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Abstract. In this present study, a food chain system with the disease in pest species and gestation delay for the

natural enemy is proposed. Here the boundedness and positivity of the system are studied. Stability analysis
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proposed system. Further, simulations have been carried out to support our analytic results.
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Since pest species are harmful to plants and their control has become a challenge for us. Pest

population is responsible for severe environmental and realistic problems. [1, 3]. Also, many

authors have discussed the models based on chemical pesticides, which are less harmful to hu-

manity and environment [2, 4, 5, 6, 7]. For productive use of biological or natural methods

to manage pest populations, without any adverse effects, it is essential to understand the biol-

ogy of beneficial species or natural enemy and pests [8]. Our most important aim is to control

negative impacts of agriculture pests, for both humanity and agriculture, which harms the en-

vironment and generating different types of pollution. Researchers must have to produce, the

natural systems to control pests by taking into account the communications between solid Allee

effect in pests with natural methods: alternative food support for the natural enemy, introduc-

tion of infected pests to control healthy pests[9, 10] The interactions between pests and natural

enemies in the same biological environment is an ample exciting area of research as per Lotka

and Volterra. Natural enemies are more vulnerable to the infected pest since infectious pest

population is weak and less active. Therefore natural enemy efficiently harvests pests. Due

to the interaction between infected pests and natural enemy, the natural enemies must be in-

fected. Hence natural enemy populations may live on other food resources for their growth and

survival. Also, the species do not grow instantaneously; some time is taken by the species to

give a new generation, called gestation lag period [11]. Functional responses play an impor-

tant role to develop a predator-prey system in population dynamics. Various factors like hiding

technique of pests from the natural enemy, shooting ability of the predator to harvest insect,

etc., have a large influence on functional responses. Functional responses are of different types:

for example, Holling type I-III, etc. Also, people are more conscious and choose, the modern

methods to manage agricultural pests, for example, less harmful chemical pesticides and natu-

ral techniques[12, 13, 14, 15, 16], whereas biological techniques are simple and safer to control

pests than pesticide practices. Also time lag factors are of great significance to produce popula-

tion models and used by numerous authors[17, 18, 19, 20, 22, 23, 24, 25, 26, 27]. According to

many authors, models with continuous lag factors are practical[22] than instant delays[27].

In the light of above literature survey, here, dynamics of a food chain model with infection

in pest species and gestation delay for the natural enemy is proposed and analyzed. The model
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is represented as follows: Section 1, consists of an introduction. The proposed mathematical

system is presented, in section 2. In section 3, the boundedness and positivity of the model

have been discussed. Equilibrium points and their stability analysis is investigated for possible

steady states, in section 4. The sensitivity analysis of the system at interior equilibrium point

for system parameters is presented, in section 5. In section 6, numerical simulations have

been carried out to support our analytic results. Finally, the results have been concluded in the

conclusion section.

2. The Proposed Mathematical System

The assumptions of the proposed model are:

(i) In a particular habitat, there are four types of populations, namely, plant X(t), healthy pest

Ph(t), infected pest Pi(t) and natural enemyN(t).

(ii) Plants grow logistically with α as the intrinsic growth rate and k being carrying capacity.

Thus, when the system is free from pest population, plants grow with rate αX
(
1− X

k

)
.

(iii)Plants are harvested by healthy pests with Holling type-I, response function.

(iv) Pests can hide from the natural enemy, hence the natural enemy harvesting pests with

Holling type-II response function.

(v) Let β be the predation rate of the plant by healthy pest; β1 is the conversion rate for

healthy pest; γ is the contact rate of infected pest with healthy pest; δ is the harvesting rate

of healthy pests by the natural enemy. Let a be the half saturation constant, and δ1 be the

predation rate of the infected pest by the natural enemy. Let δ2 be the conversion rate for the

natural enemy; µ1, µ2 and µ3 are the natural death rates for healthy pest, infected pest, and

natural enemy respectively. Let η be the alternative food resource for the growth of natural

enemies. Natural enemies die with rate η1 due to consumption of infected pest.

(vi) Finally, τ is the gestation delay for the natural enemy.
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Keeping in view the assumptions and interactions, our proposed system is of the form:

dX
dt

= αX
(

1− X
k

)
−βXPh, (1)

dPh

dt
= β1XPh− γPhPi−

δPhN(t− τ)

a+Ph
−µ1Ph, (2)

dPi

dt
= γPhPi−δ1PiN−µ2Pi, (3)

dN
dt

=
δ2δPhN(t− τ)

a+Ph
+ηN−η1PiN−µ3N, (4)

with initial conditions: X(0)> 0,Ph(0)> 0,Pi(0) and N(0)> 0.

