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Abstract. In this paper a stage-structured predator-prey model (stage structure on predators) with two discrete

time delays has been discussed. It is assumed that immature predators are raised by their parents in the sense that

they cannot catch the prey and their foods are provided by parents. We suppose that the growth is of logistic type.

The two discrete time delays occur due to gestation delay and maturation delay. Linear stability analysis for both

non delays and as well as with delays reveals that certain thresholds have to be maintained for coexistence. We

analyzed the global stability of the interior equilibrium and the boundary equilibrium points by using a suitable

Lyapunov function. In addition, the normal form of the Hopf bifurcation arising in the system is determined to

investigate the direction and the stability of periodic solutions bifurcating from these Hopf bifurcations. We present

some numerical examples to illustrate our analytical works.
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Differential equation models for interactions between species are one of the classical applica-

tion of Mathematics to Biology. In the natural world, there are many species whose individuals

have a life history that take them through two stages, immature and mature, where immature

predators are raised by their parents and the rate they attack at prey and the reproductive rate

can be ignored. Stage structured models have recieved much attention in recent years [1]-[7].

Recently Wang, Takeuchi, Saito, Nakaoka [8] studied the following predator prey system with

parental care for predators.

ẋ(t) = xg(x)−βxy2

ẏ1(t) = k1βxy2
y2

wy1 + y2
−d1y1− k2βxy2

wy1

wy1 + y2

ẏ2(t) = k2βxy2
wy1

wy1 + y2
−d2y2

(1.1)

where x represents the prey, y1 and y2 represents immature and mature predators respectively,

k1 and k2 are conversion coefficient and proportionality constant respectively, d1 and d2 are

death rate of immature and mature predators respectively, and g(x) is the per capita birth rate of

the prey.

ẋ(t) = xg(x)−βxy2(t− τ1)

ẏ1(t) = k1βxy2
y2

wy1 + y2
−d1y1− k2βxy2

wy1

wy1 + y2

ẏ2(t) = k2βx(t− τ2)y2
wy1

wy1 + y2
−d2y2

(1.2)

Mathematical models with time delay are much more realistic, as in reality time delays occur

in almost every biological problem and assumed to be one of the reasons of regular fluctuations

in population density [9]-[13]. On the other hand, the growth of species often has its develop-

ment process, while in each stage of its development, it always shows different characteristic.

For instance, the mature species have preying capacity, while the immature species are not able

to prey. The age to maturity is represented by a time delay. Also reproduction of predator af-

ter consuming prey is not instantaneous, but mediated by some time lag required for gestation.

Therefore to make a predator prey model biologically more realistic, one has to consider this

gestation and maturation delays in the model system.

Motivated by the work of Sandip Banerjee, Mukopadhyay and Bhattacharya [14], in the

present paper we incorporate two discrete time delays in system (1.1) to make the model more
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realistic as follows. where τ1 ≥ 0 is called the gestation delay and τ2 ≥ 0 is the delay in the

predator maturation.

The initial conditions for the system takes the form

x(θ) = φ(θ)≥ 0, y1(θ) = ψ1(θ)≥ 0, y2(θ) = ψ2(θ)≥ 0, φ(0)> 0, ψ1(0)> 0, ψ2(0)> 0 (1.3)

where τ = max{τ1,τ2}, (φ(θ),ψ1(θ),ψ2(θ)) ∈C([−τ,0],R3
+0), the banach space of continu-

ous functions mapping the interval [−τ,0] into R3
+0 , where

R3
+0 = {(x1,x2,x3) : xi ≥ 0, i = 1,2,3}

as the interior of R3
+0.

The organisation of this paper is organised as follows. In the next section results on positivity

and boundedness of the system are presented. Section 3 shows the inherent logistic growth

of prey. We try to interpret our results by numerical simulation in Section 4. Section 5 with

discussions completes the paper .

2. Positivity and Boundedness

In this section, we discuss the positivity and boundedness of the solutions of the system (1.2).

Positivity means that the species is persistent and boundedness implies a natural restriction, that

is, our model (1.2) is reasonable in part.

Theorem 2.1 Every solution of system (1.2) with initial conditions (1.3) is bounded for all t ≥

0 and all of these solutions are ultimately bounded.

Proof:

From (1.2)

ẋ(t)≤ xg(x),

lim
t→∞

sup x(t)≤ g(x).
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There exists a t0 > 0 such that x(t)< g(x)+ ε = M1, t ≥ t0, ε > 0 is sufficiently small.

Choosing function

ρ(t) = y1 + y2,

ρ̇(t) = ẏ1 + ẏ2,

ρ̇(t)≤
k1βM1y2

2
wy1 + y2

−d1y1−d2y2, t ≥ t0 + τ2

(2.1)

Then

ρ̇(t)+σρ(t)≤
k1βM1y2

2
wy1 + y2

− y1(d1−σ)− y2(d2−σ), t ≥ t0 + τ2. (2.2)

where σ is a positive constant. Thus there exists a positive constant c such that ρ̇(t)+σρ(t)≤ c.

Then

ρ(t)<
c
σ
+
(

ρ(t∗)− c
σ

)
e−σ(t−t∗). (2.3)

Choose a positive constant M2 >
c
σ

sufficiently close to c
σ

and let

Ω1 =
{
(x,y1,y2) ∈ R+

3/x(t)≤M1, y1(t)≤M2, y2(t)≤M2
}

(2.4)

Definition 2.1 A system is said to be permanent if there exists a compact region Ω0 ∈ int R3
+

such that every solution of system with initial conditions will eventually enter and remain in

region Ω0.

Theorem 2.2 System (1.2) is permanent provided that g(x)−βM2 > 0.

Proof:

From (1.2), ẋ(t)≥ x(g(x)−βM2), for t > T

According to g(x)−βM2 > 0, we can choose ε > 0 sufficiently small such that g(x)−βM2−ε >

0. Therefore there exists t1 > T such that x(t)> r−βM2− ε = m1

From (1.2) we have for t > t1 +T2,

ẏ2(t)≥
k2βm1y2wy1

wy1 + y2
−d2y2

= y2

[
k2βm1wy1

wy1 + y2
−d2

] (2.5)
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Consider the comparison equation ,

u̇(t) = u(t)
[

k2βm1wv(t)
wy1 + y2

−d2

]
v̇(t) = k1βm1(u(t)2)−d1v(t)− k2βm1u(t)wv(t)

wy1 + y2

(2.6)

Let (u(t),v(t)) be the solution of the system (2.6) with initial conditions (u(0),v(0)), 0< u(0)<

ψ1(0), 0 < v(0) < ψ2(0). According to comparison theorem, u(t) < y2(t), v(t) < y1(t) for

t > t2 + τ2 and

lim
t→∞

u(t) = b, lim
t→∞

v(t) =
−bw+b

√
w2 +4kd

2d
, (2.7)

Hence there exists t3 > t2 + τ2 such that

y1(t)>
−bw+b

√
w2 +4kd

2d
− ε = m2, y2(t)> b− ε = m3 (2.8)

