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Abstract. In this paper, we consider curves of AW (k)-type (1 <k < 3) in Three Dimensional Lie Groups. We
give harmonic curvature conditions of AW (k)-type curves. Furthermore, we investigate that under what conditions

AW (k)-type curves are helix. Besides, considering AW (k)-type curves, we investigate Bertrand curves and we

show that there are Bertrand curves of AW(2), AW(3) and weak AW (2)—types.
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1 Introduction

In the curve theory of Euclidean space, the most important subject is to obtain a characterization

for a regular curves. These characterizations can be given for a single curve or for a curve pair.

Helix, slant helix, plane curve, spherical curve, etc. especially the helices, are used in many

applications [2,3,19]. Similarly, by considering two curves, some special curve pairs such as

involute evolute curves, Bertrand curves, Mannheim curves have been defined and studied so
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far [10,11,14]. Accordingly, Bertrand mates represent particular examples of offset curves
which are used in computer-aided design (CAD) and computer-aided manufacture (CAM). The
distance between a Bertrand curve and its mate measured along the principal normal is known
to be constant. We can see helical structures in nature and mechanic tools.

As a matter of fact, it is the simplest of the three-dimensional spirals. One of the most in-
teresting spirals is referred to as the k-Fibonacci spirals which appears naturally from studying
the k-Fibonacci numbers and the related hyperbolic k-Fibonacci function. Fibonacci numbers
and the related Golden Mean or Golden Section appear very often in theoretical physics and
physics of the high energy particles (see [7,8,9]). Besides, in the field of computer aided design
and computer graphics, helices can be used for the tool path description, the simulation of kine-
matic motion or design of highways [18]. Also we can see the helix curve or helical structure in
fractal geometry, for instance hyperhelices. In differential geometry; a curve of constant slope
or general helix in Euclidean 3-space E> is defined by the property that its tangent vector field
makes a constant angle with a fixed straight line (the axis of the general helix).

Coken and Ciftci have studied the degenarete semi-Riemannian geometry of Lie group [6].
They obtained a naturally reductive homogeneous semi-Riemannian space using the Lie group.
Later, some of subjects given above have been considered in three dimensional Lie groups and
some characterizations for these curves have been obtained in a three dimensional Lie group
[15,16]. Also, Ciftci[5] defined general helices in three dimensional Lie groups with a bi-
invariant metric and obtained a generalization of Lancret’s theorem and gave a relation between
the geodesics of the so-called cylinders and general helices.

Recently, many interesting results on curves of AW (k)-type have been obtained by many
mathematicians (see [12,13,17]). For example, Ozgiir and Gezgin studied a Bertrand curve of
AW (k)-type and they showed that there was no such Bertrand curve of AW (1)-type and @ was
of AW (3)-type if and only if it was a right circular helix. In addition they studied weak AW (2)-
type and AW (3)-type conical geodesic curves in E>. Kiilahci, Bektas and Ergiit give curvature

conditions of a AW (k)-type Frenet curve in Lorentzian space.
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In this paper, we have done a study on Bertrand curves of AW (k)-type. However, to the
best of author’s knowledge, Bertrand curves of AW (k)-type have not been presented in Three

Dimensional Lie Groups. Thus, the study is proposed to serve such a need.

2 Preliminaries

Let G be a Lie group with a bi-invariant metric (,) and D be the Levi-Civita connection of Lie
group G. If g denotes the Lie algebra of G then we know that g is isomorphic to 7,G where e is

neutral element of G. If (,) is a bi-invariant metric on G then we have

2.1) (X,[v,Z]) =([x,Y],Z)
and
2.2) DY = % X.,Y]

forall X,Y and Z € g.