3. Positivity and boundedness

Here, the positivity and boundedness of solution of the system (1)− (4), is discussed with

the help of following lemmas:

Lemma 3.1. The solution of the mathematical system (1)− (4), with non-negative initial pop-

ulations for all t ≥ 0.

Proof. Let the solution of the proposed system (1)− (4) with non-negative initial populations

be (X(t),Ph(t),Pi(t),N(t)). For t ∈ [0,τ], the equation (1) may be written as:

dX
dt
≥−αX2

k
−βXPh,

it follows that

X(t)≥
exp
{
−
∫ t

0 (βPh)du
}

X(0)+
∫ t

0
α

k exp
{
−
∫ t

0 (βPh)du
}

dv
> 0.

For t ∈ [0,τ], the equation (2) of system can be written as

dPh

dt
≥−γPhPi−

δPhN
a+Ph

−µ1Ph,

which evidences that

Ph(t)≥
exp
{
−
∫ t

0 (µ1)du
}

Ph(0)+
∫ t

0
−γPi(a+Ph)−δN

Ph(a+Ph)
exp
{
−
∫ t

0 (µ1)du
}

dv
> 0.

The equation (3) of model, for t ∈ [0,τ] may be represented as

dPi

dt
≥−δ1PiN−µ2Pi,
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which implies that

Pi(t)≥ Pi(0)exp
{
−
∫ t

0
(δ1N +µ2)du

}
> 0.

From equation (4), for t ∈ [0,τ], we have

dN
dt
≥−η1PiN−µ3N,

which results that

N(t)≥ N(0)exp
{
−
∫ t

0
(η1Pi +µ3)du

}
> 0.

Clearly, X(t)> 0, Ph(t)> 0, Pi(t)> 0 and N(t)> 0 for all t ≥ 0, by induction.

Lemma 3.2. The solution of proposed model (1)− (4) is uniformly bounded in Ω, where

Ω =

{
(X ,Ph,Pi,N) : 0≤ X(t)+Ph(t)+Pi(t)+N(t)≤ (α +µ)2k

4αµ

}
,

µ = min{µ1,µ2,−(µ3−η)}, β1 << β , δ2 << δ .

Proof. Let V (t) = X(t)+Ph(t)+Pi(t)+N(t). Now, differentiating V (t) w.r.t. t, we have

dV (t)
dt

= αX
(

1− X
k

)
−µ1Ph−δ1PiN−µ2Pi +ηN−η1PiN−µ3N.

As alternate food resource η , for natural enemy is limited, so assuming η is small, we have

dV (t)
dt

+µV ≤ (α +µ2)k
4α

.

Therefore,

0≤V (t)≤V (0)e−ut +
(α +µ)2k

4αµ
.

As t→ ∞, we have

0≤V (t)≤ (α +µ)2k
4αµ

.

Hence, V (t) is bounded, i.e., the proposed system is bounded.

4. Equilibrium points and their stability analysis

The system of equations (1)− (4) have six feasible equilibrium points:

(i) The equilibrium point E0(0,0,0,0) always exists.

(ii) The equilibrium point E1(k,0,0,0) exists.
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(iii) The equilibrium point E2(X2,Ph2,0,0) exists only when kβ1 > µ1, where X2 =
µ1
β1
,Ph2 =

α(1− µ1
kβ1

)

β
.

(iv) The natural enemy free equilibrium E3(X3,Ph3,Pi3,0) exists only when

γ > max{β µ2
α

, kββ1µ2
(kβ1−µ1)α

}, where X3 = k− kβ µ2
αγ

, Ph3 =
µ2
γ

, Pi =
−αγµ1+kβ1(αγ−β µ2)

αγ2 .

(v) The equilibrium E4(X4,Ph4,0,N4) exists only when
α

β
>max{ a(−η+µ3)

η+δδ2−µ3
, akβ1(−η+µ3)
(kβ1−µ1)(η+δδ2−µ3)

} and η < µ3 <η+δδ2; where X4 = k+ akβ

α
− akβδδ2

αη+αδδ2−αµ3)
,

Ph4 =
a(−η+µ3)
η+δδ2−µ3

, N4 =
aδ2(kβ1(αδδ2(α+aβ )(η−µ3))−αµ1(η+δδ2−µ3))

α(η+δδ2−µ3)2 .