Therefore

Ω0 =
{
(x,y1,y2) ∈ R+

3/m1 ≤ x(t)≤M1, m2 ≤ y1(t)≤M2, m3 ≤ y2(t)≤M3
}

(2.9)

3. Inherent logistic growth of prey

In this section, we study the dynamical behaviors of (1.2) under the assumption that the

demographic structure of the prey is governed by a Logistic growth. The model to be governed

is

ẋ(t) = x(r−αx−βy2(t− τ1))

ẏ1(t) = k1βxy2
y2

wy1 + y2
−d1y1− k2βxy2

wy1

wy1 + y2

ẏ2(t) = k2βx(t− τ2)y2
wy1

wy1 + y2
−d2y2

(3.1)

where α is the density dependent coefficient of the prey.
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3.1 Equilibria analysis By introducing scaling variables u = xβk2
d2

, v1 = y1w, v2 = y2, θ = d2t,

and then still using old variables for simplicity in notations, we obtain

ẋ(t) = x(b−ax− cy2(t− τ1))

ẏ1(t) =
kxy2

2
y1 + y2

−dy1−w
xy1y2

y1 + y2

ẏ2(t) =
x(t− τ2)y1y2

y1 + y2
− y2

(3.2)

where b = r
d2

, a = α

βk2
, c = β

d2
, k = wk1

k2
, d = d1

d2
.

System admits a unique positive equilibrium E∗ = (x∗,y1
∗,y2

∗), where x∗ = y1+y2
y1

, y∗2 =
(b−a)y1
a+cy1

and y∗1 is the unique positive solution of the equation

dc2y2
1 + c[(b−a)w+2ad]y1− k(b−a)2 +a[w(b−a)+ad] = 0 (3.3)

Theorem 3.1 System (3.2) admits a unique positive equilibrium if and only if b > a and k(b−

a)2 > a[w(b−a)+ad] holds.

The Jacobian matrix of (3.2) at E∗ is∣∣∣∣∣∣∣∣∣
−ax∗−λ 0 −cx∗e−λτ1

y∗2(ky∗2−wy∗1)
y∗1+y∗2

−(kx∗y∗2
2+dy∗1

2+2dy∗1y∗2+dy∗2
2+x∗y∗2

2w)
(y∗1+y∗2)

2 −λ
x∗(2ky∗2y∗1+ky∗2

2−wy∗1
2)

(y∗1+y∗2)
2

y∗1y∗2e−λτ2

(y∗1+y∗2)
x∗y∗2

2

(y∗1+y∗2)
2

−x∗y∗1y∗2
(y∗1+y∗2)

2 −λ

∣∣∣∣∣∣∣∣∣= 0, (3.4)

The characteristic equation of the Jacobian matrix is

λ
3 +Aλ

2 +Bλ +C+(D1λ +E1)e−λτ1 +(D2λ +E2)e−λτ2 +(Fλ +G)e−λ (τ1+τ2) = 0.

(3.5)

where A = ax∗+ (kx∗y∗2
2+dy∗1

2+2dy∗1y∗2+dy∗2
2+x∗y∗2

2w+x∗y∗1y∗2)
(y∗1+y∗2)

2 ,

B = ax∗ (kx∗y∗2
2+dy∗1

2+2dy∗1y∗2+dy∗2
2+x∗y∗2

2w)
(y∗1+y∗2)

2 +
ax∗2y∗1y∗2
(y∗1+y∗2)

2 +
xy∗1y∗2(kx∗y∗2

2+dy∗1
2+2dy∗1y∗2+dy∗2

2+x∗y∗2
2w)

(y∗1+y∗2)
4

− x∗2y∗2
2(2ky∗1y∗2+ky∗2

2−wy∗1
2)

y∗1+y∗2)
4 ,

C = ax∗2y∗1y∗2 +
(kx∗y∗2

2+dy∗1
2+2dy∗1y∗2+dy∗2

2+x∗y∗2
2w)

(y∗1+y∗2)
4 − ax∗3y∗2

2(2ky∗1y∗2+ky∗2
2−wy∗1

2)

y∗1+y∗2)
4 , D1 = 0,

E1 =
cx∗2y∗2

3(ky∗2−wy∗1)
(y∗1+y∗2)

3 , D2 = 0, E2 = 0, F =
cx∗y∗2y∗1
y∗1+y∗2

, G =
cx∗y∗1y∗2(kx∗y∗2

2+dy∗1
2+2dy∗1y∗2+dy∗2

2+x∗y∗2
2w)

(y∗1+y∗2)
3 .

Case 1: τ1 = 0,τ2 = 0

In this case the characteristic equation (3.5) reduces to

λ
3 +Aλ

2 +(B+D1)λ +(C+E1)+((D2 +F)λ +E2 +G)e−λτ2 = 0 (3.6)
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Assume that (H1) : (B + D1 + D2 + F) > 0,(C + E1 + E2 + G) > 0. Thus the stability of

E∗ is determined by the sign H = A(B+D1 +D2 +F)− (C +E1 +E2 +G). By [13], H =

(h1c+h0)x∗/(y∗1 + y∗2)
4, where h = (y∗1 + y∗2)x

∗y∗1y∗2a(y∗1 + y∗2)
2 +(1−d)y∗1y∗2,

h0 = a(d +ax∗)(y∗1 + y∗2)
2 + x∗y∗2((k+w)y∗2 + y∗1)×d(y∗1 + y∗2)

2 + x∗y∗1y∗2 +(k+w)x∗(y∗2)
2. Note

that H > 0 if d < 1.

From this we observe that [13], the system (3.2) without delay is locally asymptotically stable

if d < 1 around E∗ = (x∗,y∗1,y
∗
2).

Case 2: τ1 = 0,τ2 > 0

In this case the characteristic equation (3.5) reduces to

λ
3 +Aλ

2 +(B+D1)λ +(C+E1)+((D2 +F)λ +E2 +G)e−λτ2 = 0 (3.7)

Let iω(ω > 0) be a root of the equation (3.7), then

−iω3−Aω
2 +(B+D1)iω +(C+E1)+((D2 +F)iω +(E2 +G))e−iωτ2 = 0 (3.8)

Equating real and imaginary parts, we obtain

(E2 +G)cosωτ2 +(D2 +F)ωsinωτ2 = Aω
2− (C+E1)

(D2 +F)ωcosωτ2− (E2 +G)sinωτ2 = ω
3− (B+D1)ω

(3.9)

which implies that

ω
6 +ω

4(A2−2(B+D1))+ω
2[(B+D1)

2−2A(C+E1)− (D2 +F)2]+ [(C+E1)
2− (E2 +G)2] = 0

(3.10)

If (H2) : A2−2(B+D1)> 0,(B+D1)
2−(D2+F)2−2A(C+E1)> 0,(C+E1)

2−(E2+G)2 >

0 hold then (3.10) has no positive roots. Hence all the roots of (3.10) have negative real parts

when τ2 ∈ [0,∞) under (H1) and (H2).