Let o : I C R — G be an arc-lenghted curve and {X;,X5,...,X, } be an orthonormal basis of
g. In this case, we write that any two vector fields W and Z along the curve ¢ as W =Y | w;X;
and Z =Y ,z;X; where w; : I — R and z; : I — R are smooth functions. Also the Lie bracket

of two vector fields W and Z is given

n
W.Z] =} wizi [Xi, X]]
i=1
and the covariant derivative of W along the curve o with the notation D, W is given as

follows

o
2.3) DoW =W+ [T, W]

where T=a'and W =YY" WwX;or W=Y", Ufi—vth,-. Note that if W is the left-invariant vector

field to the curve @ then W = 0 (For see detail [4]).
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Let G be a three dimensional Lie group and (7, N, B, k, T) denote the Frenet apparatus of the

curve o, and calculate Kk = HTH .

Definition 1. Let o : I C R — G be a parametrized curve with the Frenet apparatus (T,N,B, K, T)

then
1
(2.4) =5 ([T,N],B)
or
1. . 1 .
G =53 (1 [TT]) + = [l [T 7]
(see [4]).

Definition 2. Let ot : I C R — G be an arc length parametrized curve with the Frenet apparatus

(T,N,B,x, 7). Then the harmonic curvature function of the curve  is defined by

where 7 = % ([T,N],B) .

Theorem 3. Let o : 1 C R — G be an arc length parametrized curve with the Frenet apparatus

(T,N,B,x,7). If the curve o is a general helix if and only if
H = const.
(see [5]).
Theorem 4. Let o : I C R — G be an arc length parametrized curve with the Frenet apparatus
(T,N,B,x,7). Then a is a slant helix if and only if

3
2\2
G:M:tane
H'

is a constant where H is a harmonic curvature function of the curve o and 6 # 5 is a constant

[16].

Proposition 5. Let oo : I C R — G be an arc-length parametrized curve with the Frenet appa-

ratus {T,N,B}. Then the following equalities
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[T,N] = ([T,N],B)B = 21¢B

[T,B] = (|T,B],N)N = —21GN
hold [16].

Remark 6. Let G be a Lie group with a bi-invariant metric {,).Then the following equalities
can be given in different lie groups [4].

i) If G is abelian group then 1 =0

ii) If G is SO? then 1 = %

iii) If G is SU? then 16 = 1

3 Aw(k)-type curves in Three Dimensional Lie Groups

In this section, harmonic curvature of curves of AW (k)-type are considered. We give some
theorems and corollaries.

Let o : I C R — G be an arc-length parametrized unit speed curve in three dimensional Lie
groups. The curve « is called a Frenet curve of osculating order 3 if its derivatives
o (s),0 (s),0" (s),a" (s) are linearly dependent and o (s), ¢’ (s)," (s), 0" (s) are no longer
linearly independent for all s € /. To each Frenet curve of order 3 one can associate an orthonor-
mal 3—frame {T(s),N(s),B(s)} along o such that (&' (s) = T(s)) called the Frenet frame and
functions k,7 : I — R called the Frenet curvatures, such that the Frenet formulas in three di-

mensional Lie groups are defined

3.1) DrT(s) =x(s)N(s)
DrN(s) = —k(s)T(s)+ (Tt —16)(s)B(s)

DrB(s) = (16 — 7)(s)N(s)

where D is the Levi-Civita connections of Lie group G and 7 = 3 ([T, N],B) [16].
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Proposition 7. Let o : I C R — G be a Frenet curve in three dimensional Lie groups, then we

have

n ! " /

o (s) = (=3K(s)K ()T () + (K () = K> (s)(1 — H(s)))N(s) + (2K (s)K(s)H (5) + (k(s)H (s)) ) B(s).

T—1TG
K

Proof. From Frenet formulas in three dimensional Lie groups (3.1) and by using H = , We

have the results. O

Notation. Let us write

(3.2)  Ni(s) =x(s)N(s)
(33)  Ny(s) = K (s)N(s) + K2(s)H(s)B(s)

" !

