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Abstract. Consider the first-order delay dynamic equation

x∆(t)+ p(t)x(τ(t)) = 0, t ∈ [t0,∞)T

where p ∈ Crd ([t0,∞)T,R+) , τ ∈ Crd ([t0,∞)T,T) is non-monotone, and τ(t) ≤ t , limt→∞ τ(t) = ∞. Under the

assumption that the τ is non-monotone, we present sufficient conditions for the oscillation of first-order delay

dynamic equations on time scales. An example illustrating the result is also given.
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1. Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions to the

differential/difference and dynamic equations have been the subject of many investigations. See,

for example, [1−32] and the references cited therein. Consider the first-order delay dynamic
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equation

(E) x∆(t)+ p(t)x(τ(t)) = 0, t ∈ [t0,∞)T

where T is a time scale unbounded above with t0 ∈ T, p is rd-continuous and nonnegative, the

delay function τ : T→ T is non-monotone and satisfies

(1.1) τ(t)≤ t for all t ∈ T, lim
t→∞

τ(t) = ∞,

and supT= ∞.

First we give a short review on the time scales calculus extracted from [3]. A time scale,

which inherits the standard topology on R, is a nonempty closed subset of reals. Here and later

throughout this paper, a time scale will be denoted by the symbol T, and the intervals with a

subscript T are used to denoted the intersection of the usual interval with T. For t ∈T, we define

the forward jump operator σ : T→ T by σ := inf(t,∞)T while the backward jump operator

ρ : T→ T is defined by ρ := sup(−∞, t)T, and the graininess function µ : T→ R+
0 is defined to

be µ(t) := σ(t)−t. A point t ∈T is called right-dense if σ(t) = (t) and/or equivalently µ(t) = 0

holds; otherwise it is called right-scattered, and similarly left-dense and left scattered points are

defined with respect to the backward jump operator. We also need the set Tκ as follows: If T

has a left-scattered maximum m, then Tκ =T−{m}. Otherwise, Tκ =T. A function f :T→R

is said to be ∆-differentiable at the point t ∈ Tκ provided that there exists f ∆(t) such that for

every ε > 0 there exists a neighborhood U of t such that

∣∣∣[ f (σ(t)− f (s)]− f ∆(t) [σ(t)− s]
∣∣∣≤ ε |σ(t)− s| for all s ∈U.

We shall mean the ∆-derivative of a function when we only say derivative unless otherwise

is specified. A function f : T→ R is called rd-continuous provided it is continuous at right-

dense points in T, and its left-sided limits exist (finite) at left-dense points in T. The set of

rd-continuous functions f : T→ R will be denoted by Crd(T,R).

The set of functions f : T→ R that are differentiable and whose derivative is rd-continuous

is denoted by C1
rd(T,R). For s, t ∈ T and a function f ∈Crd(T,R), the ∆-integral of is defined
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by
t∫
s

f (η)∆(η) = F(t)−F(s)

where F ∈C1
rd(T,R) is an anti-derivative of f , i.e., F∆ = f on Tκ . Every rd-continuous function

has an antiderivative. In paticular, if t0 ∈ T then F defined by

F(t) =
t∫
s

f (η)∆(η) for t ∈ T

is an antiderivative of f . And, for t ∈ Tκ

σ(t)∫
t

f (η)∆(η) = µ(t). f (t).

It is obvious that if f ∆ ≥ 0, then f is nondecreasing.

A function f ∈ Crd(T,C) is called regressive if 1+ f µ 6= 0 on Tκ , and f ∈ Crd(T,C) is

called positively regressive if 1+ f µ > 0 on Tκ . The set of regressive functions and the set of

positively regressive functions are denoted by R(T,C) and R+(T,R), respectively, R−(T,R)

is defined similarly. For simplicity, we denote by Rc(T,C) the set of regressive constants, and

similarly we define the sets R+
c (T,R) and R−c (T,R).

A function x : T→ R is called a solution of the equation (E), if x(t) is delta differentiable

for t ∈ Tκ and satisfies equation (E) for t ∈ T. We say that a solution x of equation (E) has a

generalized zero at t if x(t) = 0 or if µ(t) > 0 and x(t)x(σ(t)) < 0. Let supT= ∞ and then

a nontrivial solution x of equation (E) is called oscillatory on [t,∞) if it has arbitrarirly large

generalized zeros in [t,∞).