If (H1) and (H3) : (C+E1)
2− (E2 +G)2 < 0 hold, then (3.10) has a unique positive root ω2

0 .

Substituting ω2
0 into (3.10), we have

τ2n =
1

ω0
cos−1

[
ω0

4(D2 +F)+ω0
2[A(E2 +G)− ((D2 +F)(B+D1))]− [(E2 +G)(C+E1)]

[(E2 +G)2 +(D2 +F)2ω02]

]
+

2nπ

ω0
,

(3.11)

where n = 0, 1, 2...
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If (H1) and (H4) : 2(B+D1)−A2 > 0,(D2 +F)2− (B+D1)
2 +2A(C+E1)> 0 , (C+E1)

2−

(E2+G)2 > 0 and [(D2+F)2−(B+D1)
2+2A(C+E1)]

2 > 4[(C+E1)
2−(E2+G)2] hold then

(3.10) has two positive roots ω2
+ and ω2

−. Substituting ω2
± into (3.10) gives

τ2
±
k =

1
ω±

cos−1
[

ω±
4(D2 +F)+ω±

2[A(E2 +G)− ((D2 +F)(B+D1))]− [(E2 +G)(C+E1)]

[(E2 +G)2 +(D2 +F)2ω±2]

]
+

2nπ

ω±
,

(3.12)

Let λ (τ2) be the root of (3.7) satisfying Re λ (τ2n)= 0(rep. Re λ (τ2
±
k )= 0) and Imλ (τ2n)=ω0

(rep. Im λ (τ2
±
k ) = ω±) Then[

d
dτ2

Re(λ )
]

τ2=τ20,ω=ω0

> 0,
[

d
dτ2

Re(λ )
]

τ2=τ2
+
k ,ω=ω+

> 0,
[

d
dτ2

Re(λ )
]

τ2=τ2
−
k ,ω=ω−

> 0

(3.13)

From corollary 2.4 in Ruan and Wei [15], we have the following conclusion.

Lemma 3.1

For τ1 = 0, assume that (H1) is satisfied. Then the following conclusion holds.

1. If (H2) holds, then equilibrium (x∗,y∗1,y
∗
2) is asymptotically stable for all τ2 ≥ 0.

2. If (H3) holds, then equilibrium (x∗,y∗1,y
∗
2) is asymptotically stable for τ2 < τ20, and unsta-

ble for τ2 > τ20. Furthermore, system undergoes a Hopf bifurcation at (x∗,y∗1,y
∗
2)when τ2 = τ20.

3. If (H4) holds, then there exists a positive integer m such that the equilibrium is stable when

τ2 ∈ [0,τ2
+
0 )∪ (τ2

−
0 ,τ2

+
1 )∪ .....∪ (τ2

−
m−1,τ2

+
m) and unstable when τ2 ∈ [τ2

+
0 ,τ2

−
0 )∪ (τ2

+
1 ,τ2

−
1 )∪

...∪ (τ2
+
m,τ2

−
m)∪ (τ2

+
m,∞)

Furthermore system undergoes a Hopf bifurcation at (x∗,y∗1,y
∗
2) when τ2 = τ2

±
k , k = 0, 1, 2,...

Case 3: τ1 > 0,τ2 = 0

In this case the characteristic equation (3.5) becomes

λ
3 +Aλ

2 +(B+D2)λ +(C+E2)+((D1 +F)λ +(E1 +G))e−λτ1 = 0 (3.14)

Let iω(ω > 0) be a root of the equation (3.14) , then we have

(E1 +G)cosωτ1 +(D1 +F)ωsinωτ1 = Aω
2− (C+E2)

(D1 +F)ωcosωτ1− (E1 +G)sinωτ1 = ω
3− (B+D2)ω

(3.15)

which implies that

cosωτ1 =

[
(D1 +F)ω4 +(A(E1 +G)− (D1 +F)(B+D2))ω

2− ((E1 +G)(C+E2))

(E1 +G)2 +ω2(D1 +F)2

]
(3.16)
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sinωτ1 =

[
[A(D2 +F)− (E2 +G)]ω3 +((E2 +G)(B+D1)− (D2 +F)(C+E1))ω

(D2 +F)2ω2 +(E2 +G)2

]
(3.17)

Squaring and adding we get

ω
6 +ω

4(A2−2(B+D2))+ [(B+D2)
2 +2A(C+E2)− (D1 +F)2]ω2 +(C+E2)

2− (E1 +G)2 = 0

(3.18)

Let

ψ(W )≡W 3 +W 2(A2−2(B+D2))+ [(B+D2)
2 +2A(C+E2)− (D1 +F)2]W +(C+E2)

2− (E1 +G)2 = 0

(3.19)

where W = ω2 .

The function ψ has positive roots iff

(C+E2)
2− (E1 +G)2 < 0,

Without loss of generality, let Wp be the positive roots of ψ = 0 and let ωp =
√

Wp. The unique

solution of θ = [0,2π] of (3.16) and (3.17) is

θ = cos−1
[
(D1 +F)ω4 +(A(E1 +G)− (D1 +F)(B+D2))ω

2− ((E1 +G)(C+E2))

(E1 +G)2 +ω2(D1 +F)2

]
(3.20)

if sin(θ)> 0, that is, if (A(D2 +F)− (E2 +G))ω2 +(E2 +G)(B+D1)− (D2 +F)(C+E1)> 0 and

θ = 2π− cos−1
[
(D1 +F)ω4 +(A(E1 +G)− (D1 +F)(B+D2))ω

2− ((E1 +G)(C+E2))

(E1 +G)2 +ω2(D1 +F)2

]
(3.21)

if (A(D2 +F)− (E2 +G))ω2 +(E2 +G)(B+D1)− (D2 +F)(C+E1)≤ 0.

Define,

τ
1,i
1,p =

1
ωp

[
cos−1

[
(D1 +F)ω4 +(A(E1 +G)− (D1 +F)(B+D2))ω

2− ((E1 +G)(C+E2))

(E1 +G)2 +ω2(D1 +F)2

]
+2iπ

]

τ
2,i
1,p =

1
ωp

[
2π− cos−1

[
(D1 +F)ω4 +(A(E1 +G)− (D1 +F)(B+D2))ω

2− ((E1 +G)(C+E2))

(E1 +G)2 +ω2(D1 +F)2

]
+2iπ

]

Theorem 3.2 Let τ∗1,p = τ
1,i
1,p or τ∗1,p = τ

2,i
1,p, that is τ∗1,p represents an element either of the

sequence τ
1,i
1,p or τ

2,i
1,p associated with ωp. Then the equation λ 3 +Aλ 2 + (B+D2)λ + (C +
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E2)+((D1+F)λ +(E1+G))e−λτ1 = 0 has a pair of simple conjugate roots±iωp for τ2 = τ∗1,p

which satisfies

sign
{

dReλ

dτ1
|τ=τ∗1,p

}
= sign ψ́(ω2 p) (3.22)

Denoting τ∗1 = mini∈N

{
τ

1,i
1,p,τ

2,i
1,p

}
, it is concluded that the steady state (x∗,y∗1,y

∗
2) is locally

asymptotically stable if τ1 = τ∗1 iff ψ́(ω2 p)> 0.