(34)  Ns(s) = (K (5) = k() (1 = H*(5)))N(5) + (3K (s) K(s)H (s) + K>(s)H (5))B(s)

n nn

Remark 8. o/ (s), 0 (s),a" (s),a" (s) are linearly dependent if and only if Ny(s),Na(s),N3(s)

are linearly dependent.
As the definition of Aw(k) type curves in [1], we have

Definition 9. Frenet curves (of osculating order3) in three dimensional Lie groups are

(i) of type weak Aw(2) if they satisfy

(3.5) N3(s) = (N3(5), N2 (5)) N2 (s),
(ii) of type weak Aw(3) if they satisfy

(3.6) N3(s) = (N3(s), Ny (s)) Vi (s)

where
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Proposition 10. Let @ be a Frenet curve(of osculating order3) in three dimensional Lie groups.
If o is of type weak Aw(2) then
3.7) K (s) — 1 (s)(1— H2(s)) = 0.

Corollary 11. Let a be a Frenet curve of type weak Aw(2). If & is plane curve then

(3.8) K(s) =+

where c is constant.

Proof. Suppose that « is a Frenet curve of type weak Aw(2). Then the Eq. (3.7) hold on «.

Since « is a plane curve, we have

(3.9) H(s)=0.

Substituting (3.9) in (3.7), we get

K (s)—K(s) = 0.

So the solution of the last equation gives us (3.8). Hence, the proof is completed. 0J

Proposition 12. Let a be a Frenet curve (of osculating order3) in three dimensional Lie groups.

If o is of type weak Aw(3) then

(3.10) 3k (s)k(s)H(s) + k%(s)H (s) = 0.

Definition 13. Frenet curves (of osculating order3) in three dimensional Lie groups are
(i) of type Aw(1) if they satisfy N3 (s) =0,
(ii) of type Aw(2) if they satisfy

G.1D) IN2(5)II* N3 (s) = (N3(5), Na(s)) Na(s)-

(iii) of type Aw(3) if they satisfy

(3.12) IN1(5)[1> N3 (s) = (N3(s), N1 (s)) Ny (s).



BERTRAND CURVES OF AW(K)-TYPE IN THREE DIMENSIONAL LIE GROUPS 813

Theorem 14. Let o be a Frenet curve (of osculating order3) in three dimensional Lie groups.

Then o is of type Aw(1) if and only if

(3.13) K (s)— K (s)(1— H*(s)) =0
and
(3.14) 3K (s)k(s)H (s) + K2 (s)H (5) =0

Proof. Since « is a curve of type Aw(1), we have N3(s) = 0. Then from Eq. (3.4), we have

" /

(k (s) — x>(s)(1 —H*(s)))N(s) + (3K/(S)K‘(S)H(S) + k2(s)H (s))B(s) = 0.

Furthermore, since N and B are linearly independent, we get

n /

K (s)—x>(s)(1 —H?(s)) =0 and 3K/(s)K(s)H(s) +k2(s)H (s) =0.
The converse statement is trivial. Hence our theorem is proved. 0

Corollary 15. Let a be a Frenet curve (of osculating order3) in three dimensional Lie groups.

Then there is no (circular or general) helix of type Aw(1).

Proof. Assume that o be a helix. Then by the Theorem (3) H(s) is constant. So, H (s) = 0.
Therefore the equations (3.13) and (3.14) can be written as follows:

"

K (s) = k(s)(1 - H’(s)) =0

and
3k (s)x(s)H(s) =0.

Since the solution of above differential equations does not exist, there are not circular and

general helix of type Aw(1). O

Theorem 16. Let o be a Frenet curve (of osculating order3) in three dimensional Lie groups.
Then o is of type Aw(2) if and only if

/ "

(3.15) 3(1(/ (5))2x(s)H (s) + K ()2 ()H (s)— K (s)k>(s)H(s)+ x> (s)H (s)(1—H?(s)) =0.
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Proof. Suppose that o is a Frenet curve of order 3, then from (3.3) and (3.4), we can write

(3.16) Na(s) = y(s)N(s) + B(s)B(s),
(3.17) N3(s) = n(s)N(s) + 8(s)B(s),

where v, B,  and 0 are differentiable functions. Since N,(s) and N3 (s) are linearly dependent,

coefficients determinant is equal to zero and hence one can write
(3.18) =0.