(vi) Interior equilibrium point E∗(X∗,P∗h ,P
∗
i ,N

∗) exists, where X∗,P∗h ,P
∗
i ,N

∗ are given by



α

(
1− X∗

k

)
−βP∗h = 0,

β1X∗− γP∗i −
δN∗

a+P∗h
−µ1 = 0,

γP∗h −δ1N∗−µ2 = 0,

δδ2P∗h
a+P∗h

+η−η1P∗i −µ3 = 0.


(5)

Now, the local behavior of non-negative equilibria of the system (1)− (4) is as follows: using

the lemmas [11, 28], for the transcendental polynomials. For the transcendental polynomial

equation of first degree of the form

λ + r+qe−λτ = 0, (6)

we will verify the following conditions:

(A1) q+ r > 0;

(A2) r2−q2 > 0;

(A3) r2−q2 < 0.

Now, we will state the following lemmas similar to [11, 28]:

Lemma 4.1. For equation (6);
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(i) If (A1)− (A2) holds, then all the roots of equation (6) have negative real parts for all

τ ≥ 0.

(ii) If (A1)and(A3) hold and τ = τ
+
j , then equation (6) has a pair of purely imaginary roots

±iw+. When τ = τ
+
j then all roots of (6) except ±iw+ have negative real parts.

Now, for second degree polynomial equation

λ
2 + pλ + r+(sλ +q)e−λτ = 0, (7)

we will check the following relations:

(B1) p+ s > 0;

(B2) q+ r > 0;

(B3) either s2− p2 +2r < 0 and r2−q2 > 0 or (s2− p2 +2r)2 < 4(r2−q2);

(B4) either r2−q2 < 0 or s2− p2 +2r > 0 and (s2− p2 +2r)2 = 4(r2−q2);

(B5) either r2−q2 > 0, s2− p2 +2r > 0 and (s2− p2 +2r)2 > 4(r2−q2).

Lemma 4.2. [11, 28] For equation (7);

(i) If (B1)− (B3) holds, then all the roots of (7) have negative real parts for all τ ≥ 0.

(ii) If (B1), (B2) and (B4) hold and τ = τ
+
j , then equation (7) has a pair of purely imaginary

roots ±iw+. When τ = τ
+
j then all roots of (7) except ±iw+ have negative real parts.

(iii) If (B1), (B2) and (B5) hold and τ = τ
+
j (τ = τ

−
j respectively) then equation (7) has a

pair of purely imaginary roots ±iw+ (±iw−, respectively). Furthermore τ = τ
+
j (τ−j , respec-

tively),then all roots of (7) except ±iw+ (±iw−, respectively) have negative real parts.

Theorem 4.3. The local behavior of different equilibrium points of the system (1)− (4) is as

follows:

(i) The equilibrium point E0(0,0,0,0) is always exist and unstable.

(ii) The equilibrium point E1(k,0,0,0) is stable only when µ1 > kβ1.

Proof. (i) The characteristic equation for E0(0,0,0,0) is

(−λ +α)(−λ −µ1)(−λ −µ2)(−λ +η−µ3) = 0. (8)
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Here, the characteristic roots are λ = α , λ =−µ1, λ =−µ2 and λ =−µ3. The equilibrium

E0(0,0,0,0) is always unstable, since one of the characteristic roots, i.e., λ = α , of (8) is

positive.

(ii)The characteristic equation for E1(k,0,0,0) is

(−λ −α)(−λ −µ1 + kβ1)(−λ −µ2)(−λ −µ3) = 0. (9)

The characteristic roots are λ = −α , λ = kβ1− µ1, λ = −µ2 and λ = −µ3. Hence, the

equilibrium point E1(k,0,0,0) is stable only when µ1 > kβ1.

Theorem 4.4. For the system (1)− (4), if µ3 > η + δδ2
Ph

a+Ph
, η < min{µ3 + δδ2

Ph
a+Ph

,µ3−

δδ2
Ph

a+Ph
}, γPh < µ2 and kβ1 > µ1 hold, then the equilibrium E2(X2,Ph2,0,0) is locally asymp-

totically stable for all τ , unstable otherwise.