Proof:

Let ±iωp be a pair of purely imaginary roots of (3.14) and let λ (τ1) = φ(τ1)+ iω(τ1) be a

branch of roots of (3.14) with φ(τ∗1 , p) = 0 and ω(τ∗1 , p) = ωp. We assume that λ (τ∗1 , p) is not

a simple root of (3.14), then both (3.14) and derivatives of (3.14) share the same root, which

implies

λ
3 +Aλ

2 +(B+D2)λ +(C+E2)+((D1 +F)λ +(E1 +G))e−λτ1 = 0 (3.23)

(3λ
2 +2Aλ +(B+D2)+(D1 +F)− τ1((D1 +F)λ +(E1 +G))e−λτ1)

dλ

dτ1
−λ ((D1 +F)λ +(E1 +G))e−λτ1 = 0

(3.24)

at λ = λ (τ∗1 , p). Put λ = λ (τ∗1 , p) = ω(τ∗1 , p) = ωp and by seperating real and imaginary parts,

we get respectively

(E1 +G)ωpcos(ωpτ
∗
1,p)+(D1 +F)ω2

psin(ωpτ
∗
1,p) = 0

(D1 +F)ω2
pcos(ωpτ

∗
1,p)− (E1 +G)ωpsin(ωpτ

∗
1,p) = 0

(3.25)

(E1 +G)cos(ωpτ
∗
1,p)+(D1 +F)ωpsin(ωpτ

∗
1,p) = Aω

2
p− (C+E2)

(D1 +F)ωpcos(ωpτ
∗
1,p)− (E1 +G)sin(ωpτ

∗
1,p) = ω

3
p− (B+D2)ωp

(3.26)

Let us consider ωp > 0. From (3.25) and (3.26) , we obtain A(B+D2) =C+E2 ,we arrive at

a contradiction.

Hence ±iωp are simple roots of (3.14). From (3.14) and (3.26) we get

eλτ1 =− (D1 +F)λ +(E1 +G)

λ 3 +Aλ 2 +(B+D2)λ +(C+E2)
(3.27)

(
dλ

dτ1

)−1

=
(3λ 2 +2Aλ +(B+D2))eλτ1 +(D1 +F)

λ ((D1 +F)λ +(E1 +G))
− τ1

λ
(3.28)
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By removing eλτ1 , we get(
dλ

dτ1

)−1

=− 3λ 2 +2Aλ +(B+D2)

λ (λ 3 +Aλ 2 +(B+D2)λ +(C+E2))
+

D1 +F
λ ((D1 +F)λ +(E1 +G))

− τ1

λ
(3.29)

Then

(
dλ

dτ1

)−1

τ1=τ∗1,p

=−
−3ω2

p +2Aiωp +(B+D2)

iωp(C+E2)− iω3
pA+ω4

p−ω2
p(B+D2)

+
D1 +F

iωp(E1 +G)−ωp(D1 +F)
− τ1

iωp

(3.30)

Consequently

Re
(

dλ

dτ1

)−1

τ1=τ∗1,p

=
3ω2

p +2ωp(A2−2(B+D2))+(B+D2)
2−2A(C+E2)

((C+E2)−Aω2
p)

2 +ω2
p(ω

2
p− (B+D2))2 − (D1 +F)2

(D1 +F)2ω2
p +(E1 +G)2

(3.31)

Now

(D1 +F)2
ω

2
p +(E1 +G)2 = ω

6
p +ω

4
p(A

2−2(B+D2))+ω
2
p((B+D2)

2−2(C+E2)A)+(C+E2)
2

= ((C+E2)−Aω
2
p)

2 +(ω2
p− (B+D2)

2)ω2
p

(3.32)

Re
(

dλ

dτ1

)−1

τ1=τ∗1,p

=
3ω2

p +2ωp(A2−2(B+D2))+(B+D2)
2−2A(C+E2)− (D1 +F)2

((C+E2)−Aω2
p)

2 +ω2
p(ω

2
p− (B+D2))2

=
ψ́(ω2

p)

((C+E2)−Aω2
p)

2 +ω2
p(ω

2
p− (B+D2))2

(3.33)

Since sign
{

Re( dλ

dτ1
)−1

τ1=τ∗1,p

}
= sign

{
dReλ

dτ1
|τ=τ∗1,p

}
we get

sign
{

dReλ

dτ1
|τ=τ∗1,p

}
= sign ψ́(ω2 p)

If ψ́(ω2
p) > 0 , then sign

{
dReλ

dτ1
|τ=τ∗1,p

}
> 0. Hence the system will be locally asymptotically

stable when τ1 = τ∗1,p and a Hopf bifurcation occurs at (x∗,y∗1,y
∗
2) at τ1 = τ∗2,p iff ψ́(ω2

p)> 0

Case 4: τ1 > 0,τ2 > 0

Proposition 3.1 If all the roots of the equation (3.5) have negative real parts for some τ1 > 0,

then there exists a τ∗2 (τ1) > 0 such that all the roots of equation (3.5) (i.e with τ2 > 0) have

negative real parts when τ2 < τ∗2 (τ1) .

Considering the above proposition we can now state the following theorem.

Theorem 3.3 If we assume that the proposition 3.1 hold, then for any τ1 ∈ [0,τ∗1 ), (τ∗1 having

the same definition as in theorem 3.2) there exists a τ∗2 (τ1) > 0 such that the positive steady

state (x∗,y∗1,y
∗
2) of the system is locally asymptotically stable when τ1 ∈ [0,τ∗1 ).
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Proof:

Using the above proposition, we can say that all the roots of (3.5) have negative real parts when

τ1 ∈ [0,τ∗1 ) and by proposition we can conclude that there exists a τ∗2 (τ1) > 0 such that all

the roots of equation (3.5) have negative real parts when τ2 < τ∗2 (τ1) . Hence the steady state

(x∗,y∗1,y
∗
2) of system (3.2) is locally asymptotically stable when τ1 ∈ [0,τ∗1 ).

3.2 Global Stability

Lemma 3.2 Consider the following system

u̇(t) = u(t)
[
(b/a+ ε)v(t)

u(t)+ v(t)
−1
]
≈ P(u,v)

v̇(t) =
[

k
(b/a+ ε)u(t)2

u(t)+ v(t)
−dv(t)−w

(b/a+ ε)u(t)v(t)
u(t)+ v(t)

]
≈ Q(u,v)

where ε > 0 is sufficiently small, we have

i) the unique equilibrium (0,0) of system (3.2) is globally asymptotically stable.

ii) the positive equilibrium (u∗,v∗) is globally asymptotically stable.