Next, let us recall some known oscillation results on this subject. For T = R and T = Z,

equation (E) reduces to

(1.2) x′(t)+ p(t)x(τ(t)) = 0, t ∈ R+
0

and

(1.3) ∆x(n)+ p(n)x(τ(n)) = 0, n ∈ N+
0 ,

respectively.
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In 1972, Ladas, Lakshmikantham and Papadakis [20] proved that if τ(t) is nondecreasing and

(1.4) limsup
t→∞

t∫
τ(t)

p(s)ds > 1,

then all solutions of (1.2) oscillate.

In 1982, Koplatadze and Canturija [19] established the following result.

If τ(t) is non-monotone or nondecreasing, and

(1.5) liminf
t→∞

t∫
τ(t)

p(s)ds >
1
e
,

then all solutions of (1.2) oscillate.

Assume that the argument τ(t) is non-monotone. Set

(1.6) h(t) := sup
s≤t

τ(s), t ≥ 0.

Clearly, h(t) is nondecreasing, and τ(t)≤ h(t) for all t ≥ 0.

In 2011, Braverman and Karpuz [5], proved that, if τ(t) is non-monotone and

(1.7) limsup
t→∞

t∫
h(t)

p(s)exp


h(t)∫
τ(s)

p(ξ )dξ

ds > 1,

then all solutions of (1.2) oscillate.

Very recently, Chatzarakis and Öcalan [9], proved that, if τ(t) is non-monotone and

(1.8) liminf
t→∞

t∫
h(t)

p(s)exp


h(t)∫
τ(s)

p(ξ )dξ

ds >
1
e
,

then all solutions of (1.2) oscillate.

In 1998, Zhang and Tian [30], studied the equation (1.3) and proved that, if (τ(n)) is non-

monotone, and

(1.9) limsup
n→∞

p(n)> 0 and liminf
n→∞

n−1

∑
j=τ(n)

p( j)>
1
e

then all sollutions of (1.3) oscillate.
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In 2006, Chatzarakis, Koplatadze and Stavroulakis [6,7], when (τ(n)) is non-monotone or

nondecreasing, studied the equation (1.3) and proved that, if one of the following conditions

(1.10) limsup
n→∞

n

∑
j=h(n)

p( j)> 1, where h(n) = max
0≤s≤n

τ(s), n≥ 0,

or

(1.11) limsup
n→∞

n−1

∑
j=τ(n)

p( j)< ∞ and liminf
n→∞

n−1

∑
j=τ(n)

p( j)>
1
e

is satisfied, then all sollutions of (1.3) oscillate.

Assume that the argument (τ(n)) is non-monotone. Set

(1.12) h(n) := max
s≤n

τ(s), n≥ 0.

Clearly, h is nondecreasing, and τ(n)≤ h(n)≤ n−1 for all n≥ 0.

In 2016, Öcalan [26], proved that, if (τ(n)) is non-monotone and

(1.13) liminf
n→∞

n−1

∑
j=τ(n)

p( j)
(

j− τ( j)+1
j− τ( j)

) j−τ( j)+1

> 1,

then all solutions of (1.3) oscillate.

In 2011, Braverman and Karpuz [5], proved that, if (τ(n)) is non-monotone and

(1.14) limsup
n→∞

n

∑
j=h(n)

p( j)
h(n)−1

∏
i=τ( j)

1
1− p(i)

> 1,

then all solutions of (1.3) oscillate.

Very recently, Chatzarakis and Öcalan [8], proved that, if (τ(n)) is non-monotone and

(1.15) liminf
n→∞

n−1

∑
j=h(n)

p( j)
h(n)−1

∏
i=τ( j)

1
1− p(i)

>
1
e
,

then all solutions of (1.3) oscillate.

For Equation (E), in 2002, Zhang and Deng [31], proved the following result by the help of

cylinder transforms.

Define

(1.16) α = limsup
t0→∞

sup
λ∈E

{
λ exp−λ p(τ(t), t)

}
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where

exp−λ p(τ(t), t) = exp
t∫

τ(t)

ξ µ(s)(−λ p(s))∆s,

E = {λ : λ > 0, 1−λ p(t)µ(t)> 0}, and

ξ h(z) =


Log(1+hz)

h , if h 6= 0

z , if h = 0
.

If α < 1, then all solutions of equation (E) are oscillatory.

In 2005, Bohner [4], proved that, using exponential functions notation for any time scale T,

if Eq. (E) has an eventually positive solution, then α defined by (1.16) satisfies α ≥ 1.