Proof. The characteristic equation at E2 may be written as:

(−λ −µ2 + γPh)F1(λ )F(λ ) = 0, (10)

where

F1(λ ) = λ
2 +

αµ1

kβ1
λ +αµ1

(
1− µ1

kβ1

)
, (11)

and

F(λ ) =−λ −µ3 +η +δδ2
Ph

a+Ph
e−λτ . (12)

The one eigen value of equation (10) is λ = −(µ2− γPh) and other two eigen values are ob-

tained from F1(λ ) = 0, implies λ 2 + αµ1
kβ1

λ +αµ1

(
1− µ1

kβ1

)
= 0; clearly by Routh-Hurwitz’s

criteria and using the existence condition, kβ1 > µ1 of the equilibrium point E2(X2,P2h,0,0),

the roots of F1(λ ) = 0 are negative. Also we have F(λ ) = −λ − µ3 +η + δδ2
Ph

a+Ph
e−λτ = 0.

On comparing with equation (6), here r = µ3−η , q = −δδ2
Ph

a+Ph
. It is observed that (A1) is

hold only when µ3 > η + δδ2
Ph

a+Ph
and subsequently it will satisfy (A2) i.e. η < min{µ3 +

δδ2
Ph

a+Ph
,µ3− δδ2

Ph
a+Ph
}. Hence by using Lemma 4.1., the equilibrium point, E2(X2,Ph2,0,0),

is stable only when µ3 > η + δδ2
Ph

a+Ph
, η < min{µ3 + δδ2

Ph
a+Ph

,µ3− δδ2
Ph

a+Ph
}, γPh < µ2 and

kβ1 > µ1 hold and unstable, otherwise .

Theorem 4.5. Let (S1) holds, for the system (1)−(4), then the equilibrium E3 is locally asymp-

totically stable for all τ .
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Proof. The characteristic equation at the equilibrium point E3 may be written as:

G(λ )G1(λ ) = 0, (13)

where G(λ )= λ 3−λ 2(a1+b1+c2)+λ (a1b1+a1c2+b1c2−b2c1−a2a3)+(a1b2c1+a2a3c2−

a1b1c2) = 0; G1(λ ) = λ−d2−d1e−λτ and a1 =−2αX
k +α−βPh, a2 =−βX , a3 = β1Ph, b1 =

β1X−γPi−µ1, b2 =−γPh, b3 =− δPh
a+Ph

, c1 = γPi, c2 = γPh−µ2, c3 =−δ1Pi, d1 = δδ2
Ph

(a+Ph)

and d2 = η −η1Pi− µ3. Now, from relations G1(λ ) = 0 and G(λ ) = 0, we proceed as fol-

lows: When τ = 0, from transcendental polynomial G1(λ ) = λ − d2− d1e−λτ=0, we obtain,

λ = d2 + d1, if negative, i.e., one eigen value of the equation (13) is negative. For remaining

three eigen values, the equation G(λ ) = 0 can be written as

λ
3 +A1λ

2 +A2λ +A3 = 0, (14)

where, A1 = −a1− b1− c2, A2 = a1b1 + a1c2 + b1c2− b2c1− a2a3, A3 = a1b2c1 + a2a3c2−

a1b1c2. By Routh-Hurwitz criteria, all the roots of equation (14) have negative real parts and the

equilibrium E3 is locally asymptotically stable for all τ , if (S1): A1, A2, A3 > 0 and A1A2−A3 >

0 holds.

Theorem 4.6. Let (S2) holds, for the system (1)− (4), then the equilibrium point E4 is locally

asymptotically stable for all τ .

Proof. The characteristic equation of the variational matrix at E4 may be represented as:

(γPh−δ1N−µ2−λ )(G2(λ )) = 0, (15)

where G2(λ ) = (λ 3 +Aλ 2 +Bλ +C) + (Fλ 2 +Eλ +D)e−λτ and A = −a1− b1− d2, B =

a1b1+a1d2+b1d2−a2a3, C = a2a3d2−a1b1d2, D = a2a3d1+c2b3−a1b1d1, E = a1d1+b1d1,

F =−d1 and a1 =−2αX
k +α−βPh, a2 =−βX , a3 = β1Ph,b1 = β1X− δNa

(a+Ph)2 −µ1, b2 =−γPh,

b3 =− δPh
a+Ph

, c1 = γPh−δ1N−µ2, c2 =
δδ2Na
(a+Ph)2 , c3 =−η1N, d1 =

δδ2Ph
a+Ph

, d2 = η−µ3.