Here,

and

Substituting these into (3.18), we obtain (3.15).
Conversely if the equation (3.15) holds it is easy to show that « is of type Aw(2). This

completes the proof. U
Corollary 17. If a Frenet curve of order 3 is a general helix of type Aw(2), then one can have
(3.19) 3(k (5))2 = K (5)K(s)+ k*(s)(1 — H?(5)) = 0.

Theorem 18. Let o be a general helix in three dimensional Lie groups. If o is of type Aw(2),

then
1
(3.20) K(s) = AT BioC and (T—16)(s) = V1 —Axk(s)

where A = 1 — H?(s), B and C are real constants.

Proof. Suppose that o is a general helix of type Aw(2). Then Eq.(3.19) holds. If we substitute
K(s) =x1in (3.19), we get

dZX dx 2 4 2
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Let us take x = y” and differentiating it twice we obtain

dx 1 dy
3.22 gy 122
(3.22) P g
d?x

2 (dy ? 1d2y
3.23 —=plp—1)yP (=2 P12
(3.23) g2 = Pp—1)y ( ds) +py'T s

Now, the substitution of (3.22) and (3.23) into (3.21), we get

& dy\? dy\?
Y oy p(p— 1)y (—y) ]—3p2y2”‘2 (—y) = Ay™,

ds? ds ds
d?y dy\* dy\
2p—1%* -1 2p=2 [ &) -3 2. 2p—2 (%Y —A 4p.
py s+ p(p—1)y ( ds) Py s y

Putting p(p — 1) =3p? (i.e. p= —%) into the last equation we get

2p—1 & — Ay41’.

So,
d2y
— = -2A.
ds?
Now, we solve this last equation. Since fl—s = —2As+ B, we get

y= —As> +Bs+C.
Furthermore, use of x = y% we obtain
x = (—As® +Bs-|—C)%.

Since H(s) = (T%i))(s), we have the result. O

Theorem 19. Let a be a Frenet curve(of osculating order3) in three dimensional Lie groups.
Then o is of type Aw(3) if and only if

! /

(3.24) 3% (s)k(s)H(s) + x*(s)H (s) = 0.

Proof. Suppose that & is a Frenet curve of order 3 which is of type Aw(3). If substituting (3.2)
and (3.4) in (3.12), we get (3.24).

The converse statement is trivial. Hence our proposition is proved. U
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Theorem 20. Let be o a general helix of osculating order 3. Then o is of type Aw(3) if and

only if & is a circular helix.

Proof. Suppose that o is a general helix, then by the Theorem (3) H (s) = 0. So, the equation
(3.24) becomes K (s)k(s)H(s) = 0. Since H(s) is none zero, k (s) = 0. By the general helix
(T — 76)(s) must be constant. So, & is a circular helix. The converse statement is trivial. Hence

our theorem is proved. 0

4 AW (k)-type Bertrand Curves in Three Dimensional Lie Groups G

This section characteries the curvatures of AW (k)-type Bertrand curves in G. We obtain some

theorems and results about these curves in three dimensional Lie groups.

Definition 21. A curve a : 1 C R — G with k(s) # 0 is called a Bertrand curve if there exist a
curve & : I C R — G such that the principal normal lines of o and & at s € I are equal. In this

case @ is called a Bertrand mate of o [15].

Theorem 22. Let o C G be a Bertrand curve. A Bertrand mate of o is as follows:
4.1) a(s) = o(s)+AN(s)

where A is constant [15].

Corollary 23. If & is a Bertrand mate of o, then

/

(4.2) (@(s)) = (1=Ax(s))T(s) + (AK(s)H(s)) B(s).

Proof. Since (o, &) is a Bertrand mate, then the Eq.(4.1) hold on a. Differentiating (4.1) with

T—1G

respect to s , by using Frenet formulas in three dimensional Lie groups (3.1) and H = —-<,

then (4.2) is obtained. O

Theorem 24. Let ot : I C R — G be unit speed curve. If & is a Bertrand mate of «, then angle

measurement of this curve between tangent vectors at corresponding points is constant.



