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1. Introduction

Let A = {z € C : |z| < 1} be the open unit disk in the complex plane C, 0A its

boundary and H(A) the space of all analytic function on the unit disk. For an analytic
function f on the unit disk and 0 < r < 1, we define the delay function f,. by f.(e?) =
f(re®). Tt is easy to see that the functions f, are continuous on dA for each 7.
The theory of harmonic functions motivates the following classes of analytic functions,
determined by their limiting behavior as their arguments approach to the boundary 0A.
For 0 < p < oo, the Hardy space H? is defined as the set of analytic functions f : A — C
such that

11 = sup [ 1P <
i = SUP ) H(e)P 5 < oo,
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By the Littlewood Subordination Theorem (see [1]), we see that the supremum in the

above definition of H? is actually a limit, that is,
2
T o dO
P 10\ |p 7
I = timy [ U5 < .

It should be mentioned that the function ||.||%, : H? — R* is a norm on H?, and makes
HP? into a Banach space for 1 < p < oo (see [2]). For more studies on Hardy space, we
refer to [2, 5, 6].

Recently Fatehi [4], introduced the following definition

Definition 1. Let F': H(A) — H(A) be a linear operator such that F(f) =0 if and only
if f =0, that is, Fis 1 —1. For 1 < p < oo, the generalized Hardy space Hp,(A) = Hp,,
1s defined to be the collection of all analytic functions f on A for which

s [ IO < o

0<r<1

Denote the pth root of this supremum by || f|/z,,. Since, [F(f)[P is a subharmonic

function, so by [1], we have

2m ) de
I 0
1, = lim [ IFOEOPE < .

Therefore, f € Hp,, if and only if F(f) € H? and

2 ) do
IEOIE = 15, = Tim [ [F()(e)]

r—1- 0 %
It is easy to see that Hp,, is a normed space with the norm ||.| g, .

For 0 < p < 0o, the Bergman space AP is the set of all f € H(A) such that

AU@wma<w

where dA(z) = dx dy = rdrdf is the Lebegue area measure. We mention [3] as general
reference for the theory of Bergman spaces.
Throughout this paper, P denotes the set of all analytic polynomials and for a function

F, Rr denotes the range of F.
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We assume from now on that ¥ : [0,1] — [0,00) to appear in this paper is right-

continuous and nondecreasing functions such that the integral

/0 T(1L — p))pdp < 0.

We can define an auxiliary function as follows:

(1) pu(s) = sup Y(st)

, 0< s < o0,
0<t<1 ‘If()

we assume that

® [ et <ox

From now on we suppose that the above weight function W satisfies the following proper-
ties:

(a) ¥ is nondecreasing on [0, 1],

(b) ¥ is twice differentiable on (0, 1),

(c)fo (1 —r)rdr < oo,

(d)W(t) =W(1) >0,t>1 and

(e)W(st) = W(t), t=0.

We will need the following condition in the sequel.
1
(3) / (1 —72)72U(1 —r)dr < oo where 0 < ¢ < c0.
0

Throughout this paper, P denotes the set of all analytic polynomials and for a function
F. Rr denotes the range of F.
For p, q € (0,00), the weighted Bergman space Aj, , is the set of all f € H(A) such that

(4) HfHAp = sup // | fo(e NP —rH)T2W(1 — 7)) df dr < oo.

The above formula defines a norm that turns A?py o Into a Hilbert space whose inner product

is given by

(5) Frgha, = Fn)gn) = /0 () G (@) r dB dr

for each f,g € A3,
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Remark 1. By using known technique, it not hard to prove that (Ay, , ||| az ) is a Banach
’ )

space, that is, the norm ”'HA{'},Q is complete.

1. (F,¥)-BERGMAN SPACES

Definition 2. Let F': H(A) — H(A) be a linear operator such the F(f) =0 if and only
if f =0, that is,F is 1 — 1. Suppose that ¥ : [0,1] — [0, 00) is a nondecreasing and right-
continuous function. For p,q € (0,00), the (F,V)-Bergman space ALy (D) = ALy, is
defined to be the collection of all analytic function f on A for which

(6) ||f||,47;wp = sup // F(f,(e)[P(1 —r?)T 2V (1 — r)df dr < oc.

0<p<1
The importance of this definition is that it contains some known classes of analytic

function spaces like Bergman and Hardy classes as we mention in the following remark:

Remark 2. We note that if fol(l —r2)972U(1 —r)rdr = 1, then we obtain the generalized
Hardy space as defined and studied in [4]. Also, if U(1 —r) =1, ¢ =0, and F(f,(¢?)) =

f(2), then we obtain the Bergman space AP.