When τ = 0, then from equation (15) we have, i.e.,

G2(λ ) = 0⇒ λ
3 +A11λ

2 +A22λ +A33 = 0, (16)
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A11 =−a1−b1−d2−d1, A22 = a1b1 +a1d2 +b1d2−a2a3 +a1d1 +b1d1 and A33 = a2a3d2−

a1b1d2 + a2a3d1 + c2b3− a1b1d1. Moreover from equation (15), if (γPh− δ1N− µ2−λ ) < 0

implies that γPh < µ2 +δ1N, i.e., one of the eigen value of equation (15) is negative. Also, by

Routh-Hurwitz criterion, all the roots of equation (16) have negative real parts, if (S2): A11, A22,

A33 > 0 and A11A22−A33 > 0 holds. Therefore, the steady state E4 is locally asymptotically

stable for all τ .

Theorem 4.7. Let (S3) holds, for the system (1)− (4), then interior equilibrium E∗ is locally

asymptotically stable for all τ ∈ (0,τ+0 ). If τ ≥ τ
+
0 , then the interior equilibrium E∗ is unstable

and undergoes Hopf bifurcation.

Proof. The characteristic equation of the variational matrix at E∗ may represented as:

(λ 4 +Aλ
3 +Bλ

2 +Cλ +D)+(Eλ
3 +Fλ

2 +Gλ +H)e−λτ = 0, (17)

where A =−a1−b1−d3, B = a1b1+a1d3−c2d1−b2c1+b1d3−a2a3, C = a1c2d1+a1b2c1−

a1b1d3−b2c2c3 +b1c2d1 +b2d3c1 +a2a3d3, D = a1b2c2c3−a1b1c2d1−a1b2d3c1 +a2c2d1a3,

E = −d2, F = a1d2 − c3b3 + b1d2, G = a1c3b3 − a1b1d2 − b3c1d1 + b2c1d2 + a2a3d2, H =

a1b3c1d1−a1b2c1d2, and a1 =
−αX∗

k , a2 =−βX∗, a3 = β1P∗h , b1 = β1X∗−γP∗i −δN∗ a
(a+P∗h )

2−

µ1, b2 = −γP∗h , b3 =
−δP∗h
a+P∗h

, c1 = γP∗i , c2 = −δ1P∗i , c3 = δδ2N∗ a
(a+P∗h )

2 , d1 = −η1N∗, d2 =

δδ2
P∗h

a+P∗h
, d3 = η−η1P∗i −µ3.

Case I: When τ = 0, the equation (17) reduces to

λ
4 +(A+E)λ 3 +(B+F)λ 2 +(C+G)λ +(D+H) = 0, (18)

i.e.,

λ
4 +A111λ

3 +A222λ
2 +A333λ +A444 = 0, (19)

where A111 = A+E, A222 = B+F , A333 =C+G, A444 = D+H. By Routh-Hurwitz Criterion,

all the roots of equation (18) have negative real parts, if (S3): A111, A222, A333, A444 > 0 and

A111A222A333−A2
333−A2

111A444 > 0 holds. Thus the steady state E∗ is locally asymptotically

stable for all τ .
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Case II: If τ > 0, due to complexity and lack of tools and techniques, the transcendental equa-

tion (17) can not be solved analytically, it can be discussed numerically only in the numerical

section. This completes the proof.

5. Sensitivity Analysis

In this section, the sensitivity analysis of the system (1)− (4) at the interior equilibrium point

is carried out. The respective sensitive parameters of the state variables of the system at interior

equilibrium point are given in the Table 1, using the values of parameters: α = 0.2; k = 5;

β = 0.05; β1 = 0.1; γ = 0.3; δ = 0.01; a = 0.9; µ1 = 0.0002; δ1 = 0.04; µ2 = 0.01; δ2 = 0.3;

η = 0.01; η1 = 0.02; µ3 = 0.001. It is clear that α , k, γ , δ , µ1, δ2, η have a positive impact on

X∗. Whereas the impact of remaining parameters on X∗ is negative. The parameters β1 and γ are

more sensitive to X∗. Also α , k, β1, a, δ1, µ2, η1, µ3 have a positive impact on P∗h . The impact

of other remaining parameters on P∗h is negative; α and β are more sensitive to P∗h . Again, the

impact of α , k, β1, δ , δ1, µ2, δ2, η on P∗i is positive and the impact of rest of parameters on P∗i

is negative. Clearly, η and η1 are more sensitive to P∗i . Now, the impact of α , k, β1, γ , a, η1,

µ3 on N∗ is positive and the impact of remaining parameters on N∗ is negative. Obviously, α is

the more sensitive parameter to N∗.