In 2005, Zhang et al. [32], and in 2006, Şahiner and Stavroulakis [28], using by different

technique, obtained that if τ(t) is nondecreasing and

(1.17) limsup
t→∞

σ(t)∫
τ(t)

p(s)∆s > 1,

then all solutions of equation (E) are oscillatory.

2. Main results

In this section, we present a new sufficient condition for the oscillation of all solutions of (E),

under the assumption that the argument τ(t) is non-monotone. Set

(2.1) h(t) := sup
s≤t

τ(s), t ≥ 0.

Clearly, h(t) is nondecreasing, and τ(t)≤ h(t) for all t ≥ 0.

The following lemma was given in [28].

Lemma 2.1. Assume that f :T→ R is rd-continuous, g :T→ R is nonincreasing and τ :T→ T

is nondecreasing. If b < u, then

(2.2)

σ(u)∫
b

f (s)g(τ(s))∆s≥ g(τ(u))

σ(u)∫
b

f (s))∆s.
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Theorem 2.2. Assume that (1.1) holds. If τ(t) is non-monotone and

(2.3) limsup
t→∞

∫
σ(t)

h(t)
p(s)∆s > 1,

where h(t) is defined (2.1), then all solutions of (E) oscillate.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution x(t) of

(E). Since −x(t) is also a solution of (E), we can confine our discussion only to the case where

the solution x(t) is eventually positive. Then there exists a t1 > t0 such that x(t), x(τ(t)) , x(h(t))>

0, for all t ≥ t1. Thus, from (E) we have

x∆(t) =−p(t)x(τ(t))≤ 0, for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function of positive numbers. In view of

this, and taking into account that τ(t)≤ h(t)≤ t and h(t) is nondecreasing, (E) gives

(2.4) x∆(t)+ p(t)x(h(t))≤ 0, t ≥ t1.

Integrating (2.4) from h(t) to σ(t) and using Lemma 2.1, we obtain

x(σ(t))− x(h(t))+
∫

σ(t)

h(t)
p(s)x(h(s))∆s≤ 0

and

−x(h(t))+ x(h(t))
∫

σ(t)

h(t)
p(s)∆s≤ 0

or

x(h(t))
[∫

σ(t)

h(t)
p(s)∆s−1

]
≤ 0.

Consequently,

limsup
t→∞

∫
σ(t)

h(t)
p(s)∆s≤ 1,

which contradicts (2.3). The proof of the theorem is complete.

We remark that if τ(t) is nondecreasing, then we have τ(t) = h(t) for all t ≥ 0, and the

condition (2.3) reduce to

limsup
t→∞

∫
σ(t)

τ(t)
p(s)∆s > 1,

which implies that it is condition (1.17).
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Lemma 2.3. Assume that (2.1) holds and m > 0. Then, we have

(2.5) m = liminf
t→∞

t∫
h(t)

p(s)∆s = liminf
t→∞

t∫
τ(t)

p(s)∆s,

where h(t) is defined (2.1).

Proof. Clearly h(t)≥ τ(t) and so

t∫
h(t)

p(s)∆s≤
t∫

τ(t)

p(s)∆s.

Hence

liminf
t→∞

t∫
h(t)

p(s)∆s≤ liminf
t→∞

t∫
τ(t)

p(s)∆s.

If (2.5) does not hold, then there exists a m′ > 0 and a sequence {tn}(tn ∈ T, n ∈ N) such that

tn→ ∞ as n→ ∞ and

lim
n→∞

tn∫
h(tn)

p(s)∆s≤ m′ < m.

By definition, h(tn) = sups≤tn τ(s), and hence there exists a t ′n≤ tn such that h(tn) = τ(t ′n). Hence

tn∫
h(tn)

p(s)∆s =
tn∫

τ(t ′n)

p(s)∆s≥
t ′n∫

τ(t ′n)

p(s)∆s.

It follows that


t ′n∫

τ(t ′n)

p(s)∆s


∞

n=1

is a bounded sequence having a convergent subsequence, say

t ′nk∫
τ(t ′nk

)

p(s)∆s→ c≤ m′, as k→ ∞

which implies that

liminf
t→∞

t∫
τ(t)

p(s)∆s≤ m′ < m

contradicting (2.5).
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Theorem 2.4. Assume that (1.1) holds. If τ(t) is non-monotone or nondecreasing and

(2.6) liminf
t→∞

t∫
τ(t)

p(s)∆s >
1
e
,

then all solutions of (E) oscillate.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution x(t) of

(E). Since −x(t) is also a solution of (E), we can confine our discussion only to the case where

the solution x(t) is eventually positive. Then there exists a t1 > t0 such that x(t), x(τ(t))> 0, for

all t ≥ t1. Thus, from (E) we have

x∆(t) =−p(t)x(τ(t))≤ 0, for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function of positive numbers.

