y=1(ny−ky)

x)

)

=

 s

∏
y=1

 ny

ky


p,q

 p

(
∑

s
y=1

(ky
2

)
−
(ny

2

))
+
(

∑
s
j=2

(
∑

j−1
i=1 ni−(s−1)k

)
(ns−k)

)
−((∑

s
m=2 nm−1)−(s−1)k)k

×q((∑
s
m=2 nm−1)−(s−1)k)k

(n1+...+ns)−(k1+...+ks)

∑
j=0

(
(n1 + ...+ns)− (k1 + ...+ ks)

j

)
p,q

×p
((n1+...+ns)−(k1+...+ks)− j

2

)
q
( j

2

)
(−1) j× [k1 + ...+ ks + j]p,q xk1+...+ks+ j−1.
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We are now in a position to state the integral representations of (p,q)-Bernstein polynomials

under definite (p,q)-integral over the interval [0,1]. Let us start with the following theorem.

Theorem 3.1. For 0 < q < p≤ 1 and n− k > 0,∫ 1
0 Bk,n(qx; p,q)dp,qx

p(
k
2)−(

n
2)qk

=

(
n
k

)
p,q

n−k

∑
r=0

(
n− k

r

)
p,q
(−1)rq(

n−k−r
2 )+r p(

r
2)

1
[k+ r+1]p,q

= p
(n−k)(n+k+1)

2

(
n
k

)
p,q

[k]p,q [n− k]p,q
Γp,q(k)Γp,q(n− k)

Γp,q(n+2)

Proof. Firstly, we consider

∫ 1

0
Bk,n(qx; p,q)dp,qx =

∫ 1

0
p(

k
2)−(

n
2)
(

n
k

)
p,q
(qx)k(1−qx)n−k

p,q dp,qx. (3.6)

By using (p,q)-Binomial formula and re-arranging coefficients on right hand side of (3.6),

we have∫ 1
0 Bk,n(qx; p,q)dp,qx

p(
k
2)−(

n
2)qk

=

(
n
k

)
p,q

∫ 1

0
xk(1−qx)n−k

p,q dp,qx

=

(
n
k

)
p,q

∫ 1

0

n−k

∑
r=0

(
n− k

r

)
p,q
(−1)rq(

n−k−r
2 )+r p(

r
2)xk+rdp,qx

=

(
n
k

)
p,q

n−k

∑
r=0

(
n− k

r

)
p,q
(−1)rq(

n−k−r
2 )+r p(

r
2)
∫ 1

0
xk+rdp,qx

=

(
n
k

)
p,q

n−k

∑
r=0

(
n− k

r

)
p,q
(−1)rq(

n−k−r
2 )+r p(

r
2)

1
[k+ r+1]p,q

.

On the other hand, we heuristically know that first equality of above equation has relation

both Gamma and Beta functions as follows:∫ 1
0 Bk,n(qx; p,q)dp,qx

p(
k
2)−(

n
2)qk

=

(
n
k

)
p,q

∫ 1

0
xk(1−qx)n−k

p,q dp,qx

=

(
n
k

)
p,q

Bp,q(k+1,n− k+1)

=

(
n
k

)
p,q

p
(n−k)(n+k+1)

2
Γp,q(k+1) ·Γp,q(n− k+1)

Γp,q(n+2)

=

(
n
k

)
p,q

p
(n−k)(n+k+1)

2 [k]p,q [n− k]p,q
Γp,q(k) ·Γp,q(n− k)

Γp,q(n+2)
.

The proof is completed.
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Some of the integral representations of (p,q)-Bernstein polynomials for special values are as

follows:

∫ 1

0
B0,1(qx, p,q)dp,qx =

p
p+q∫ 1

0
B1,1(qx, p,q)dp,qx =

p2q
p+q∫ 1

0
B0,2(qx, p,q)dp,qx =

(p−1q)2

p2 + pq+q2∫ 1

0
B1,2(qx, p,q)dp,qx =

pq2

p2 + pq+q2∫ 1

0
B2,2(qx, p,q)dp,qx = q2.

If we take p = 1 and q approaches to 1−, we obtain results in sense of ordinary calculus.