6. Numerical Simulations

Numerical simulations of the system (1)− (4) are performed to support our analytic findings

with the help of MATLAB software. The interior equilibrium E∗(4.92,0.066,1.62,0.49) is

stable for parameter values: α = 0.2; k = 5; β = 0.05; β1 = 0.1; γ = 0.3; δ = 0.01; a =

0.9; µ1 = 0.0002; δ1 = 0.04; µ2 = 0.01; δ2 = 0.3; η = 0.01; η1 = 0.02; µ3 = 0.001 and

result is shown in Figure 1. Moreover, the boundary equilibrium E1(3,0,0,0) is stable for the

parameters: α = 0.2; k = 3; β = 0.005; β1 = 0.1; γ = 0.03; δ = 0.01; a = 0.5; µ1 = 0.6;

δ1 = 0.04; µ2 = 0.4; δ2 = 0.3; η = 0.01; η1 = 0.02; µ3 = 0.1, see Figure 2. The steady state

E2(2,8.25,0,0) is stable for parametric values: α = 2.2; k = 8; β = 0.2; β1 = 0.001; γ = 0.03;

δ = 0.01; a= 0.5; µ1 = 0.002; δ1 = 0.04; µ2 = 0.6; δ2 = 0.3; η = 0.01; η1 = 0.02; µ3 = 0.1 and
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TABLE 1. The sensitive indices γxv
yu

= ∂xv
∂yu
× yu

xv
of the model (1)− (4) to the

parameters yu for the parameter values: α = 0.2; k = 5; β = 0.05; β1 = 0.1; γ =

0.3; δ = 0.01; a = 0.9; µ1 = 0.0002; δ1 = 0.04; µ2 = 0.01; δ2 = 0.3; η = 0.01;

η1 = 0.02; µ3 = 0.001.

Parameter (yu) γX∗
yu

γ
P∗h
yu γ

P∗i
yu γN∗

yu

α 0.104128 0.917076 0.0506418 0.931013

k 0.0829237 0.730324 0.0403291 0.741423

β -0.104128 -0.917076 -0.0506418 -0.931013

β1 -0.917076 0.730324 0.0403291 0.741423

γ 0.91211 -0.726369 -0.0401107 0.27779

δ 0.350263 -0.278936 0.176442 -0.283175

a -0.10082 0.0802893 -0.0507872 0.0815095

µ1 0.00827464 -0.0065896 -0.000363883 -0.00668974

δ1 -0.217674 0.173347 0.00957238 -0.824018

µ2 -0.00330803 0.00263439 0.000145473 -0.0125227

δ2 0.132589 -0.105589 0.186014 -0.107194

η 0.620598 -0.49422 0.870659 -0.501731

η1 -0.691128 0.550387 -0.969607 0.558751

µ3 -0.0620598 0.049422 -0.0870659 0.0501731

result is shown in Figure 3. The natural enemy free equilibrium E3(1.38,0.33,0.30,0) is stable

for parametric values: α = 0.54; k = 2; β = 0.5; β1 = 0.02; γ = 0.09; δ = 0.3; a = 0.8; µ1 =

0.001; δ1 = 0.9; µ2 = 0.03; δ2 = 0.3; η = 0.001; η1 = 0.5; µ3 = 0.04, see Figure 4. It is clear

from Figure 5 that the equilibrium point E4(0.2,5.76,0,1.49 ∗ 10−15) is stable for parametric

values: α = 1.2; k = 5; β = 0.2; β1 = 0.01; γ = 0.03; δ = 0.01; a = 0.5; µ1 = 0.002; δ1 = 0.04;

µ2 = 0.6; δ2 = 0.3; η = 0.01; η1 = 0.02; µ3 = 0.1. It is obvious from Figure 6 that the interior

equilibrium point E∗(9.65,2.26,8.58,3.41) is stable for the parametric values: α = 3.2; k = 10;

β = 0.05; β1 = 0.1; γ = 0.1; δ = 0.1; a = 1; µ1 = 0.002; δ1 = 0.04; µ2 = 0.09; δ2 = 0.01;