BERTRAND CURVES OF AW(K)-TYPE IN THREE DIMENSIONAL LIE GROUPS 817

Proof. 1f (T (s), T(s)>/ = 0, then the proof is complete.

43) (T, 7)) = {(T(5) . 7)) + {T().(T(5)))
(4.4) = (K(s)N(s),T(s)) + (T (s),k(s)N(s))
(4.5) = R(s) (N(5),T(s)) + () (T (5),N(s))

Since N (s) is parallel to N(s) and N(s) LT (s), then
(4.6) (N(s),T(s))=0.
Since N(s) is parallel to N(s) and T (s) LN(s), then
4.7) (T(s),N(s)) =0.

Substituting (4.6) and (4.7) in (4.5), we have

!

(T(s),T(s)) =0.

Hence, the proof is completed. 0

Proposition 25. Let o be a Frenet curve (of osculating order3) in three dimensional Lie groups.

For x(s) # 0, « is a Bertrand curve if and only if there exists a linear relation
(4.8) Ax(s)+ux(s)H(s) = 1.
where A, L are non-zero constants and H is the harmonic curvature function of the curve o[ 13].

Corollary 26. Suppose that x (s) # 0 and (T — 16)(s) # 0. Then « is a Bertrand curve if and

only if there exist a nonzero real number A such that
(4.9) A(K (s)k(s)H (s) — x(s) (k(s)H(s)) ) — (x(s)H(s)) =0.

Proof. By the proposition(25), « is a Bertrand curve if and only if there exist real numbers

A # 0 and u such that Ax(s) + ux(s)H(s) = 1. This is equivalent to the condition that there

1-Ax(s)
KH (s)

exists a real number A # 0 such that is constant. Differentiating both sides of the last

equality, we get (4.9). The converse assertion is also true. U
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Proposition 27. Let a : I C R — G be a Bertrand curve with k(s) # 0 and (T — 15)(s) # 0.

Then o is of AW(2)-type if and only if there is a non zero real number A such that

/

4100 3(k (s)*H(s) + K (s) & — K (s)H(s)(3K (s)H (s) + K(s)H (5)) =0.

Proof. Since o is of Aw(2)-type, Eq.(3.15) holds and since « is a Bertrand curve, Eq.(4.9)

holds. If both of these equations are considered, (4.10) is obtained. 0J

Theorem 28. Let @ : I C R — G be a Bertrand curve with k(s) # 0 and (t— 16)(s) # 0. If o

is of type Aw(3), then o is a circular helix.

Proof. Suppose that a : I C R — G is a Bertrand curve of AW(3)-type with k(s) # 0 and
(T —16)(s) # 0. Then the Eqs.(3.24) and (4.9) hold on o, we get

(4.11) H ()22 (5) — K2(s)) = 0.

Since K(s) # 0, from Eq.(4.11) H'(s) = 0. Thus, H(s) is constant, then « is a circular helix.

Hence our theorem is proved. 0

Proposition 29. Let & : I C R — G be a Bertrand curve with k(s) # 0 and (7 — 1) (s) # 0. If
o is of weak AW(2)-type, then

4.12)  H (s)(Ak2(s) — k(s)) + H (s)2Ax(s)K (5) — 2K (s)) — k> (s)H (s) (1 — H?(5)) = 0.

Proof. Since o is of weak Aw(2)-type, From Eq.(3.7) we have

"

(4.13) K (s)— K (s) (1—H*(s)) =0.

Since o is a Bertrand curve, Eq.(4.9) holds

/

(4.14) H (s) (AK*(s) — Kk(s)) = K (s)H (s).

Differentiating above equation(4.14), we get

(4.15) K (s) = H'(s)(AK2(s) = K(s)) + g;S)(zx K(s)K (s) — 2K (s))

If equation (4.13) is substituted in (4.15), then (4.12) is obtained. O
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