Proof:

(0,0) is the unique non negative asymptotically stable equilibrium of system (3.2). From the

proof of Theorem 2.1, we can conclude that all solutions of system(3.2) are uniformly bounded.

Since ∂P
∂u + ∂Q

∂v < 0, hence according to Bendixson- Dulac theorem, the unique equilibrium is

globally asymptotically stable. Hence the proof. In a similar way, the positive equilibrium

(u∗,v∗) is globally asymptotically stable.

Theorem 3.4 The boundary equilibrium E1 = (b/a,0,0) is globally asymptotically stable.

Proof:

According to Theorem 2.1, for simplicity we assume that x(t) < (b/a+ ε), for t > 0 (ε > 0 is

sufficiently small).

The third equation of system (3.2) yields,

ẏ2(t)≤ y2

[
(b/a+ ε)y1

y1 + y2
−1
]

Consider the comparison system

u̇(t) = u(t)
[
(b/a+ ε)v(t)

u(t)+ v(t)
−1
]
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v̇(t) =
[

k
(b/a+ ε)u(t)2

u(t)+ v(t)
−dv(t)−w

(b/a+ ε)u(t)v(t)
u(t)+ v(t)

]
By comparison theorem in differential equations, we have u(t) ≥ y2(t), v(t) ≥ y1(t) for t > 0.

From Lemma 3.2,

lim
t→∞

u(t) = 0, lim
t→∞

v(t) = 0, (3.34)

Incorporating into the positivity of y1(t) and y2(t), we have

lim
t→∞

y2(t) = 0, lim
t→∞

y1(t) = 0, (3.35)

Therefore there exists a T1 > 0 such that y2(t)< ε for T > T1− τ1.

The first equation of system (3.2) yields,

ẋ(t)≥ x(t)(b−ax− ε)

Thus it is easy to obtain

lim
t→∞

in f x(t)≥ b/a− ε

From Theorem 2.1, we can deduce

lim
t→∞

x(t) = b/a (3.36)

From (3.34) and (3.36), the boundary equilibrium E10 = (b/a,0,0) is globally asymptotically

stable.

Theorem 3.5 The boundary equilibrium E2 = (0, ỹ1, ỹ2) is globally asymptotically stable.

Proof:

According to the positivity of the solutions of system (3.2), we have

ẏ2(t)≥−y2(t)

Consider the comparison equations,

u̇(t) =−u(t)

v̇(t) =−dv(t) (3.37)

(ỹ2, ỹ1) is the unique positive equilibrium of system (3.2) which is globally asymptotically

stable.
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Let (u(t), v(t)) be the solution of (3.2) with initial value (u(0), v(0)) and u(0) ≤ ψ1(0), v(0) ≤

ψ2(0). In view of comparison theorem we have u(t)≤ y2(t), v(t)≤ y1(t) for t > 0 and hence

lim
t→∞

in f y2(t)≥ ỹ2

We can choose ε1 > 0 sufficiently small such that

b
a
< c (ỹ2− ε1) (3.38)

Let T1 > 0 be large enough such that

ẏ2(t)> ỹ2− ε1 f or t > T1

Then we have for t > T1 + τ1

˙x(t)< x(t)(b−ax− (ỹ2− ε1))

From (3.38) and comparison theorem we have

lim
t→∞

sup x(t)≤ 0

From Lemma 3.2,

lim
t→∞

x(t) = 0

Let ξ > 0 be sufficiently small and in view of limt→∞ x(t) = 0, we obtain that there is a T2 >

T1+τ1 such that−ξ < x(t)< ξ for t > T2+τ2. For the third equation of system (3.2), we have

ẏ2(t)> y2(t)
(
−ξ y1(t)

y1(t)+ y2(t)
−1
)
, f or t > T2 + τ2,

and

ẏ2(t)< y2(t)
(

ξ y1(t)
y1(t)+ y2(t)

−1
)
, f or t > T2 + τ2

Consider the comparison equations

u̇1(t) = u(t)
(
−ξ wv1(t)

wv1(t)+u1(t)
−1
)
,

v̇1(t) =−
kξ u1(t)2

v1(t)+u1(t)
−dv1(t)+

ξ u1(t)v1(t)
v1(t)+u1(t)
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and

u̇2(t) = u(t)
(

ξ wv2(t)
wv2(t)+u2(t)

−1
)
,

v̇2(t) =
kξ u2(t)2

v2(t)+u2(t)
−dv2(t)−

ξ u2(t)v2(t)
v2(t)+u2(t)

Let (u1(t),v1(t)) be the solution of system (3.39) with initial value (u1(0),v1(0)) and 0 <

u1(0)< ψ1(0), 0 < v1(0)< ψ2(0). By comparison theorem we have u1(t)< y2(t), v1(t)< y1(t)

for t > T3 + τ2 and note that ξ is sufficiently small hence

lim
t→∞

in f y2(t)≥ ỹ2, lim
t→∞

in f y1(t)≥ ỹ1

Similarly

lim
t→∞

sup y2(t)≤ ỹ2, lim
t→∞

sup y1(t)≤ ỹ1

Hence

lim
t→∞

in f y2(t) = ỹ2, lim
t→∞

sup y1(t) = ỹ1

The boundary equilibrium E20 = (0, ỹ1, ỹ2) is globally asymptotically stable.

Theorem 3.6 The positive equilibrium E∗ = (x∗,y1
∗,y2

∗) of system (3.2) is globally asymptot-

ically stable.

Proof:

By the transformation X(t) = x(t)− x∗, Y (t) = y2(t)− y∗2, Z(t) = y1(t)− y∗1, system (3.2), is

reduced to

Ẋ(t) = (X(t)+ x∗)(−aX(t)− cY (t− τ1)

Ẏ (t) = (Y (t)+ y∗2)
X(t− τ2)Y (t)Z(t)

Y (t)+Z(t)

Ż(t) =
kX(t)Y (t)2

Y (t)+Z(t)
− (Z(t)+ y∗1)

(
wX(t)Y (t)
Y (t)+Z(t)

) (3.39)

Consider the following Lyapunov function

V (X(t),Y (t),Z(t))=
[

X(t)− x∗ln
(

1+
X(t)
x∗

)]
+

[
Y (t)− y∗2ln

(
1+

Y (t)
y∗2

)]
+

1
2

∫ 0

−τ2

X2(t+S)ds+
1
2

∫ 0

−τ1

Y 2(t+S)ds+lZ2(t)
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Calculate and estimate the derivative of V(t) along the solutions of system (3.39)

dV (t)
dt

= X(t)(−aX(t)− cY (t− τ1))+Y (t)
(

X(t− τ2)Z(t)
Y (t)+Z(t)

)
+

1
2
(X2(t)−X2(t− τ2))

+
1
2
(Y 2(t)−Y 2(t− τ1))+2lZ(t)

(
−Z(t)

(
wX(t)Y (t)
Y (t)+Z(t)

)
+

kX(t)(Y (t))2

Y (t)+Z(t)

)

≤ −1
2
(1− c2)X2(t)− 1

2
Y 2(t)−wl

X(t)Y (t)(Z(t))2

Y (t)+Z(t)
−

(
√

lwZ(t)−
√

l
w

kY (t)

)2

X(t)Y (t)
X(t)+Y (t)

+
lk2X(t)(Y (t))3

w(X(t)+Y (t))

≤ −1
2
(1− c2)X2(t)− 1

2
Y 2(t)− X(t)Y (t)

Y (t)+Z(t)
(−wl(Z(t))2−

(
√

lwZ(t)−
√

l
w

kY (t)

)2

+
lk2

w
(Y (t))2)

≤ −1
2
(1− c2)X2(t)− 1

2
(1− 2lk2

w
)(Y (t))2−wl(Z(t))2.