We now consider integral representation of multiplication of two (p,q)-Bernstein polynomi-

als as below:

∫ 1

0
Bk,n(qx; p,q).Bk,m

((
q
p

)n−k

qx; p,q

)
dp,qx. (3.7)

According to (3.7), we obtain

Theorem 3.2. For 0 < q < p≤ 1 and n+m−2k+1 > 0,

∫ 1
0 Bk,n(qx; p,q).Bk,m

((
q
p

)n−k
qx; p,q

)
dp,qx

p2(k
2)−(

n
2)−(

m
2)−(n−k)(m−k)q2k

(
q
p

)nk−k2

=
2k

∑
r=0

(2k
r

)
p,q p(

r
2)q(

2k−r
2 )+r(−1)r

[n+m+ l−2k+1]p,q

= p
2k(2n+2m−2k+1)

2
Γp,q(n+m−2k+1)Γp,q(2k+1)

Γp,q(n+m+2)
.
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Proof. Thanks to applying the definition of (p,q)-Bernstein polynomials in (3.7), we get

∫ 1
0 Bk,n(qx; p,q).Bk,m

((
q
p

)n−k
qx; p,q

)
dp,qx.

p2(k
2)−(

n
2)−(

m
2)−(n−k)(m−k)q2k

(
q
p

)nk−k2

=

(
n
k

)
p,q

(
m
k

)
p,q

∫ 1

0
x2k(1−qx)n−k

p,q (1−
(

q
p

)n−k

qx)m−k
p,q dp,qx.

=

(
n
k

)
p,q

(
m
k

)
p,q

∫ 1

0
x2k(1−qx)n+m−2k

p,q dp,qx

=

(
n
k

)
p,q

(
m
k

)
p,q

1∫
0

xn+m−2k(1−qx)2k
p,qdp,qx.

If we use the definition of (p,q)-Binomial formula on right hand side of above equation, we

construct

1∫
0

Bk,n(qx; p,q).Bk,m(
(

q
p

)n−k
qx; p,q)dp,qx.

p2(k
2)−(

n
2)−(

m
2)−(n−k)(m−k)q2k

(
q
p

)nk−k2

=

(
n
k

)
p,q

(
m
k

)
p,q

2k

∑
r=0

(
2k
r

)
p,q

p(
r
2)q(

2k−r
2 )+r(−1)r

∫ 1

0
xn+m+r−2kdp,qx

=

(
n
k

)
p,q

(
m
k

)
p,q

2k

∑
r=0

(−1)r(2k
r

)
p,q p(

r
2)q(

2k−r
2 )+r

[n+m+ r−2k+1]p,q

If we again deal with previous equality, we generate an identity as below:

∫ 1
0 Bk,n(qx; p,q).Bk,m

((
q
p

)n−k
qx; p,q

)
dp,qx

p2(k
2)−(

n
2)−(

m
2)−(n−k)(m−k)q2k

(
q
p

)nk−k2

=

(
n
k

)
p,q

(
m
k

)
p,q

Bp,q(n+m−2k+1,2k+1)

=

(
n
k

)
p,q

(
m
k

)
p,q

p
(n+m−2k)(n+m+2k+1)

2
Γp,q(n+m−2k+1)Γp,q(2k+1)

Γp,q(n+m+2)
.

Thus, the proof is completed.

Now, we extend the integral representation concept to product of three (p,q)-Bernstein poly-

nomials and show an equality with related to special functions with the following corollary:
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Theorem 3.3. For 0 < q < p≤ 1 and n+m+ s−3k+1 > 0,

∫ 1
0 Bk,n(qx; p,q).Bk,m

((
q
p

)n−k
qx; p,q

)
.Bk,s

((
q
p

)n+m−2k
qx; p,q

)
dp,qx

p3(k
2)−((

n
2)+(

m
2)+(

s
2))−[(n−k)(m−k)+(n+m−2k)(s−k)]q3k

(
q
p

)2nk+mk−3k2

= p
(n+m+s−3k)(n+m+s+3k+1)

2
Γp,q(n+m+ s−3k+1)Γp,q(3k+1)

Γp,q(n+m+ s+2)

=
3k

∑
r=0

(3k
r

)
p,q p(

r
2)q(

3k−r
2 )+r(−1)r

[n+m+ s+ r−3k+1]p,q
.

