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Abstract. This paper is concerned with fast iterative methods with development of Euler-Lagrange equation

which results from the minimization of Rudin-Osher-Fatemi (ROF) model. There are many applications of image

de-noising in field of medical and astronomy. We can classify the image de-noising models into additive and mul-

tiplicative noise removal models. In case of additive noise, we have an image u corrupted with additive gaussian

noise η , the main task is to recover u from the image formation model u0 = u+η . This paper mainly focus on

additive noise removal. Here semi-implicit (SIM), additive operator splitting (AOS) and additive multiplicative

operator splitting (AMOS) type schemes are developed. The quality in AOS is, it treats with all coordinate axes

in an equal manner. We develop a new AMOS scheme for the solution of Euler-Lagrange equation arisen from

minimization of image additive noise removal model. Comparison of AMOS with SIM and AOS is also pre-

sented. Experimental results shows that by using AMOS, additive noisy image can be de-noised with best results.

Numerical examples are given to show gain in CPU timing and fast convergence of AMOS-based algorithm.
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1. Introduction

In the field of image processing, image de-noising is a significant and an extraordinary field

for last decades. Through image de-noising, image is reconstructed by removing noise from a

corrupted image. The noise removal method is designed in such a way that it suppresses the

noise and preserves many image structures. The actual meaning of noise is an unwanted signal.

Signals are the unwanted electrical fluctuations which are received by AM radios. Noise in

images is a random variation of colour or brightness, it is a cause of sensor and circuitry of a

digital camera or scanner. We can not avoid the noise in images. In image de-noising our main

focus is on the development of such filters which maintains the compromise between the noise

and the image. We consider the following image formation model

(1) u0(x,y) = u(x,y)+η(x,y),

in which u0(x,y) represents the observed image, u(x,y) indicates the clean image, η(x,y) de-

notes the additive gaussian noise. We suppose that η is distributed normally, its standard devi-

ation is supposed to be σ and mean is 0. There are different sources in camera systems from

which images are corrupted such as photon, thermal and quantization noise. In this research,

we have worked upon the operator splitting methods [1-3] in terms of de-noising. There are

different methods used for removing noise in images like filtering, smoothing and total varia-

tion (TV) [4-11]. Filtering has poor efficiency and edges are not preserved. TV is a technique

having applications in the noise removal of digital image processing. This method is applied for

reducing noise in order to preserve sharp edges in the specified signal. Compared to filtering,

the results of the TV are obtained by minimizing a cost function. The main approach is based

on the discretization of finite difference method. Experiments show that TV is better than other

de-noising methods since not only image is de-noised but also the edges are preserved.

Weickert et al. [12] compared the performance of explicit, SIM and AOS schemes for non-

linear diffusion filtering, they proposed that SIM is efficient in one dimensional case while AOS

produces more stable and efficient results for all dimensions and step sizes but the main problem

in AOS is, it is first order accurate in time.
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Barash and Kimmel [1] extended the idea of Weickert et al. [12] and proposed a scheme which

is called AMOS scheme in terms of nonlinear diffusion filtering having the second order accu-

racy. Rudin et al. [8] have applied an alternative method in order to descritize the minimization

problem as to directly descritze PDE through gradient descent method. Goldstein and Osher

[13] worked upon TV de-noising using split bregman. Strong [9] have worked upon two impor-

tant properties of TV regularization, they proposed that the edges of the image have a tendency

to be preserved and in particular conditions they are completely preserved. Chan et al. [14]

proposed a new model for segmentation based on mumfard shah functional. Jeon et al. [15]

presented an unsupervised hierarchical segmentation based on AOS scheme. D. krishnan et al.

[16] minimized the TV model based on AOS methods and also compared the performance of

AOS with explicit schemes, also they found that AOS scheme fails to produce good result when

regularization parameter λ > 4.

In today’s life, images have a broad application in our surroundings, they are used to catch

criminals. Many problems in image de-noising are based on additive noise, where an image

u is supposed to be corrupted with an additive noise. Rudin et al. [8] presents the first total

variation based noise removal model. This model uses total variation as a regularization term

for de-noising an image by minimizing

(2) min
u

E(u) =
∫

Ω

|∇u|dxdy+
λ

2

∫
Ω

|u−u0|2dxdy, where |∇u|=
√

u2
x +u2

y .

The first term is the regularization and the second is the fidelity where λ is tradeoff, which bal-

ances fidelity and regularization terms. ROF model is a PDE based approach used for additive

noise removal. Minimization of above equation leads to

(3)
∂u
∂ t

=
∂

∂x

( ux√
u2

x +u2
y

)
+

∂

∂y

( uy√
u2

x +u2
y

)
−λ

(
u−u0

)
; t > 0,x,y ∈Ω,

u(x,y,0) = u0(x,y) and ∂u
∂η

= 0 on ∂Ω.