Theorem 1. Let 0 < p,q < o0 and P C Rp. Then Aﬁ,’q 1s a subspace of Rp if and only

if ALy, is a Banach space.

Proof. Suppose that Ap , € Rr. Since A%\I, . 1s a normed space, it suffices to show that
it is complete. Let {f,} be Cauchy sequence in A% ~and set F'(f,) = g,. Then {g,} is

a Cauchy sequence in Ap . Since AY,  1s complete, there is a g € AL, , such that
lgn = gllaz, =0, as n — oc.

Since Ay, C Rp, there is an f € A(A) such that F'(f) = g. Now we show that this f is
the A%y -limit of {f,}. We have

[ fn = fllaz

F,V,q

= |lgn —glly, — 0, as n— oo

Hence f, — f € A%\I,’q for sufficiently large positive integer n, which implies that f €
A%,\p,q So f, — fin A%,\I/,q as n — 0o.

Conversely, suppose that A% is a Banach space. If Ay,  C Rp, then thereis a g € Ay,
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such that ¢ is not in R;. Since the polynomials are dense in AQ o+ there is a sequence {pn}
in P such that ||p, — 9||A{’1,,q — 0 as n — oo. Let ¢, = F~!(p,). Then {g,} is a Cauchy
sequence in Ay . and so there is a ¢ € AL, such that [|g, — QHA‘;’\D’Q — 0 as n — oo.
Hence || F(g,) — F(q)||Aqu — 0 as n — o00. On the other hand, ||F(g,) — 9||Aqu — 0 as

n — oo. This shows that g = F(¢) which is a contradiction.

Proposition 1. Let A?I,’q C Rp, and suppose that

(7) J@@zlu P2)12(1 — 1) dr < oo,

then A%y, is a Hilbert space.

Proof. We define the scalar product on A%y, by
G, = [ [ FUDFGEM0 0~ i

sc/” () E (g (@) db = (F(f), F(g)}a.

It is not hard to show that this scalar product defines an inner product on A%y ,.

There is a Banach space A’\?I,, o+ such that it does not satisfy the conditions of Theorem 2.1.
For example, let 1 < p,q < oo, F(f)(2) = zf(z) for each f € H(A). Then 13Rr. By the

following proposition, we see that although Aﬁ,ﬂ C Rp, AI},\I,’q is a Banach space.

Proposition 2. Suppose that 1 < p < o0, 0 < ¢ < o0, h(z) € H(A), h # 0 and
F(f) = fh for every f(z) € H(A). Then A%y, is a Banach space.

Proof. 1f Ay, € Rp, then by Theorem 2.1, the proposition holds. Otherwise, let {f,,} be
a Cauchy sequence in A%, . Setting F'(f,) = gn, s0 {gn} is a Cauchy sequence in Af,
Therefore, there is a g € Aj, , such that [|g, — QHAQ, L 0asn — oo. If g € Rp, then the
proof is similar to the proof of Theorem 2.1.

Now suppose that ¢ is not in Rr. Then there are zy € A, my > 0, and msy > my such that
9(z) = (2 = 20)™ go(2),

h(z) = (= — 20)™ho(2),
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where ho(2), go(2) € H(A); go(20) # 0 and hg(29) # 0. Therefore, we have

lgu —gllag, = do— gllag
1 27
_ / / Ar(fo Py 7, 0)(1 = #2)520(1 — 1)df dr,
0 0

where

p

‘ <(p e’ — 20)"ho(pe”) fu — (pe” — 20)™ go(p ei9)> = M (fu: o, 7, 0).

Since ||gn — gHqu — 0 as n — 0o, we obtain

n—o0

(8) lim /01 /0% Ao, oy 0)(1 — 12)7-20(1 — )df dr — 0.

p

= A(fn, hn, 1, 0).

where

QMW—wmmwwmerW—wm%ym%

Hence, |[(z — 20)"™2hofn — (2 — 20)"' go||la» — 0 as n — oo. Since the point evaluation at
¥,q

2o is a bounded linear functional on A%, 4+ We obtain

9) (z0 — 20)™ho fn(20) — (20 — 20)™ go(20) — 0, n — 0.

So go(z0) = 0, which is a contradiction. The proof of Proposition 2 is therefore established.
In the following proposition, we will find a dense subset in A%,\I/, 4+ Whenever P C Rp.