Proof. We see that

∫ 1

0

[
Bk,n(qx; p,q)×Bk,m

((
q
p

)n−k+1

x; p,q

)
×Bk,s

(((
q
p

)n+m−2k+1

x; p,q

))]
dp,qx

=
∫ 1

0

p(
k
2)−(

n
2)
(

n
k

)
p,q
(qx)k(1−qx)n−k

p,q p(
k
2)−(

m
2)
(

m
k

)
p,q

((
q
p

)n−k+1

x

)k

(1−
(

q
p

)n−k+1

x)m−k
p,q

×
p(

k
2)−(

s
2)
(

s
k

)
p,q

((
q
p

)n+m−2k+1

x

)k

(1−
(

q
p

)n+m−2k+1

x)s−k
p,q .dp,qx

after some basic operations, we obtain:

1∫
0

[
Bk,n(qx; p,q)×Bk,m

((
q
p

)n−k+1
x; p,q

)
×Bk,s

((
q
p

)n+m−2k+1
x; p,q

)]
dp,qx

p3(k
2)−((

n
2)+(

m
2)+(

s
2))−[(n−k)(m−k)+(n+m−2k)(s−k)]q3k

(
q
p

)2nk+mk−3k2

=

(
n
k

)
p,q

(
m
k

)
p,q

(
s
k

)
p,q

∫ 1

0
x3k(1−qx)n+m+s−3k

p,q dp,qx

=

(
n
k

)
p,q

(
m
k

)
p,q

(
s
k

)
p,q

∫ 1

0
xn+m+s−3k(1−qx)3k

p,qdp,qx.

On the other hand, if we consider (p,q) analogs of Beta and Gamma functions, we have(
n
k

)
p,q

(
m
k

)
p,q

(
s
k

)
p,q

∫ 1

0
xn+m+s−3k(1−qx)3k

p,qdp,qx =
(

n
k

)
p,q

(
m
k

)
p,q

(
s
k

)
p,q

Bp,q(n+m+ s−3k+1,3k+1)

and

Bp,q(n+m+ s−3k+1,3k+1) = p
(n+m+s−3k)(n+m+s+3k+1)

2
Γp,q (n+m+ s−3k+1)Γp,q (3k+1)

Γp,q (n+m+ s+2)
.
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By using the definition of (p,q)-Binomial formula, we obtain(
n
k

)
p,q

(
m
k

)
p,q

(
s
k

)
p,q

∫ 1

0
xn+m+s−3k(1−qx)3k

p,qdp,qx

=

(
n
k

)
p,q

(
m
k

)
p,q

(
s
k

)
p,q

3k

∑
r=0

(
3k
r

)
p,q

p
(r
2)q(

3k−r
2 )+r

× (−1)r
1∫

0

xn+m+s−3k+ldp,qx

=

(
n
k

)
p,q

(
m
k

)
p,q

(
s
k

)
p,q

3k

∑
r=0

(3k
r

)
p,q p

(r
2)q(

3k−r
2 )+r(−1)r

[n+m+ s+ r−3k+1]p,q
.

Thus, the desired result is obtained.

The following corollary is actually a consequence of a more general previous theorems which

we stated and proved in this part.

Corollary 3.6. For 0 < q < p≤ 1,s≥ 2

∫ 1
0 Bk,n(qx; p,q)∏

s−1
i=1 Bk,ni+1

((
q
p

)
∑

i
l=1 nl−ik

qx; p,q
)

dp,qx

ps(k
2)−∑

s
i=1 (

ni
2)−(∑

s−1
i=1(∑

i
r=1(nr−ik)(ni+1−k)))qsk

(
q
p

)k ∑
s−1
i=1 (ins−1)−k2(s

2)

=

(
n1

k

)
p,q

(
n2

k

)
p,q
...

(
ns

k

)
p,q

sk

∑
r=0

(sk
r

)
p,q p

(r
2)q(

sk−r
2 )+r(−1)r

[n1 +n2 + ...+ns + r− sk+1]p,q

and

∫ 1
0 Bk,n(qx; p,q)∏

s−1
i=1 Bk,ni+1

((
q
p

)
∑

i
l=1 nl−ik

qx; p,q
)

dp,qx

ps(k
2)−∑

s
i=1 (

ni
2)−(∑

s−1
i=1(∑

i
r=1(nr−ik)(ni+1−k)))qsk

(
q
p

)k
s−1
∑

i=1
(ins−1)−k2(s

2)

=

(
n1

k

)
p,q

(
n2

k

)
p,q
...

(
ns

k

)
p,q

Bp,q (sk+1,n1 +n2 + ...+ns− sk+1)

= p
[(n1+n2+...+ns−sk)(n1+n2+...+ns+sk+1)]

2
Γp,q (n1 +n2 + ...+ns− sk+1)Γp,q (sk+1)

Γp,q (n1 +n2 + ...+ns +2)
.
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