The steady state of eq. (4) is given by

(4) 0 =
∂

∂x

( ux√
u2

x +u2
y

)
+

∂

∂y

( uy√
u2

x +u2
y

)
−λ

(
u−u0

)
in Ω,
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with ∂u
∂η

= 0 on ∂Ω.

Equivalently, eq. (4) can be written as

(5) ∇

(
∇u√
|∇u|2 + γ

)
+λ (u−u0) =

∂u
∂ t

in Ω,

with the Neumann boundary condition. We descritize eq. (5) using the finite difference method

because of the discrete nature of the image.

The main goal of this work is to find a scheme which would be second order accurate in time,

more efficient, stable and would produce better PSNR (peak signals to noise ratio) results than

SIM and AOS schemes based on minimization of ROF model. The objective of this research is

to develop fast iterative method. The paper is organized as follow:

Section 2 describes a brief survey on SIM, AOS and AMOS methods. Section 3 shows some

test results and section 4 is the conclusion of the work.

2. Numerical Schemes

2.1. Semi-Implicit Scheme

We consider equation (5) with the same initial and boundary conditions. In order to descritize

equation (5), consider xi = ih, y j = jh and tn = n∆t. The numerical approximation of (5) is

given as

un+1
i, j = un

i, j +
∆t
h

[
∆

x
−

( ∆x
+un+1

i, j√
(∆x

+un
i, j)

2 +(∆y
+un

i, j)
2 + γ

)

+ ∆
y
−

( ∆
y
+un+1

i, j√
(∆x

+un
i, j)

2 +(∆y
+un

i, j)
2 + γ

)]
−∆tλ

(
un+1

i, j −u0

)
,(6)

where i, j = 1,2,3, ...,m−1 , n = 1,2,3, ..., and with BCs,

un
0, j = un

1, j, un
N, j = un

N−1, j, un
i,0 = un

i,N = un
i,N−1.

In our numerical calculations, we assume h = 1 and consider the following notations

un
i, j = u(xi,y j, tn),

ui, j = u(xi,y j),

∆
x
+ = (ui+1, j−ui, j),
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∆
x
− = (ui−1, j−ui, j),

∆
y
+ = (ui, j+1−ui, j),

∆
y
− = (ui, j−1−ui, j).

Further descritization of equation (6) leads to

−∆t
h

(
C1un+1

i+1, j−C2un+1
i−1, j

)
− ∆t

h
(C3un+1

i, j+1−C4un+1
i, j−1)(7)

+
(

1+
∆t
h
(C1 +C2 +C3 +C4)+∆tλ

)
un+1

i, j = un
i, j +Fi, j,

where C1,C2,C3 and C4 are given by

C1 =
1√

γ +(un
i+1, j−un

i, j)
2 +(un

i, j+1−un
i, j)

2
,

C2 =
1√

γ +(un
i, j−un

i−1, j)
2 +(un

i−1, j+1−un
i−1, j)

2
,

C3 =
1√

γ +(un
i+1, j−un

i, j)
2 +(un

i, j+1−un
i, j)

2
,

C4 =
1√

γ +(un
i+1, j−1−un

i, j−1)
2 +(un

i, j−un
i, j−1)

2
.

Computing for un+1
i, j , we obtain the following vector matrix notation

(8) un+1
i, j =

(
I−

m

∑
l=1

∆t
(

Al(un
i, j)
))−1(

un
i, j +Fi, j

)
.

In eq. (8), un+1
i, j can be obtained by inverting

(
I−∑

m
l=1 ∆t

(
Al(un

i, j)
))

using the Thomas algo-

rithm, where Al(un
i, j) is a five-band matrix. As compare to explicit schemes, the semi-implicit

schemes are more stable and efficient but when dimensions≥ 2, the matrix in eq. (8) is no more

tri-diagonal and the main draw-back is their computational cost of associated linear system of

high dimensional images, that is they are less efficient for solving m-dimensional linear sys-

tem. This problem was overcome by Peaceman and Rachford [17] through splitting methods.
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2.2. Additive Operator Scheme (AOS)

For AOS scheme we consider eq. (8)