(3.40)

Now we can choose l ∈ w
2k2 such that 1− 2lk2

w > 0. Thus dV
dt ≤ 0 and dV

dt = 0 if and only if X =

Y = Z = 0. Hence the equilibrium (0, 0, 0) of system (3.2), that is the positive equilibrium E∗

of system (3.39) is globally asymptotically stable. This completes the proof.

3.3 Direction and Stability of Hopf bifurcation In this section we shall study the direction

of the Hopf bifurcations and stability of bifurcating periodic solutions by applying the normal

theory and the center manifold theorem introduced by Hassard et al. [16]. Throughout this sec-

tion, we always assume that the system undergoes a hopf bifurcation at the positive equilibrium

E(x∗,y∗1,y
∗
2) for τ1 = τ10 , and then ±iω denotes the corresponding purely imaginary roots of

the characteristic equation at the positive equilibrium E(x∗,y∗1,y
∗
2).

Without loss of generality, we assume that τ∗2 < τ10 where τ∗2 ∈ (0,τ2
∗
0) and τ1 = τ10+µ . Let

x11 = x− x∗, x21 = y1− y∗1, x31 = y2− y∗2 , x̄i1 = µi(τt), i=1,2,3... Here µ = 0 is the bifurcation

parameter and dropping the bars, the system becomes a functional differential equation in C =

C([−1,0],R3) as

dX
dt

= Lµ(Xt)+ f (µ,Xt) (3.41)
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where x(t) = (x11,x21,x31) ∈ R3 and Lµ : C→ R3, f : R×C→ R3 are respectively given by

Lµ(φ) = (τ10 +µ)B


φ1(0)

φ2(0)

φ3(0)

+(τ10 +µ)C


φ1(
−τ∗2
τ1

)

φ2(
−τ∗2
τ1

)

φ3(
−τ∗2
τ1

)

+(τ10 +µ)D


φ1(−1)

φ2(−1)

φ3(−1)

 (3.42)

and

f (µ,φ) = (τ10 +µ)Q (3.43)

where Q=


−aφ 2

1 (0)− cφ1(0)φ3(−1)
kφ1(0)φ 2

3 (0)
φ2(0)+φ3(0)

− wφ1(0)φ2(0)φ3(0)
φ2(0)+φ3(0)

φ1(
−τ2∗

τ1
)φ2(0)φ3(0)

φ2(0)+φ3(0)

, respectively where φ(θ)= (φ1(θ),φ2(θ),φ3(θ))
T ∈

C,

B =


−ax∗1 0 0

y∗2(ky∗2−wy∗1)
y1∗+y∗2

−(kx∗y∗2
2+dy∗1

2+2dy∗1y∗2+dy∗2
2+x∗y∗2

2w)
(y∗1+y∗2)

2
x∗(2ky∗2y∗1+ky∗2

2−wy∗1
2)

(y∗1+y∗2)
2

0 x∗y∗2
2

(y1∗+y∗2)
2

−x∗y∗1y∗2
(y∗1+y∗2)

2

,

C =


0 0 0

0 0 0
y∗1y∗2

y∗1+y∗2
0 0

, D =


0 0 −cx∗

0 0 0

0 0 0

.

By the Riesz representation theorem, we claim about the existence of a function η(θ ,µ) of

bounded variation for θ ∈ [−1,0) such that

Lµ(φ) =
∫ 0

−1
dη(θ ,µ)φ(θ) f or φ ∈C (3.44)

Now let us choose ,

η(θ ,µ) =



(τ10 +µ)(B+C+D), θ = 0

(τ10 +µ)(C+D), θ ∈ [
−τ∗2
τ1

,0)

(τ10 +µ)(D), θ ∈ (−1, −τ∗2
τ1

)

0, θ =−1.
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For φ ∈C([−1,0],R3), we define

A(µ)φ =



dφ(θ)
dθ

, θ ∈ [−1,0)

∫ 0
−1 dη(s,µ)φ(s), θ = 0

and

R(µ)φ =


0, θ ∈ [−1,0)

f (µ,φ), θ = 0

Then the system is equivalent to

dX
dt

= A(µ)Xt +R(µ)Xt , (3.45)

where Xt(θ) = X(t +θ) for θ ∈ [−1,0].

Now for ψ ∈ Ć([−1,0],(R3)∗), we define

A∗ψ(s) =



−dψ(s)
ds , s ∈ (0,1]

∫ 0
−1 dηT (t,0)ψ(−t), s = 0

Further we define a bilinear inner product

< ψ(s), φ(0)> = ψ̄(0)φ(0)−
∫ 0

−1

∫
θ

ζ=0
ψ̄(ζ −θ)dη(θ)φ(ζ )dζ . (3.46)

where η(θ) = η(θ ,0). We know that ±iω0τ10 are eigenvalues of A(0). Thus they are also

eigenvalues of A∗. To determine the poincare normal form of the operator A, we need to cal-

culate the eigen vector q of A belonging to the eigenvalue iω0τ10 and the eigen vector q∗ of A∗

belonging to the eigenvalue −iω0τ10 .

Let q(θ) = (1 α β )T eiω0τ10θ be the eigen vector of A(0) corresponding to iω0τ10 where

α =
y∗2(y

∗
1+y∗2)(ky∗2−wy∗1)−

(ax∗+iω0)
cx∗ e

iω0τ10 x∗(2ky∗2y∗1+ky∗2
2−wy∗1

2)

kx∗y∗2
2+dy∗1

2+2dy∗1y∗2+dy∗2
2+x∗y∗2

2w+iω(y∗1+y∗2)
2 , β = −(ax∗+iω0)e

iωτ10

cx∗

Similarly if q∗(s) = M(1 α∗ β ∗)eiω0τ10s be the eigen vector of A∗ where

α∗ =
(ax∗−iω)x∗y∗2

2(y∗1+y∗2)

x∗y∗2
3(ky∗2−wy∗1)+y∗1y∗2e

iω
τ∗2
τ10 (kx∗y∗2

2+dy∗1
2+2dy∗1y∗2+dy∗2

2+x∗y∗2
2w−iω(y∗1+y∗2)

2)

,
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β ∗ =
(ax∗−iω0)(y∗1+y∗2)−αy∗2(ky∗2−wy∗1)

y∗1y∗2e
iω0

τ∗2
τ10

Then we have to determine M from < q∗(s), q(θ)> = 1.