Proposition 3. Suppose that 1 <p < oo, 0 < g < oo, and P C Rr. Then

{F-1(p) :pe P} = ALy,

Proof. Tt is clear that {F~'(p) : p € P} C A} .. Suppose that f € A% . Then there is
a sequence {h,} in P such that ||h, — F(f)||Az\£q — 0 as n — oo. Setting f, = F~1(h,),

we have

(10) V= Fllag, , = lhn = F(F)lLag,

so the result follows.

Corollary 1. Suppose that 1 < p < oo, 0 < ¢ < 00,, P C Rp, and F~(p) € P for each
p€P. Then PN ALy, = ALy,
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2. POINT EVALUATIONS

Let e, be the point evaluation at w, that is, e,(f) = f(w). Let w € A and H be a
Hilbert space of analytic functions on A. If e, is a bounded linear functional on H, then
the Riesz Representation Theorem implies that there is a function (which is usually called
K,) in H that induces this linear functional, that is, e, (f) = (f, K,,). It is well known
that point evaluations at the point of A are all continuous.

In this section, we investigate the continuity of the point evaluations on AZ}’\I,’ "

Next, we prove that an analytic function f on the unit disk with Hadamard gaps, that

is, f(z) satisfying nZ—Zl > ¢ > 1 for all k£ € N belongs to the space A%K’q.

Theorem 2. Let 0 < g < 00 and 1 < p < o0o. Suppose that ¥ satisfies the following

condition

2q—p—3

b IR
(11) / i <log —) V(1 —r)dr < oco.
0 r

Also, suppose that
> njfl
f)=> b7,
j=1

is in the Hadamard gap class, then f € ALy if

(12) > b7 < oo
Jj=1

Proof. First assume that condition (12) holds. We write z = re? in polar form and

observe that

NS byl
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Then by Theorem 2.1, letting F'(f) = g, we obtain

1y, = / / L =) (1 — r)df dr
_ /0/O%]g(rew)\p(l—rz)q2\11(1—r)d9dr
_ /01 /:W(ZO:; ybjwj—l)pu ~ A1 ) dr

[e.o]

_ /r PH[;U) w] )R~ ) dr,

Using Cauchy-Schwarz inequality to produce

S| = [ S wle] <[ T m]

j=1 -n=0n;ecl, n=0 n;l,

- oo P
Z(2n/2r2n)171/p<r2"2(17p)n/2>1/p Z ‘qu

L n=0 nj€ly,

IN

f; (@-p/2n (Zw |) Hi:;z/}

n;€ln

1 R 2"9((1=p)/2)n
C'| log E 2 E ]b|
r

n;€ln

IN

IN

where I,, = {j : 2" < j < 2""! j € N}. To this end, we combine the elementary estimates:

iZgrﬂ = \/52/ t2radt

n=0 n=0 2"

This very useful tool can now be applied to the calculation above to obtain

2g—p—3

(13) Ifla, <C fj S | [r(ost) v

TLJEIH
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where (1 — %) < 2log %. This together with (11), imply that

- \bj\:p(;n);

Ny el

(L)

- nj el

1f ||z < C

FU,q —

(14) < C

M 10

S
I
o

If n; € I,,, then n; < 2™ < 2"+ Tt follows that

e
1 2 p21
(Q—n) < TL]- .

Combining this with (14), we obtain

(15) g, 53| 3 I0l] "

n=0 “n;el,
Since f is in the Hadamard gap class, there exists a constant ¢ such that n;.; > cn; for

all 7 € N. Hence, the Taylor series of f(z) has at most ([log, 2]+ 1) terms a;z" such that

n; € I,. By (15) and Holder’s inequality, we deduce that

1fllag ., S (log.2+1)"% Z > Il

n=0n;el,

Then, f € ALy,

Lemma 1. If f € A} (0 < p,q < o0), then
lim/ / MNP = rH)T2W(1 — 7)rdf dr
0

p—1
27
/ / 19 NP — )q_Q\If(l—r)rder

and
tim [ [ PG ) = PP =720 = r)dddr o

Proof. First let us prove

iy [ [ PO = PP = )20 = )i dr =0

p—1 0
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for p=2. If F(f(2)) = > 00(f(2))" is in A%y, , then > [b;|P < oo.
j=1
But by Fatou’s lemma, we have

/0 / TP (e) — F(FE) P — 22U (1 — 1) do dr

p—1

=/

—Z|bIK(nj)/ / (pe®) — f(e))2(1 —r2)T2T(1 — r)db dr

which tends to zero as p — 1. Now, we proof
lim/ / MP(L = rH)T2W(1 — 7) db dr
p—1