(9) un+1
i, j =

(
I−

m

∑
l=1

∆t
(

Al(un
i, j)
))−1(

un
i, j +Fi, j

)
,

the above equation can be written as

(10) un+1
i, j =

( 1
m
(I + I + I + ...+ I(m times))−

m

∑
l=1

∆t
(

Al(un
i, j)
))−1(

un
i, j +Fi, j

)
,

(11) un+1
i, j =

( 1
m
(I−∆tm(A1(un

i, j))+ ...+
1
m
(I−∆tm(Al(un

i, j))
)−1(

un
i, j +Fi, j

)
,

further simplification of above equation leads to

(12) un+1
i, j =

( 1
m

m

∑
l=1

(I−∆tm(Al(un
i, j))
)−1(

un
i, j +Fi, j

)
,

we consider our desired case

(13) un+1
i, j =

m

∑
l=1

( 1
m
(I−∆tm(Al(un

i, j))
)−1(

un
i, j +Fi, j

)
,

we see that the right hand side of eqs. (12) and (13) are not equal, let both to be equal when the

R.H.S of eq. (13) is multiplied by a simple variable x, i.e., comparing eqs. (12) and (13) for a

variable x

( 1
m

m

∑
l=1

(I−∆tm(Al(un
i, j))
)−1(

un
i, j +Fi, j

)
= x

m

∑
l=1

( 1
m
(I−∆tm(Al(un

i, j))
)−1(

un
i, j +Fi, j

)
,(14)

( 1
m
(I−∆tm(A1(un

i, j))+
1
m
(I−∆tm(A2(un

i, j))+ ...+
1
m
(I−∆tm(Am(un

i, j))
)−1

(
un

i, j +Fi, j

)
= x
(( 1

m
(I−∆tm(A1(un

i, j))
)−1

+
( 1

m
(I−∆tm(A2(un

i, j))
)−1

+ ...+( 1
m
(I−∆tm(Am(un

i, j))
)−1
)(

un
i, j +Fi, j

)
,(15)
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let us consider U = (I−∆tm(Al(un
i, j))( 1

m
U +

1
m

U + ...+
1
m

U
(
m times

))−1(
un

i, j +Fi, j

)
= x
(( 1

m
U
)−1

+
( 1

m
U
)−1

+ ...+
( 1

m
U
)−1(m times

))(
un

i, j +Fi, j

)
,(16)

(m
m

U
)−1

= xm
(

U−1 +U−1 + ...+U−1
)
,(17)

U−1 = xm2U−1,(18)

inserting the value of U in equation (18), i.e.,

(19)
(

I−∆tm(Al(un
i, j))
)−1

= xm2(I−∆tm(Al(un
i, j))
)−1

,

(20) x =
1

m2 ,

so equation (13) becomes

(21) un+1
i, j =

1
m2

m

∑
l=1

( 1
m
(I−∆tm(Al(un

i, j))
)−1(

un
i, j +Fi, j

)
,

which finally reduces to

(22) un+1
i, j =

1
m

m

∑
l=1

(
(I−∆tm(Al(un

i, j))
)−1(

un
i, j +Fi, j

)
.

The above calculation shows that AOS scheme is the modified form of the semi-implicit scheme

and it uses one dimensional semi-implicit scheme in arbitrary dimensions. The numerical

schemes in eq. (22) are split up in different dimensions and results are combined in an ad-

ditive manner therefore eq. (22) is called Additive Operator Splitting (AOS). The final scheme

in eq. (22) is tri-diagonal along each dimensions, therefore it can be solved individually by

splitting schemes in an efficient manner and easy in implementation. This scheme calculates

the operators in an independent manner and then sums them at each time step. It is stated with-

out proof that the AOS scheme is an O(∆t)+O(h2) accurate finite difference approximation to
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the original equation. Eq. (22) is the Additive Operator Splitting scheme for m-dimensional

case. In our case, we consider 2-dimensional case, i.e.,

uk+1
i, j =

1
2

[(
I−2∆tA1(uk

i )
)−1

+
(

I−2∆tA2(uk
j)
)−1](

uk
i, j +Fi

)
=

1
2

2

∑
l=1

(
I−2∆tAl(uk)

)−1(
uk

i, j +Fi

)
.(23)

2.3. New AMOS Scheme for ROF Model

For AMOS scheme, we consider

uk+1
i −uk

i
∆t

= A1(un
i )u

n+1
i +Fi,

uk+1
j −uk

j

∆t
= A2(un

j)u
n+1
j +Fi.

The above both equations reduce to

(24)
(
I−∆tA1(un

i )
)
un+1

i = un
i +Fi,

(25) (I−∆tA2(un
j)
)
un+1

j = un
j +Fi.

From eqs. (24) and (25), we get

(26) un+1
i, j =

(
I−∆tA1(un

i
)−1(I−∆tA2(un

j
)−1(un

i, j +Fi
)
,

from eqs. (24) and (25), we can also obtain

(27) un+1
i, j =

(
I−∆tA2(un

j
)−1(I−∆tA1(un

j
)−1(un

i, j +Fi
)
.