< q∗(s),q(θ)>= M̄(1 ᾱ∗ β̄ ∗)(1 α β )T −
∫ 0

−1

∫
θ

0
M̄(1 ᾱ∗ β̄ ∗)e−iω0τ10 (ζ−θ)dη(θ)(1 α β )T eiω0τ10 ζ dζ

= M̄(1 ᾱ∗ β̄ ∗)(1 α β )T −
∫ 0

−1
M̄(1 ᾱ∗ β̄ ∗)θeiω0τ10 θ dη(θ)(1 α β )T

= M̄

[
1+αᾱ∗+ββ̄ ∗+ τ10

(
−βx∗ce−iω0τ10 +

τ∗2
τ10

(
βy∗1y∗2
y∗1 + y∗2

e
−iω0

τ∗2
τ10

))]

Thus we can take

M̄ =
1[

1+αᾱ∗+ββ̄ ∗+ τ10

(
−βx∗ce−iω0τ10 +

τ∗2
τ10

(
βy∗1y∗2
y∗1+y∗2

e
−iω0

τ∗2
τ10

))]
(3.47)

We first compute the coordinate to describe the center manifold C0 at µ = 0. Let Xt be the

solution of the system (3.45) when µ = 0. Define z(t) = < q∗,Xt >

W (t,θ) = Xt(θ)−2Rez(t)q(θ) (3.48)

On the center manifold C0, we have

W (t,θ) =W (z(t), z̄(t),θ) where

W (z, z̄,θ) =W20(θ)
z2

2
+W11(θ)zz̄+W02(θ)

z̄2

2
+ .... (3.49)

and z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗.

Note that W is real if Xt is real. We consider only real solutions. For solution Xt ∈ C0 of

equation (3.41), since µ = 0 we have

ż(t) = iω0τ10z+ 〈q̄∗(0) f (0,W (z, z̄,0)+2Rezq(θ))〉

∼= iω0τ10z+ q̄∗(0) f0(z, z̄)

= iω0τ10z+g(z, z̄)

(3.50)

where
g(z, z̄) = q̄∗(0) f0(z, z̄)

= g20
z2

2
+g11zz̄+g02

z2

2
+g21

z2z̄
2

+ ....

(3.51)
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From (3.48) and (3.49), we get

Xt(θ) =W (t,θ)+2Rez(t)q(θ)

=W20(θ)
z2

2
+W11(θ)zz̄+W02(θ)

z̄2

2
+ zq+ z̄q̄+ ....

=W20(θ)
z2

2
+W11(θ)zz̄+W02(θ)

z̄2

2
+(1αβ )T eiω0τ10 z+(1ᾱβ̄ )T eiω0τ10 z̄+ ....

(3.52)

Hence we have

g(z, z̄) = q̄∗(0) f0(z, z̄)

= q̄∗(0) f (0,Xt)

= τ10M̄(1 ᾱ∗ β̄ ∗)T

= τ10M̄(p1z2 +2p2zz̄+ p3z̄2 + p4z2z̄)+H.O.T

(3.53)

where T =


−ax2

1t(0)− cx1t(0)x3t(−1)
kx1t(0)x2

3t(0)
x2t(0)+x3t(0)

− wx1t(0)x2t(0)x3t(0)
x2t(0)+x3t(0)

x1t(
−τ2∗

τ1
)x2t(0)x3t(0)

x2t(0)+x3t(0)


p1 =−a− cβe−iω0τ10 , p2 =−a− c

2

[
βe−iω0τ10 + β̄eiω0τ10

]
, p3 =−a− cβ̄eiω0τ10 ,

p4 =−aW (1)
20 (0)−2aW (1)

11 (0)−c
(

W (3)
20 (−1)

2 +
β̄e

iω0τ10 W (1)
20 (0)

2 +W (3)
11 (−1)+βe−iω0τ10W (1)

11 (0)
)
.

Comparing (3.51) and (3.53)

g20 = 2τ10M̄p1, g11 = 2τ10M̄p2, g02 = 2τ10M̄p3, g21 = 2τ10M̄p4.

For unknown W (i)
20 (θ), W (i)

11 (θ), i=1,2 in g21, we still have to compute them. From (3.45) and

(3.48)

Ẇ = Ẋt− żq− ˙̄zq̄

=


AW −2Re{q̄∗(0) f0q(θ)} ,−1≤ θ ≤ 0,

AW −2Re{q̄∗(0) f0q(θ)}+ f0 ,θ = 0,

Ẃ = AW +H(z, z̄,θ)

(3.54)

where

H(z, z̄,θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+ ..... (3.55)
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From (3.54) and (3.55)

W20(θ) =−H20(θ)

A(0)W11(θ) =−H11(θ)
(3.56)

From (3.54) we have for θ ∈ [−1,0)

H(z, z̄,θ) =−g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ) (3.57)

Comparing (3.55) and (3.58)

H20(θ) =−g20q(θ)− ḡ02q̄(θ)

H11(θ) =−g11q(θ)− ḡ11q̄(θ)
(3.58)

Using definitions of A(θ) and from the above equations

W20(θ) =
ig20

ω0τ10

q(0)eiω0τ10θ +
iḡ02

3ω0τ10

q̄(0)e−iω0τ10θ +E1e2iω0τ10θ . (3.59)

and

W11(θ) =
−ig11

ω0τ10

q(0)eiω0τ10θ +
iḡ11

ω0τ10

q̄(0)e−iω0τ10θ +E2. (3.60)

where q(θ) = (1 α β )T eiω0τ10θ , E1 = (E(1)
1 ,E(2)

1 ,E(3)
1 )∈ R3 and E2 = (E(1)

2 ,E(2)
2 ,E(3)

2 )∈ R3 are

constant vectors. From (3.54) and (3.55)

H20(0) =−g20q(0)− ḡ02q̄(0)+2τ10(c1 c2 c3)
T

H11(0) =−g11q(0)− ḡ11q̄(0)+2τ10(d1 d2 d3)
T

(3.61)

where (c1 c2 c3)
T =C1, (d1 d2 d3)

T = D1 are respective coefficients of z2 and zz̄ of f0(z z̄) and

they are

C1 =


c1

c2

c3

=


−a− cβe−iω0τ10

0

0

 and D1 =


d1

d2

d3

=


−2a− c

(
βe−iω0τ10 + β̄eiω0τ10

)
0

0


Finally we have (2iω0τ10I−

∫ 0
−1 e2iω0τ10θ dη(θ))E1 = 2τ10C1 or C∗E1 = 2C1 Where
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C∗ = ∣∣∣∣∣∣∣∣∣
2iω0 +ax∗ 0 cx∗e−2iω0τ10

−y∗2(ky∗2−wy∗1)
y∗1+y∗2

(kx∗y∗2
2+dy∗1

2+2dy∗1y∗2+dy∗2
2+x∗y∗2

2w)
(y∗1+y∗2)

2 +2iω0
−x∗(2ky∗2y∗1+ky∗2

2−wy∗1
2)

(y∗1+y∗2)
2

−y∗2y∗1e−2iω∗τ2

(y∗1+y∗2)
−x∗y∗2

2

(y∗1+y∗2)
2

x∗y∗1y∗2
(y∗1+y∗2)

2 +2iω0

∣∣∣∣∣∣∣∣∣ , (3.62)

Thus E i
1 =

2∆i
∆

where ∆ = Det(C∗) and ∆i be the value of the determinant Ui, where Ui formed

by replacing ith column vector of C∗ by another column vector (c1 c2 c3)
T , i =1, 2, 3.