/ / NP1 —r2)42W(1 — ) df dr

in the case p = 2, If f € AF\IIq (0 < ¢ < o0), we use the factorization f = Bg where

< lim inf / / F(f,(e)) = F(F(pe®)) (1 = r2)7=2w(1 - r) df dr

2
bif(pe™) = by f(e?)] (1= )7 20(1—r)do dr

B(z) is a Blaschke product and g(z) is an A% . Since (g(2 )2 € Aty 4 it follows from

what we have just proved that

| [ e - tva - aar

/ / ML — )T — 1) d dr.
Then,

2 2
// NP (1—rH) 20 (1— Trdedr—// ENPA—rH) T2 (1—r)r db dr.

This together with Fatou’s lemma complete the proof.

Theorem 3. Let ¥ : [0,1] — [0,00) be a non-decreasing and right-continuous function.

Suppose that w € A and Ay , C Rp. For 1 <p <2, O<q<ooandZF L(z0)(w) 27 €
Jor)

H>. If for each 0 < p < 1, f € Apy,,, and (F(f)), = F(f,), then e, is continuous on

P
AF,\Ihq‘
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Proof. Let f € Ay, Then for each 0 < p <1, f, € A%y, and then

fp(w) = <fvaw>A2Fq,
= (F(fo), F(Ku))az,

_ //% (o () FEL) (€)(1 — 1)1 20 (1 — r)r df dr.

Also by Lemma 1, we have ||(F(f)), — F(f)HA1 , 7 0asp—1

Hence, using Holder’s inequality and the fact that F(K,) = Z F~1(27)(w) 27, we obtain

— F(f)(ew))F(Kw)(ew)(l — )2 (1 — r)rdf dr

IN

IF (K. Hm:/ /ﬂ F(fo(e”) = F(f(e”)| (1 = r?)12 (1 — r)rdfdr

[ (o) [l oo I CF F(Pllay,, =0 as p—=1,

IN

so we obtain

flw) = /lgrifp(w)

B /0 /o " F(im fylp e DFR()(1L— )01~ r)rdd dr

B /0 /0 RN FTRLI) (1~ )2 W(1— ryrdddr.
Hence,

F(K)(e9)(1 — )72 (1 — r)rdf dr

< HF ||oo||fHA1

F,U,.q

for each f GAF\I,Q Now let 1 <p < 2. If f € ALy, then

@) < UPE) ol Ly, < IFED ol f g,

so, the result follows.
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Theorem 4. Let ¥ : [0,1] — [0,00) be a non-decreasing and right-continuous function
satisfying (7) and let 1 < p < 00, 0 < ¢ < oo, w € A, h € H(A), h # 0. For each
f e H(A), F(f)=fh. Then e, is continuous on A% ;.

Proof. We break the proof in to two parts.
(1) Let h(w) # 0. If |w] < p <1 and T, is the circle of radius p with center at the origin,

then the Cauchy formula shows that for any f in AI},\I/, ”

fm) = oo [ T8

1 f2m i0 i0 ,
_ L flpe 'e)h(pe )mezedg
2mi Jo pe’ —w
1 2m 0 ) p
= — Nh(pe?)———db
e A e
Then,
27 19 et
/ F)h(@) (1= 2 (1=r)rdr = - / e (- 20a-p)r pdo s

By Holder’s inequality, it follows that

P
A==l

(16)  [f(w)[[A(w I/ (1—r%)" 2‘11(1—7“)7“d7“<—II(fh) .z

where % + 1% = 1. Now if r tends to 1, |(pre*i9)‘ converges uniformly to the bounded

function |1 — we|~! and

”(fh)PHAfI,ﬂ < ||fh||Aqu-

_ llp/(p—we™™)

Hence there in an M T (T.9) ' « 50 such that

1] < sl g,

(w)]
and the result follows.

(2) Let h(w) = 0. Then h(z) = (z—w)™ho(2), where m € N, ho(z) € H(A), and hg(w) # 0.
Let F\(f) = fho for each f € H(A), it is easy to see that Ay,  C AL g . Then by the
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preceding part, there is a constant 0 < C' < oo such that
[f(@)" < Cllfhollag,,
_ 1k if) p 2\q—2
- / / (pe' ‘ ’h ‘ \619 w‘mp(l — )12 U(1 — r)rdf dr

27r
1—]w[ // (pe' |p}h ’9 ‘p )9 Q\P(l—r)rder

IN

WHJCHANQ

p : : p
for each f € AF,\II,q' So e, is continuous on AF7\I,7q.
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