η = 0.01; η1 = 0.003; µ3 = 0.0001; τ = 1000 < τ
+
0 = 1500. Moreover, Figure 7 suggests that
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FIGURE 1. The interior equilibrium E∗(4.92,0.066,1.62,0.49) is stable for parameter

values: α = 0.2; k = 5; β = 0.05; β1 = 0.1; γ = 0.3; δ = 0.01; a = 0.9; µ1 = 0.0002;

δ1 = 0.04; µ2 = 0.01; δ2 = 0.3; η = 0.01; η1 = 0.02; µ3 = 0.001.
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FIGURE 2. The boundary equilibrium E1(3,0,0,0) is stable for the parametric values:

α = 0.2; k = 3; β = 0.005; β1 = 0.1; γ = 0.03; δ = 0.01; a = 0.5; µ1 = 0.6; δ1 = 0.04;

µ2 = 0.4; δ2 = 0.3; η = 0.01; η1 = 0.02; µ3 = 0.1.

the interior equilibrium E∗(9.65,2.26,8.58,3.41) is unstable and Hopf Bifurcation appears for

the parametric values: α = 3.2; k = 10; β = 0.05; β1 = 0.1; γ = 0.1; δ = 0.1; a= 1; µ1 = 0.002;

δ1 = 0.04; µ2 = 0.09; δ2 = 0.01; η = 0.01; η1 = 0.003; µ3 = 0.0001;τ = 1900 > τ
+
0 = 1500.
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FIGURE 3. The equilibrium point E2(2,8.25,0,0) is stable for parametric values: α =

2.2; k = 8; β = 0.2; β1 = 0.001; γ = 0.03; δ = 0.01; a = 0.5; µ1 = 0.002; δ1 = 0.04;

µ2 = 0.6; δ2 = 0.3; η = 0.01; η1 = 0.02; µ3 = 0.1.
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FIGURE 4. The natural enemy free equilibrium point E3(1.38,0.33,0.30,0) is stable

for parametric values: α = 0.54; k = 2; β = 0.5; β1 = 0.02; γ = 0.09; δ = 0.3; a = 0.8;

µ1 = 0.001; δ1 = 0.9; µ2 = 0.03; δ2 = 0.3; η = 0.001; η1 = 0.5; µ3 = 0.04.

7. Conclusion

Here, a plant-pest-natural enemy system with disease in pest and gestation delay for natural

enemy is proposed. There are six feasible steady states and asymptotic stability of the system for
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FIGURE 5. The equilibrium point E4(0.2,5.76,0,1.49∗10−15) is stable for parametric

values: α = 1.2; k = 5; β = 0.2; β1 = 0.01; γ = 0.03; δ = 0.01; a = 0.5; µ1 = 0.002;

δ1 = 0.04; µ2 = 0.6; δ2 = 0.3; η = 0.01; η1 = 0.02; µ3 = 0.1.
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FIGURE 6. The interior equilibrium point E∗(9.65,2.26,8.58,3.41) is stable for the

parametric values: α = 3.2; k = 10; β = 0.05; β1 = 0.1; γ = 0.1; δ = 0.1; a = 1;

µ1 = 0.002; δ1 = 0.04; µ2 = 0.09; δ2 = 0.01; η = 0.01; η1 = 0.003; µ3 = 0.0001;τ =

1000 < τ
+
0 = 1500; discussion is numerical only.

all equilibria are studied and analyzed. It is established that boundary and interior equilibrium

points are asymptotically stable under certain conditions. The existence of Hopf bifurcation

at interior equilibrium point is explored and determined the critical limits for gestation delay
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FIGURE 7. The interior equilibrium point E∗(9.65,2.26,8.58,3.41) is unstable and

Hopf bifurcation appears for parametric values: α = 3.2; k = 10; β = 0.05; β1 = 0.1;

γ = 0.1; δ = 0.1; a = 1; µ1 = 0.002; δ1 = 0.04; µ2 = 0.09; δ2 = 0.01; η = 0.01;

η1 = 0.003; µ3 = 0.0001; τ = 1900 > τ
+
0 = 1500; discussed numerically only.

τ . Finally, the normalized forward sensitivity indices are calculated for the state variables at

interior equilibrium point with respect to various system parameters. Numerical simulations of

the proposed system are presented by taking a particular set of parameter values to verify our

analytic results.
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