Similarly D∗E2 = 2D1, where

D∗ = ∣∣∣∣∣∣∣∣∣
ax∗ 0 cx∗

−y∗2(ky∗2−wy∗1)
y∗1+y∗2

(kx∗y∗2
2+dy∗1

2+2dy∗1y∗2+dy∗2
2+x∗y∗2

2w)
(y∗1+y∗2)

2
−x∗(2ky∗2y∗1+ky∗2

2−wy∗1
2)

(y∗1+y∗2)
2

−y∗2y∗1
(y∗1+y∗2)

−x∗y∗2
2

(y∗1+y∗2)
2

x∗y∗1y∗2
(y∗1+y∗2)

2

∣∣∣∣∣∣∣∣∣ , (3.63)

Thus E i
2 =

2∆̄i
∆̄

where ∆̄ = Det(D∗) and ∆̄i be the value of the determinant Vi, where Vi formed

by replacing ith column vector of D∗ by another column vector (d1 d2 d3)
T , i =1,2, 3. Thus

we can determine W20(θ) and W11(θ) from (3.62) and (3.63). Furthermore using them we can

compute g21 and derive the following values.

C1(0) = i
2ω0τ10

(g20g11−2 |g11|2− |g02|2
3 )+ g21

2 ,

µ2 =
−Re{C1(0)}

Re
{

dλ (τ10
)

dτ

} ,

β2 = 2Re{C1(0)},

T2 =
−Im

{
C1(0)+µ2Im

{
dλ (τ10

)

dτ

}}
ω0τ10

.

These formulas give a description of the Hopf bifurcation periodic solutions of (3.2) at τ =

τ10 on the center manifold. Hence we have the following result.

Theorem 3.7 The periodic solutions is supercritical (resp. subcritical) if µ2 > 0 (resp. µ2 <

0). The bifurcating periodic solutions are orbitally asymptotically stable with an asymptotical

phase (resp. unstable) if β2 < 0 (resp. β2 > 0). The period of bifurcating periodic solutions

increases(resp. decreases) if T2 > 0 (resp.T2 < 0).

4. Numerical Simulation
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Fig 1: Τ1 = 0 and Τ2 = 0

HxHΘL,y1 HΘL,y2 HΘLLT =H1, 1.3 , 2.6 LT

In this section, we have investigated a class of predator prey system (3.2) with two delays.

By means of analysis approach, we give the criteria for the boundedness, permanence and

existence of positive periodic solutions. From section 3.3, we may determine the direction of a

Hopf bifurcation and the stability of the bifurcation periodic solutions.

The parameters are chosen as follows. r = 3, k1 = 2, k2 = 1, w = 0.5, d = 0.5, β = 1,

α = 0.03. Then (3.2) becomes

ẋ(t) = x(3−0.03x− y2(t− τ1))

ẏ1(t) =
xy2

2
y1 + y2

−0.5y1−0.5
xy2y1

y1 + y2

ẏ2(t) =
x(t− τ2)y2y1

y1 + y2
− y2

(4.1)

which has a positive equilibrium E∗(x,y1,y2) = (2,2.94,2.94). When τ1 = 0,τ2 = 0, the equi-

librium E∗ is asymptotically stable if d < 1 and is unstable if d > 1 . Fig 1 shows that the

positive solutions of () approach E∗ is an oscillatory form if E∗ is stable. Hence less mortality

rate of juvenile predators relative to that of adult predators has a stabilizing effect and a larger

one destabilizes the equilibrium and produces cycle. Fig 2, 3, 4 and 5 shows that the steady

state is asymptotically stable, though damped oscillations can be observed. The time delays are

[τ1 = 0.06, τ2 = 0], [τ2 = 0.05, τ1 = 0] ,[τ1 = τ2 i.e., τ1 = 0.02, τ2 = 0.02] and [τ1 6= τ2 i.e.,

τ1 = 0.02, τ2 = 0.03] respectively.
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Fig 2: Τ1 = 0.06 and Τ2 = 0

HxHΘL,y1 HΘL,y2 HΘLLT =mH1, 1.8 , 2.9 LT
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Fig 3: Τ1 = 0 and Τ2 = 0.05

HxHΘL,y1 HΘL,y2 HΘLLT =mH1, 1.8 , 2.9 LT

5. Discussion

In this paper, a stage structured predator prey system with two dicrete delays which is an

extension of the ordinary differential equation model studied by [8]. For non delay case, if the

prey grows in the form of the logistic type and the transition rate is the linear function of the

nutrient availability to one immature predator in unit time, then the model has a periodic so-

lution and a positive equilibrium of the model admits multiple stability switches as one of the

parameters w and d1 changes. Based on the system proposed in [14], we further incorporate
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Fig 4: Τ1 = 0.02 and Τ2 = 0.02

HxHΘL,y1 HΘL,y2 HΘLLT =H1, 1.5 , 2.5 LT
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Fig 5: Τ1 = 0.02 and Τ2 = 0.03

HxHΘL,y1 HΘL,y2 HΘLLT =H1, 1.5 , 2.5 LT

time delays due to gestation and maturation. The main purpose of this paper is to investigate

the effects of two delays on the system for logistic growth of prey. By choosing the possible

combinations of the two delays as bifurcating parameters, sufficient conditions for local sta-

bility and existence of local Hopf bifurcation are obtained. When the time delay is below the

corresponding critical value, we get that the system is local stable. Otherwise, a local Hopf

bifurcation occurs at the positive equilibrium. We give the sharp threshold conditions which are

both necessary and sufficient for the permanence of the system (1.2) and by theorem 3.6, we

give the sufficient conditions for the global stability of the coexistence equilibrium. By theorem
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2.2, we found that the system (1.2) is permanent if g(x)− βM2 > 0 holds true. The proper-

ties of the bifurcated periodic solutions such as the direction and the stability are determined.

And a numerical example is also given to support the theoretical results.We found that small

sufficiently delays cannot change the stability of positive equilibrium solution and large delays

cannot only destabilize the positive equilibrium solution but also cause an oscillation near the

positive equilibrium solution. Hence we can see that the species in the system considered in

this paper can coexist under some certain conditions. Further investigations of this problem is

presently in progress.
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