Since τ(t)≤ h(t)≤ t and h(t) is nondecreasing for all t ≥ 0, from Eq. (E), we have

(2.7) x∆(t)+ p(t)x(h(t))≤ 0, t ≥ t1.

Integrating (2.7) from h(t) to t, we have

x(t)− x(h(t))+
t∫

h(t)

p(s)x(h(s))∆s≤ 0, for all t ≥ t1

or

(2.8) x(t)− x(h(t))+ x(h(t))
t∫

h(t)

p(s)∆s≤ 0, for all t ≥ t1

From (2.8) dividing by x(h(t)) , we have

(2.9)
x(t)

x(h(t))
−1+

t∫
h(t)

p(s)∆s≤ 0

Using by Lemma 2.3 and from (2.5) it follows that there exists a constant c > 0 such that

(2.10)
t∫

h(t)

p(s)∆s≥ c >
1
e

, t ≥ t2 > t1.

Combining the inequalities (2.9) and (2.10), we obtain

x(t)
x(h(t))

−1+ c≤ 0, t ≥ t2
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or
x(t)

x(h(t))
≤ 1− c, t ≥ t2

Thus, we have c < 1 and
x(h(t))

x(t)
≥ 1

1− c
, t ≥ t2,

Repeating the above procedure, it follows by induction that for any positive integer k,

(2.11)
x(h(t))

x(t)
≥
(

1
1− c

)k

, for sufficiently large t,

where c < 1.

Now, in view of (2.10), and for all large t, there exists a real number t∗ ∈ [h(t), t], t∗ ∈ T,

such that

(2.12)
t∗∫

h(t)

p(s)∆s≥ c
2

and
t∫
t∗

p(s)∆s≥ c
2
.

Integrating (2.7) from t∗ to t, and using the fact that the function x(t) is nonincreasing and

the function h(t) is nondecreasing, we obtain

x(t)− x(t∗)+
t∫
t∗

p(s)x(h(s))∆s≤ 0,

and using (2.12), we obtain

−x(t∗)+ x(h(t))
t∫
t∗

p(s)∆s≤ 0

or

(2.13) x(t∗)− x(h(t))
c
2
≥ 0.

Integrating (2.7) from h(t) to t∗, and using the same arguments we have

x(t∗)− x(h(t))+
t∗∫

h(t)

p(s)x(h(s))∆s≤ 0,

or

−x(h(t))+ x(h(t∗))
t∗∫

h(t)

p(s)∆s≤ 0
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and

(2.14) x(h(t))− x(h(t∗))
c
2
≥ 0.

Combining the inequalities (2.13) and (2.14), we obtain

x(t∗)≥ x(h(t))
c
2
≥ x(h(t∗))

(c
2

)2
,

or

x(h(t∗))
x(t∗)

≤
(

2
c

)2

<+∞

i.e., liminft→∞
x(h(t))

x(t) exists. This contradicts (2.11).

The proof of the theorem is complete.

Example 2.5. For T= R, consider the retarded differential equation

(2.15) x′(t)+(0.37)x(τ(t)) = 0, t ≥ 0,

where

τ(t) =


t−1, if t ∈ [3k,3k+1]

−3t +12k+3, if t ∈ [3k+1,3k+2]

5t−12k−13, if t ∈ [3k+2,3k+3]

, k ∈ N0.

By (2.1), we see that

h(t) := sup
s≤t

τ(s) =


t−1, if t ∈ [3k,3k+1]

3k, if t ∈ [3k+1,3k+2.6]

5t−12k−13, if t ∈ [3k+2.6,3k+3]

, k ∈ N0.

(For figure of τ(t) and h(t), see Example 1 in [5]). Computing, we get

liminf
t→∞

t∫
τ(t)

p(s)ds = 0.37 >
1
e
,

that is, condition (2.6) of Theorem 2.4 is satisfied and therefore all solutions of (2.15) oscillate.
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Observe, however, that

σ(t)∫
h(t)

p(s)ds =

t∫
h(t)

p(s)ds

=

3k+2.6∫
h(3k+2.6)

p(s)ds =
3k+2.6∫

3k

p(s)ds = 0,962

and therefore

limsup
t→∞

σ(t)∫
h(t)

p(s)ds = 0,962 < 1,

that is, condition (2.3) of Theorem 2.2 is not satisfied.
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