Taking the mean of eqs. (26) and (27), i.e.,

(28) un+1
i, j =

1
2

[(
I−∆tA1(un

i )
)−1(

I−∆tA2(un
j)
)−1

+
(

I−∆tA2(un
j)
)−1

×
(

I−∆tA1(un
i )
)−1](

un
i, j +Fi

)
.

Eq. (28) is called AMOS (additive multiplicative operator splitting) scheme because it is both

additive as well as multiplicative scheme, additivity is important to make the splitting symmet-

ric. AMOS scheme is more accurate than the AOS scheme and is unconditionally stable, also

it consists the merits of AOS and MOS (Multiplicative Operator Splitting Scheme). AMOS
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scheme is considered to be more accurate than the AOS and preserves the symmetry and accu-

racy as well.

3. Experimental Results

Here we perform experiments on grey color images of different pixel sizes. Results of exper-

iments are given to compare the performance of AMOS with AOS and SIM. All the de-noising

algorithms are implemented on additive noisy images.

Now in order to show gain in CPU timing and PSNR of SIM, AOS and AMOS, the numerical

examples are given below.

FIGURE 1. Experimental results of SIM for problem 1, no. of iterations=3000

FIGURE 2. Experimental results of SIM for problem 2, no. of iterations=3000



HIGHER ORDER OPERATOR SPLITTING METHODS FOR AN IMAGE DE-NOISING MODEL 841

FIGURE 3. Experimental results of SIM for problem 3, no. of iterations=3000
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FIGURE 4. Experimental results of SIM for problem1, no. of iterations=3000

FIGURE 5. Experimental results of AOS for problem 1, no. of iterations=400

FIGURE 6. Experimental results of AOS for problem 2, no. of iterations=400
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FIGURE 7. Experimental results of AOS for problem 3, no. of iterations=400
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FIGURE 8. PSNR results of AOS for problem 1, problem 2 and problem 3

FIGURE 9. Experimental results of AMOS for problem 1, no. of iterations=250

FIGURE 10. Experimental results of AMOS for problem 2, no. of iterations=250
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FIGURE 11. Experimental results of AMOS for problem 3, no. of iterations=250
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FIGURE 12. PSNR results of AMOS for problem 1, problem 2 and problem

3. The above figures show that AMOS gives us much better results in terms of

highest PSNR value than SIM and AOS within 25 iterations.

Problem1: β λ dt No. of iterations CPU(S) PSNR(dB)

SIM 0.001 70 10 3000 2623 258

AOS 0.003 70 6 400 118 311

AMOS 0.001 75 18 250 87 323

Problem2:

SIM 0.001 70 13 3000 3061 260

AOS 0.003 80 6 400 126 312

AMOS 0.001 80 18 250 86 323.8

Problem3:

SIM 0.001 70 13 3000 3199 261

AOS 0.003 65 6 400 117 311

AMOS 0.001 90 18 250 83 327

TABLE 1. Comparison of SIM, AOS and AMOS for Peak Signal-to-Noise Ratio

(PSNR) on grey color noisy images.
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SIM: β λ dt No. of iterations CPU(S) PSNR(dB)

2562 0.001 70 13 3000 2623 258

5122 0.001 70 13 3000 13788 247

7682 0.001 70 13 3000 30208 234

10242 0.001 70 13 3000 66679 189

AOS:

2562 0.003 65 10 400 123 310

5122 0.003 65 10 400 484 104

7682 0.003 65 10 400 1186 111

10242 0.003 65 10 400 2074 143

AMOS:

2562 0.001 90 18 250 95 326

5122 0.001 90 18 250 361 325

7682 0.001 90 18 250 816 324

10242 0.001 90 18 250 1848 318

TABLE 2. Comparison of SIM, AOS and AMOS with TV de-noising algorithms

for additive noisy images (2562−10242).

Three iterative schemes namely SIM, AOS and AMOS for additive noise suppression are

compared. It is found that by using the AMOS algorithm, the technique has the advantage of

highest PSNR results, speed of computation and effectiveness in de-noising the images over

other iterative techniques of SIM and AOS. In a nutshell, AMOS is more effective and efficient

than SIM and AOS.
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4. Conclusion

In this paper, the de-noising algorithms for operator splitting methods such as SIM, AOS

and AMOS are presented based on minimization of ROF model related with total variation ap-

proach. This amounts to discretized a time dependent PDE by the constraints. Comparison of

AMOS with other iterative schemes such as SIM and AOS is also presented. These methods

successively de-noise the image until the steady state solutions are obtained. Experiments show

that by using AMOS, noisy images with different dimensions (2562−10242) can be recovered

with better PSNR results than SIM and AOS. It is concluded that AMOS is efficient, effective,

fast and stable than AOS and SIM. The extension of this work is to develop a multigrid algo-

rithm for our proposed model which is expected to be more enhanced than the existing splitting

methods in case of stability and CPU time.
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